
Computer Networks 55 (2011) 3275–3286
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
A fuzzy pattern-based filtering algorithm for botnet detection

Kuochen Wang a, Chun-Ying Huang b,⇑, Shang-Jyh Lin a, Ying-Dar Lin a

a Department of Computer Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
b Department of Computer Science and Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 December 2010
Received in revised form 22 April 2011
Accepted 29 May 2011
Available online 26 June 2011

Keywords:
Botnet
Fuzzy pattern recognition
Network security
Real trace analysis
1389-1286/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.comnet.2011.05.026

⇑ Corresponding author.
E-mail addresses: kwang@cs.nctu.edu.tw (K. W

edu.tw (C.-Y. Huang), szlin@cs.nctu.edu.tw (S.-J.
edu.tw (Y.-D. Lin).
Botnet has become a popular technique for deploying Internet crimes. Although signature-
based bot detection techniques are accurate, they could be useless when bot variants are
encountered. Therefore, behavior-based detection techniques become attractive due to
their ability to detect bot variants and even unknown bots. In this paper, we propose a
behavior-based botnet detection system based on fuzzy pattern recognition techniques.
We intend to identify bot-relevant domain names and IP addresses by inspecting network
traces. If domain names and IP addresses used by botnets can be identified, the information
can be further used to prevent protected hosts from becoming one member of a botnet. To
work with fuzzy pattern recognition techniques, we design several membership functions
based on frequently observed bots’ behavior including: (1) generate failed DNS queries; (2)
have similar DNS query intervals; (3) generate failed network connections; and (4) have
similar payload sizes for network connections. Membership functions can be easily altered,
removed, or added to enhance the capability of the proposed system. In addition, to
improve the overall system performance, we develop a traffic reduction algorithm to
reduce the amount of network traffic required to be inspected by the proposed system. Per-
formance evaluation results based on real traces show that the proposed system can
reduce more than 70% input raw packet traces and achieve a high detection rate (about
95%) and a low false positive rates (0–3.08%). Furthermore, the proposed FPRF algorithm
is resource-efficient and can identify inactive botnets to indicate potential vulnerable
hosts.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A botnet, or the army of bots (zombies), is comprised of
more than thousands or tens of thousands of compromised
computers. Although statistics show that the number of
botnets is increasing [1], most Internet users are still una-
ware of what is going on and how serious the problem is.
Many of these users’ computers are easily compromised
by bot malware and then become members of botnets.
Since bot malware usually does not affect regular uses of
. All rights reserved.

ang), chuang@ntou.
Lin), ydlin@cs.nctu.
compromised computers, bot masters or bot herders can
control these compromised computers remotely and ask
them to carry out malicious activities, such as sending
SPAMs, launching distributed denial of service (DDoS) at-
tacks, and stealing personal private information.

Bot detection systems can be classified into two catego-
ries, i.e., signature-based and behavior-based systems.
Although a signature-based system is accurate, it has the
following drawbacks. First, signature-based systems is
not possible to detect unknown bots. Second, a string sig-
nature is for a specific bot. When a bot has a variant, even
it behaves similar, string signatures cannot work for it.
Hence, the false negative rates may increase when new
bots are developed. Third, as the number of bot variants in-
creases, the false positive rates may increase as well. This is
because an extremely large database containing all

http://dx.doi.org/10.1016/j.comnet.2011.05.026
mailto:kwang@cs.nctu.edu.tw
mailto:chuang@ntou. edu.tw
mailto:chuang@ntou. edu.tw
mailto:szlin@cs.nctu.edu.tw
mailto:ydlin@cs.nctu. edu.tw
mailto:ydlin@cs.nctu. edu.tw
http://dx.doi.org/10.1016/j.comnet.2011.05.026
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


3276 K. Wang et al. / Computer Networks 55 (2011) 3275–3286
identified bots’ signatures may accidentally match benign
software. Finally, it is possible for a bot to bypass signa-
ture-based checks by using code obfuscation techniques.

On the contrast, behavior-based systems try to identify
bot activities by using observed particular bot behavior. If
well tuned, behavior-based systems are able to perform
similar to signature-based systems in terms of detection
rates. In addition, a behavior-based system does not need
to maintain a signature database to detect bots. Such a sys-
tem can be much more lightweight than a signature-based
system.

In this paper, we propose a behavior-based system to
detect malicious domain names and IP addresses used by
botnets. The contribution of the paper is threefold. First,
we propose an effective traffic reduction algorithm to re-
duce the amount of traffic that is required to be checked
by a bot detection system. Second, we propose a generic
framework to detect botnets based on fuzzy pattern recog-
nition techniques. Third, we make in-depth observations to
bot activities and then design proper membership func-
tions to detect bots in a monitored network. Evaluation re-
sults show that the proposed bot detection system has good
detection rates. In addition, it is able to detect various types
of bots including IRC, HTTP, and peer-to-peer (P2P) bots.

The rest of this paper is organized as follows. Section 2
overviews botnet behavior and reviews related work. Sec-
tion 3 formally defines the main problem and sub-problems
the proposed system is going to resolve and explains the
core of the proposed system, which is named the fuzzy pat-
tern recognition-based filtering (FPRF) algorithm. Section 4
presents the experiment environment and results. Finally, a
concluding remark is given in Section 5.
2. Background and related work

2.1. Overview of botnet behavior

The working scenario of a botnet can be classified into
two phases. One is the infection phase and another is the
attack phase, as shown in Fig. 1. In the infection phase, a
bot herder tries to expand the size of its army of bots.
The bot herder commands existing bots to compromise
more users’ computers. There are many techniques to com-
promise a computer such as exploiting software vulnera-
bilities and social engineering. Once a targeted host is
compromised, remote controllable software, which is
downloaded from a binary-download server, is installed
and launched so that the information about the compro-
mised computer is reported to the bot herder. In the attack
phase, a bot herder sends commands to compromised
hosts, i.e., the bots. On receipt of the commands, each bot
launches various tasks based on the instructions embed-
ded in the commands. A bot herder is therefore able to
ask bots to collect valuable information, report botnet sta-
tus, and launch attacks to target hosts.
2.2. Existing solutions to traffic reduction

It is common that the traffic generated by bots are
mixed with regular network traffic. To improve botnet
detection efficiency, existing researches often reduce the
amount of input traffic by filtering out bot-irrelevant traf-
fic. Hence, a bot detection algorithm is able to concentrate
only on bot traffic. A good traffic reduction algorithm may
improve the overall system performance. However, if not
well designed, it could increase false negative rates and/
or false positive rates. Some common criteria used to filter
out input traces are listed below [2–5]:

� Eliminate all port-scan activities
Although port-scan is an essential step to compromise a
remote host, it is not used when bots are communicat-
ing with each other. Therefore, it is possible to filter out
port-scan activities without degrading the bot detection
performance. Some port-scan packets have specific pat-
terns. For example, a TCP port-scan packet with both
the SYN flag and the RST flag are set.
� Ignore peer-to-peer traffic

If a detection system focuses only on IRC botnets, it
often filters out P2P traffic and hence gets a significant
traffic reduction rate. However, such a system cannot
detect P2P bots. There are already a lot of systems to
identify peer-to-peer traffic, such as [6–8].
� Skip short lived flows

Filter out flows containing only a few packets or lasting
only for a few seconds. These flows do not correspond
to bots that are standing by at the ready [2].
� Filter out based on black lists and white lists

If the source or the destination address of a packet is
well-known, it is often not necessary to check it. Hence,
the packet can be safely ignored.

Although traffic reduction brings benefits, the above cri-
teria also raise some concerns. First, ignoring P2P traffic
eliminates the possibility of identifying P2P bots. Second,
skipping short lived flows may cause failures in detecting
inactive botnet traffic. An inactive bot is a bot that is not
able to connect to its command and control (C&C) server
either temporarily or persistently. An inactive bot should
also be detected so that the network can be protected if
the bot becomes active again. Third, when black lists and
white lists are used to reduce input traffic, the lists must
be well managed and make sure that the lists are up-to-
date. This is because a benign host may be compromised
and then turned into a malicious one at any time. If a list
is not updated accordingly, the malicious traffic involved
with a newly compromised host may be incorrectly
ignored.
2.3. Related work

Kolbitsch et al. [9] proposed a host-based malware
detection system. They used behavior graphs to match a
stream of system call invocations and determine whether
a program is malicious or not. The method has to be
trained before it can be used. Although it is possible to de-
tect variants of a malware program, it may fail on detection
of unknown malware. The evaluation showed that the
detection rate is only 64% and there is no report on false
positive rates.



Fig. 1. Botnet working scenario: the infection and the attack phases.

K. Wang et al. / Computer Networks 55 (2011) 3275–3286 3277
Livadas et al. [2] developed a system to detect C&C traf-
fic of IRC botnets. The system leverages machine learning
techniques. The system contains two stages. In the first
stage, it extracts several per-flow traffic attributes includ-
ing flow duration, maximum initial congestion window,
and average byte counts per packet. In the second stage,
it uses a Bayesian network classifier to make the classifica-
tion balanced between false negative rates and false posi-
tive rates. However, the false positive rate is still high
(�15.04%). Sadhan et al. [10] also tried to identify botnet
C&C traffic and they observed that this type of traffic ap-
pears periodically. However, the observation was made
for a simulated bot, not a real world bot. The validness of
the results needs to be further examined by using real
world bots.

Choi et al. [11] proposed a botnet detection mechanism
solely based on monitoring of DNS traffic. In an aggregated
network trace, they found that DNS queries sent from bots
can be easily grouped together by similarities of DNS re-
quests and hence is able to be used to detect bot activities.
Variants of bots can be detected as well. Gu et al. [5] pro-
posed the ‘‘Bot-Sniffer.’’ They identified bot hosts based
on spatial–temporal correlation of collected network
traces. They used bots collected from real world, reimple-
mented bots, and self-produced bots to evaluate their solu-
tion. Although the results showed a high detection rate and
low false positive rates, the number of evaluated real bots
is very limited (only 1 bot).
3. The proposed fuzzy pattern recognition filtering
algorithm for botnet detection

3.1. Problem statement

The goal of the proposed system is to identify domain
names and IP addresses used by botnet C&C servers. The
identified domain names and IP addresses can be classified
into two categories, i.e., active and inactive. Active domain
names or IP addresses can be used to reach C&C servers
and hence they are used to report information, send feed-
backs, and retrieve commands. On the contrary, inactive



3278 K. Wang et al. / Computer Networks 55 (2011) 3275–3286
domain names and IP addresses were previously used to
contact C&C servers but they are currently inactive for
some reasons. A domain name may become inactive if its
DNS server in charge has no mapping records. An IP ad-
dress may become inactive because the corresponding host
is shutdown or off-line. However, it is possible that an
inactive one becomes active again. Therefore, it is impor-
tant for us to identify and maintain both active and inac-
tive records. To achieve the goal, the proposed system
targets on three sub-problems. They are:

(a) Traffic reduction: It is common that input raw packet
traces contain many different types of packets. Since
most of them are not relevant to botnet detection,
they should be filtered out. With an accurate and
efficient traffic reduction algorithm, it enables a bot-
net detection system to run in a more efficient way.

(b) Feature extraction: We observed that bots usually
operate with particular behavior. Some of the behav-
ior is distinguishable from normal behavior and
hence features of the behavior can be extracted to
detect bots. An ideal feature should be applicable
to as many bots as possible.

(c) Pattern recognition: Once distinguishable features of
bots are extracted, we need a good pattern recogni-
tion technique to identify bots based on the
extracted features. A good candidate should be able
to correctly classify input traffic. The technique can-
not be too complex. It must be efficient so that a
decision can be made within a short period of time.
The pattern recognition technique must have high
detection rates and low false positive rates.

3.2. Overview of the proposed algorithm

The proposed fuzzy pattern recognition filtering (FPRF)
algorithm for botnet detection is shown in Fig. 2. There are
three stages in the algorithm: traffic reduction, feature
extraction, and fuzzy pattern recognition. First, input traf-
fic is passed to the traffic reduction stage. Then, filtered
packets are passed to the feature extraction stage. Finally,
the fuzzy pattern recognition stage is used to detect mali-
Input
Traffic 1. Traffic Red

InfectedMalicious domain names
or IP addresses

Benign domain
or IP addre

Yes

No

Fig. 2. Fuzzy pattern recognition filtering (FPRF) algorithm f
cious domain names and IP addresses based on extracted
features. The most important issue that affects the effec-
tiveness of the proposed algorithm is what features are
used to detect bots’ behavior. Hence, we make observa-
tions on real bots and find that the following phenomena
are the most common ones:

� Generate failed domain name system (DNS) queries: It is
common that a bot has a built-in domain name list of
all possible C&C servers. However, since C&C servers
could be shutdown or off-line at any time, a DNS query
about an unreachable C&C server generates a failed DNS
response.
� Have similar DNS query intervals: If a DNS query about a

C&C server fails, a bot may lookup either the same
domain name again or the next domain name available
in the built-in domain name list. To prevent it from
affecting the user, a bot often makes another attempt
after sleeping for a period of time. Therefore, the time
intervals between successive DNS queries may be
similar.
� Generate failed network flows: In addition to use a built-

in domain name list, a bot may use a built-in list of IP
addresses as well. Similar to the DNS query cases, if a
bot tries to contact a unreachable C&C server, the pro-
cess fails. It is possible that a bot successfully obtains
an IP address from a DNS server but the computer asso-
ciated with the obtained IP address is shutdown or off-
line. This is because a C&C server may be installed on a
compromised user’s computer, there is no guarantee
that the C&C server is always on-line.
� Have similar payload sizes for different network flows: If a

C&C server can be reached successfully, a bot then
downloads commands provided by bot herders from
the C&C server. However, it is common that a command
keeps unchanged for a period of time. This is because
bot herders are not able to predict the exact time that
bots read the provided commands. Hence, to make sure
the number of bots that read the commands is suffi-
ciently large, bot herders would not frequently change
the commands. As a result, the payload sizes of bot rel-
evant network flows for the same family of bots are
uction 2. Feature Extraction

3. Fuzzy Pattern Recognition?

 names
sses

or identifying botnet domain names and IP addresses.



K. Wang et al. / Computer Networks 55 (2011) 3275–3286 3279
similar. Note that the payload size for a TCP and an UDP
network flow is counted in different ways. The payload
size for a TCP flow is the cumulated value of payload
sizes of all involved packets. On the contrast, the pay-
load size for a UDP flow is counted separately based
on the datagram size of each UDP message.

The proposed solution is able to detect bots based on
the above preliminary observations. To work with the fuz-
zy pattern recognition techniques, we have to design at
least one membership function for each observed behavior.
Membership functions can be altered, removed from, or
added to the system so that the system is able to adapt it-
self to new bots’ behavior. In the rest of this section, we
discuss how the features are collected and used to detect
bot relevant domain names and IP addresses.
3.3. Traffic reduction

We have discussed the pros and cons of several existing
traffic reduction methods in Section 2.2. It is true that a
good traffic reduction filter can reduce the data needed
to be processed and hence increases the overall system
performance. However, if a filter eliminates data improp-
erly, bot detection rates could decrease. Therefore, criteria
for traffic reduction must be carefully considered.

In the proposed solution, we use only one intrinsic
traffic reduction filter, as shown in Fig. 3. To prevent bot-
nets from being detected, it is common for bots to
dynamically retrieve the IP addresses of C&C servers. A
bot herder is able to register several domain names and
asks the bots to look up the IP addresses of these domain
names. As a result, bots need to send DNS queries fre-
quently to get the IP addresses currently being used by
C&C servers.

Since bots’ activities often start with DNS queries, this
characteristic can be used to filter out bot-irrelevant traffic.
Based on this feature, we check DNS query and response
packets and put returned IP addresses from the DNS into
an IP address list. A packet is sent to the feature extraction
Input 
Traffic DNS response?

Src/dest
IP addresses in the

IP address list?
Discard the packet

Store the packetFinished

For each
packet

No

Yes

No

Fig. 3. The procedure of
stage if and only if its source or destination address is listed
in the IP address list.

3.4. Feature extraction

As we mentioned before, bots activities often start with
DNS queries. The procedure of a bot’s execution is shown
in Fig. 4. If the domain name of a C&C server cannot be re-
solved or the resolved IP addresses are unreachable (off-
line hosts or invalid IP addresses), the bot is inactive. On
the contrary, if one of the resolved IP addresses is valid
and a bot is able to connect to the C&C server, it is an active
bot. As mentioned in Section 2.2, we classify bots into two
types, i.e., active and inactive bots. It is not difficult to dis-
tinguish active and inactive bots. An active bot is always
able to establish connections with one C&C server. On the
other hand, an inactive bot could receive a number of
DNS failure messages and it is not able to reach a C&C ser-
ver. Therefore, we extract features from DNS queries and
network flows and then the extracted features are used
to detect C&C server addresses.

3.4.1. Feature extracted from DNS packets
Based on the bot traces we collected, we find that DNS

queries from bots are usually periodical. These periodical
DNS queries can be further classified into two types. The
first type is a single fixed interval pattern, as shown in
Fig. 5. The interval between any two successive DNS que-
ries for a single bot is fixed. In Fig. 5, the interval pattern
is {15,15,15, . . .} seconds. The second type is an interleaved
interval pattern, as shown in Fig. 6. The interleaved inter-
val pattern shown in Fig. 6 is {{1,1,2,4}, {1,1,2,4}, . . .}
seconds.

3.4.2. Feature extracted from network flows
After a DNS query is successful, a bot then tries to con-

nect to its C&C server. Fig. 7 shows the relationship be-
tween DNS queries and network flows. We can see that
DNS queries are followed by a number of network re-
quests. We can also see that the network requests are ini-
tiated periodically.
Known IP addresses?

Add IP addresses 
into

the IP address list

Yes Yes

No

traffic reduction.



Query DNS

Inactive bot Active bot

Bot 
samples Execute the bot

Initiate
network

connections

For each bot

Failed
e.g., NX domain

Success

Success

Failed
e.g., RST or timeout

Fig. 4. The procedure of a bot’s execution.

3280 K. Wang et al. / Computer Networks 55 (2011) 3275–3286
3.5. Fuzzy pattern recognition

To prevent themselves from being detected, bots often
try to simulate human-like behavior. To resolve this prob-
lem, we use fuzzy pattern recognition to detect bots. In the
proposed fuzzy pattern recognition based filter (FPRF)
algorithm, there are two phases, i.e., the DNS phase and
the network flow phase, as shown in Fig. 8. In the DNS
phase, we detect a bot based on DNS features. Suppose a
DNS query is made for domain name D and a correspond-
ing DNS response returns an associated IP address A. If D is
identified as a malicious domain name, both D and A will
be treated as malicious. However, if D is neither an active
bot nor an inactive bot, all subsequent network packets
associated with the returned IP address A are then passed
Fig. 5. The distribution of botnet DNS query packets generated by the ‘‘Trojan-S
axis: time in minutes; y-axis: number of DNS packets).
to the network flow phase. In the network flow phase,
we detect a bot based on network flow features. If the IP
address A does not belong to an inactive or active bot,
the IP address is benign. Both the two phases identify mali-
cious domain names and IP addresses based on fuzzy pat-
tern recognition. The features are collected in the feature
extraction stage and then the max membership principle
is applied to the features, as shown in Fig. 9, to identify
malicious ones.

3.5.1. The DNS phase
In the DNS phase, for each identified domain name, we

define a feature vector x = (a,b,c) for the domain name,
where

� Suppose the maximum time interval between two suc-
cessive DNS queries is less than n seconds. We define a
as a fixed size set that contains n counters, i.e.,
a = {a1,a2, . . . ,an}. Each counter in a has an initial value
of zero. Given a segment of a network trace containing
m DNS queries, the time intervals between two succes-
sive DNS queries can be extracted and then form a
sequence S = {s1,s2, . . . ,sm�1}. For each time interval sj

(1 6 j 6m � 1) in S, we calculate i as dsje if and only if
sj is less than or equal to n and then increase the counter
ai by 1. Therefore, if sj is greater than n, no counter is
increased.
� b is the total number of DNS responses.
� c is the number of failed DNS responses.

In this phase, we define the following three states and
each state has its own membership function:

(a) Inactive malicious DNS query
We assume that a DNS query about an inactive mali-
cious domain name usually gets a failed DNS
response. Therefore, more failed DNS responses
py.Win32.Zbot.aaak’’ (a.k.a. ZeusBot) bot: single fixed interval pattern (x-



Fig. 6. The distribution of botnet DNS query packets generated by the ‘‘Backdoor.Win32.SmallBot.c’’ bot: interleaved intervals pattern (x-axis: interval in
seconds; y-axis: number of DNS query packets).

Fig. 7. The distribution of DNS query and network packets generated by the ‘‘Win32.SpyBot’’ (x-axis: interval in seconds; y-axis: number of DNS queries or
network packets (TCP)).

K. Wang et al. / Computer Networks 55 (2011) 3275–3286 3281
should lead to a higher membership value. Based on
the observation, we define a membership function
X1 which is used to calculate the probability of being
an inactive malicious DNS query. The function X1 is
defined as
X1ðxÞ ¼ 1� b� c
b

: ð1Þ
(b) Malicious DNS query
Since malicious DNS queries usually have similar
time intervals. If most DNS queries for an identified
domain name have similar time intervals, it could be
a malicious domain name. We define a membership
function X2 to calculate the probability of contacting
a malicious domain name. Hence, we define function
X2 as
X2ðxÞ ¼
maxðaÞP

a
;
P

a P q;

0; otherwise:

(
ð2Þ

In the equation, we define a threshold q. If the num-
ber of observed DNS queries is less than q, we be-
lieve that the identified domain name is benign
and thus X2 has a value of zero.
(c) Normal DNS query
We define a membership function X3 to calculate the
probability of being a normal DNS query. If an iden-
tified domain name has no failed DNS response, low
query frequency, and diverse time intervals, it would
be a benign domain name. Therefore, the function X3

is defined as
X3ðxÞ ¼ 1�maxfX1ðxÞ;X2ðxÞg: ð3Þ



Extracted
features

Fuzzy pattern 
recognition

in DNS phase

Is malicious?

Fuzzy pattern 
recognition

in network flow 
phase

Is malicious?

Benign Malicious

Yes

No

No

Yes

Fig. 8. The procedure of the fuzzy pattern recognition stage.

3282 K. Wang et al. / Computer Networks 55 (2011) 3275–3286
3.5.2. The network flow phase
Similar to the DNS phase, we also define a feature vector

x = (a,b,c) for each destination IP address identified in net-
work flows, where

� Suppose the maximum time interval between a request
and its response is less than n seconds. We define a as a
fixed size set that contains n counters, i.e.,
a = {a1,a2, . . . ,an}. Each counter in a has an initial value
of zero. Given a segment of a network trace containing
m request-response pairs, the time intervals between a
request and the corresponding response can be mea-
sured and then form a sequence S = {s1,s2, . . . ,sm}. For
each time interval sj (1 6 j 6m) in S, we calculate i as
dsje and then increase the counter ai by 1. Note that if
a request does not have a corresponding response, no
counter is increased. In addition, if sj is greater than n,
no counter is increased as well.
� b is the total number of network requests.
� Suppose the maximum payload size is less than b bytes.

We define c as a fixed size set that contains b + 1 coun-
ters, i.e., c = {r0,r1,r2, . . . ,rb}. Each counter in c has an ini-
tial value of zero. Given a segment of a network trace
containing t network flows, the payload size of each
network flow is extracted and form a sequence
P = {p1,p2, . . . ,pt}. For each payload size pj (1 6 j 6 t) in
P, we set i to pj and then increase the counter ri by 1 if
i 6 b.

In this phase, we also define the following three states
and their corresponding membership functions:
Fig. 9. Fuzzy pattern recognition based o
(a) Inactive malicious IP address
We assume that if an IP address receives many
requests but does not respond, it is highly probable
that the destination IP address is an inactive mali-
cious IP address. We define a membership function
X1 to calculate the probability of being an inactive
malicious IP address:
n maxim
X1ðxÞ ¼
1;

P
a ¼ 0 and b P r;

0; otherwise:

�
ð4Þ

In the equation, r is a threshold for the number of
retries. When a destination IP address has been
reconnected for more than r times, the destination
IP address is treated as malicious.
(b) Malicious IP address
Since computers with malicious IP addresses, e.g.,
C&C servers, often provide the same commands to
bots, it can be observed that connections to these
malicious IP addresses would have similar payload
sizes. Without counting a payload size of zero, we
define a membership function X2 to calculate the
probability of being a malicious IP address:
X2ðxÞ ¼
maxðcÞ
b�r0

; b� r0 P q;

0; otherwise:

(
ð5Þ

We believe that bots always try to reach malicious IP
addresses as possible as they could. If the number of
network flows established with the destination IP
address is less than a threshold q, the IP addresses
is treated as benign and thus X2 has a value of zero.
(c) Normal IP address
We define a membership function X3 to calculate the
probability of being a normal IP address. If a destina-
tion IP address has no failed network flows and the
payload sizes are diverse, it would be a benign
address. Therefore, the function X3 is defined as
X3ðxÞ ¼ 1�maxfX1ðxÞ;X2ðxÞg: ð6Þ
4. Evaluation

4.1. Trace collection

To generate real botnet traces, we collect malicious
binaries using honeytrap [12], store binary sequences in-
jected into honeytraps in a share folder, and then run exe-
cutable bots in an unpatched Windows XP SP3 operating
system installed in VirtualBox virtual machines [13], as
shown in Fig. 10. We obtain 100 bot binary sequences from
the honeytraps. However, only 44 of them are complete
um membership principle.



Fig. 10. Experimental environment for botnet traces collection.

Table 1
List of the 44 bots used to generate malicious network traces.

Backdoor.IRC.Botnut.c Backdoor.IRC.ChanBot.a Backdoor.IRC.Lambot

Backdoor.IRC.Strobot Backdoor.PHP.Buzbot.a Backdoor.PHP.ShellBot.e

Backdoor.Win32.Bashbot.c Backdoor.Win32.Bitbot.a Backdoor.Win32.Cubot.a

Backdoor.Win32.FatBot.m Backdoor.Win32.HareBot.eo Backdoor.Win32.Leetbot.b

Backdoor.Win32.LiteBot Backdoor.Win32.LiteBot.a Backdoor.Win32.Mocbot.a

Backdoor.Win32.MTBot.a Backdoor.Win32.Nepoe.mi Backdoor.Win32.Robobot.aa

Backdoor.Win32.RXBot.a Backdoor.Win32.ShBot.a Backdoor.Win32.Sikbot.a

Backdoor.Win32.Slackbot.b Backdoor.Win32.SmallBot.c Backdoor.Win32.SmallBot.e

Backdoor.Win32.VBbot.ac Backdoor.Win32.XBot.a Email-Worm.VBS.Bugbot.a

Email-Worm.VBS.Rodybot Net-Worm.Win32.Kolabc.hdu Net-Worm.Win32.Padobot

P2P-Worm.Win32.SpyBot.ad P2P-Worm.Win32.SpyBot.ag P2P-Worm.Win32.Sybot.a

Packed.Win32.Krap.b Trojan-Downloader.Win32.Small.anhv Trojan-Dropper.Win32.MultiJoiner.13.b

Trojan-Dropper.Win32.SpoofBot Trojan-Mailfinder.Win32.AIMBot.a Trojan-Proxy.Win32.Chubot

Trojan-Spy.Win32.Zbot.aaak Trojan.Win32.Spabot.ad (Unknown)

Virus.DOS.Gobot.2097 Virus.DOS.Gobot.2099

Fig. 11. Malicious domain names and IP addresses: false negative rate vs. q.

K. Wang et al. / Computer Networks 55 (2011) 3275–3286 3283
executables. Therefore, the traces are collected only for the
44 executable bots. Table 1 shows the name of the 44 bot
binaries used to generate malicious network traces. All in-
put and output network traces of the virtual machines are
captured and stored in a MySQL database. Each bot is run
for 48 h. Both packet headers and complete packet



Table 2
Botnet traces statistics and detection rates (for q = 7).

Number of bots 44
Number of malicious domain names 85
Number of malicious IP addresses 84
Number of DNS packets 294,385
Number of TCP packets 675,164
Detection rate of malicious domain names 95.29%
Detection rate of malicious IP addresses 95.24%

Table 3
Statistics of active/inactive malicious domain names and IP addresses (for
q = 7).

Domain names IP addresses

Active 35 45
Inactive 33 (w/ IP addresses) 39

17 (w/o IP addresses)
Total 85 84

3284 K. Wang et al. / Computer Networks 55 (2011) 3275–3286
payloads are stored for further analysis. In addition to col-
lect traffic generated by bots, we also collect real network
traces from a campus network. We install a network sniffer
at an edge router of a well-managed network of a labora-
tory. There are around 20 users inside the lab during work
hours. The collected normal traces are generated by com-
monly used network applications and services including
on-line chatting, peer-to-peer file sharing, web browsing,
and remote management. We use normal traces to evalu-
ate the false positive rates of the proposed solution.
4.2. Numeric results

We use captured real botnet traces to evaluate the pro-
posed FPRF algorithm. In Fig. 11, we run different thresh-
olds of q for botnet traces to check the false negative
Fig. 12. Benign IP addresses f
rates (FNR) of malicious domain names and IP addresses.
As q increases, FNR also increases. This is because some
bots generate very few packets and the involved domain
names or malicious IP addresses would not be detected if
q is too large. Statistics for the detection of malicious do-
main names and IP addresses are shown in Table 2. The
evaluation result shows that FPRF has a high detection
rate, i.e., 95.29% and 95.24% for malicious domain names
and IP addresses, respectively. Table 3 shows the detailed
numbers of detected malicious domain names and IP ad-
dresses. There are 85 and 84 malicious domain names
and IP addresses identified, respectively. Among all identi-
fied records, we also find that there are only 35 active mali-
cious domain names and 45 active malicious IP addresses.

We also collect four normal traces (T1 through T4) to
evaluate the FPRF’s traffic reduction rate and the false po-
sitive rate (FPR). These traces contain various types of be-
nign application traces including IRC, HTTP, and P2P
traffic generated by different users. In Fig. 12, we use dif-
ferent q for normal traces and check the FPR of detecting
malicious IP addresses. As q increases, the FPR decreases.
This is because more benign packets are examined and
the corresponding IP addresses can be determined to be
malicious or not. In Table 4, we show that the FPRF algo-
rithm achieves high reduction rates and low FPRs of mali-
cious domain names and IP addresses.

In our last experiment, we choose q = 7 to have a better
performance. According to Figs. 11 and 12, it is a trade-off
between false negative and false positive rates. When we
set q to 7, the FPRF algorithm has the detection rates of
95.29% and 95.24% for malicious domain names and IP ad-
dresses, respectively, as shown in Table 2. Note that the
FPRF algorithm has false positive rates ranging from 0%
to 3.08% for benign domain names and IP addresses, as
shown in Table 4. It is worth to note that the threshold q
is chosen based on the empirical data, i.e., the captured
malicious and normal traces. We believe that if the amount
alse positive rate vs. q.



Table 4
Normal traces statistics and FPRs of benign domain names and IP addresses (for q = 7).

Trace ID T1 T2 T3 T4
Reduction rate 71.8% 94.2% 93.7% 71.8%
Number of DNS packets 1,507 567 2,155 3,483
Number of TCP packets 249,527 37,624 44,298 43,667
Duration 48 h 7 h 16 h 13 h
FPR of malicious domain names 0.4% 0.0% 3.7% 0.9%
FPR of malicious IP addresses 2.89% 2.45% 2.10% 3.08%

Table 5
Comparison of behavior-based botnet detection methods.

Approach Livadas et al. [2] Gu et al. [5] The proposed FPRF

Core technique Machine learning Spatial–Temporal correlation (statistic-based) Fuzzy pattern recognition
Bot samples 1

Re-implememted in lab traffic
8
1: Real bot/real traffic
3: Re-implemented
2: Self-developed
2: Botnet IRC log

44
Real bots/real traffic

Rate of traffic reduction N/A
(4 filters)

N/A
(2 filters)

More than 70%
(1 filter)

Inactive bots detection No No Yes
True positive rate 92% 100% 95%
False positive rate 11–15% 0–6% 0–3.08%

K. Wang et al. / Computer Networks 55 (2011) 3275–3286 3285
of empirical data is sufficient, the chosen value can be
widely applied to different networks.

Table 5 compares the proposed FPRF with the other two
existing botnet detection methods [2,5]. Based on the core
techniques used, the computation cost of the proposed
solution would be much lower than the other two meth-
ods. The proposed fuzzy pattern recognition-based filtering
(FPRF) algorithm requires only basic arithmetics, while
machine leaning and statistic based algorithms requires
either high-dimensional vector processing or complicated
arithmetics. To make sure that the proposed solution
works with real world bots, we also evaluate the algorithm
with 44 real bot samples to generate malicious traffic. In
addition to have high traffic reduction rates, high true po-
sitive rates, and low false positive rates, the result also
shows that the proposed solution performs well with real
world botnet traces. Readers should notice that the com-
parison of detection accuracies is evaluated independently
by developers of each compared solution. Evaluation with
different traces may lead to different results. Nevertheless,
we believe that evaluation with real traces would be better
than with re-implemented and self-generated traces.

5. Conclusion

In this paper, we propose an extensible fuzzy pattern
recognition-based filtering (FPRF) algorithm for botnet
detection. Based on common bot host behavior observed
from DNS and TCP traffic, our FPRF algorithm is divided
into three stages: (1) traffic reduction: reduce input raw
packet traces and speed up the processing of bots specific
activities; (2) feature extraction: extract features from
the reduced input packet traces; and (3) fuzzy pattern rec-
ognition: with extracted features, detect bot-relevant mali-
cious domain names and IP addresses based on the
maximum membership principle. We use a number of real
bots to generate botnet traces to evaluate the proposed
FPRF algorithm. Experimental results show that the pro-
posed FPRF has high detection rates of 95.29% and
95.24% for malicious domain names and malicious IP ad-
dresses, respectively. The experimental results based on
normal traces also show a high traffic reduction rate of
over 70% and low false positive rates (0–3.08%). Both re-
sults show that the FPRF algorithm is not only efficient
but also highly accurate. In addition, the FPRF algorithm
can detect inactive botnets, which can be used to identify
potential vulnerable hosts.
Acknowledgment

This research was supported in part by National Science
Council under the grants NSC 99-2221-E-009-081-MY3
and by Taiwan Information Security Center at NTUST
(TWISC@NTUST) under the grants NSC 100-2219-E-011-
002. We would also like to thank the anonymous reviewers
for their valuable and helpful comments.
References

[1] B. McCarty, Botnets: big and bigger, IEEE Security and Privacy 1 (4)
(2003) 87–90.

[2] C. Livadas, R. Walsh, D. Lapsley, W.T. Strayer, Usilng machine
learning technliques to identify botnet traffic, in: Proceedings of
the 31st IEEE Conference on Local Computer Networks, IEEE, 2006,
pp. 967–974.

[3] W.T. Strayer, R. Walsh, C. Livadas, D. Lapsley, Detecting botnets with
tight command and control, in: Proceedings of the 31st IEEE
Conference on Local Computer Networks, 2006, pp. 195–202.

[4] R. Walsh, D. Lapsley, W.T. Strayer, Effective flow filtering for botnet
search space reduction, in: Proceedings of the 2009 Cybersecurity
Applications and Technology Conference for Homeland Security,
2009, pp. 141–149.

[5] G. Gu, J. Zhang, W. Lee, Botsniffer: Detecting botnet command and
control channels in network traffic, in: Proceedings of Network and
Distributed System Security Symposium, 2008.



3286 K. Wang et al. / Computer Networks 55 (2011) 3275–3286
[6] T. Karagiannis, A. Broido, M. Faloutsos, K. Claffy, Transport layer
identification of P2P traffic, in: Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement, 2004, pp. 121–134.

[7] M. Pernyi, T.D. Dang, A. Gefferth, S. Molnr, Identification and analysis
of peer-to-peer traffic, Journal of Communications 1 (7) (2006) 36–
46.

[8] I. Dedinski, H. Meer, L. Han, L.Mathy, D.P. Pezaros, J.S. Sventek, X.Y.
Zhan, Cross-layer peer-to-peer traffic identification and optimization
based on active networking, in: Active and Programmable Networks:
Proceedings of IFIP TC6 7th International Working Conference, 2009,
pp. 13–27.

[9] C. Kolbitsch, P.M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, X. Wang,
Effective and efficient malware detection at the end host, in:
Proceedings of 18th USENIX Security Symposium, USENIX
Association, 2009, pp. 351–366.

[10] B. Sadhan, J.M.F. Moura, D. Lapsley, Periodic behavior in botnet
command and control channels traffic, in: Proceedings of the 28th
IEEE Conference on Global Telecommunications, IEEE Press, 2009,
pp. 2157–2162.

[11] H. Choi, H. Lee, H. Lee, H. Kim, Botnet detection by monitoring group
activities in DNS traffic, in: Proceedings of the 7th IEEE International
Conference on Computer and Information Technology, 2007, pp.
715–720.

[12] T. Werner, Honeytrap - a dynamic meta-honeypot daemon. <http://
honeytrap.carnivore.it/>, 2009.

[13] Oracle, Virtualbox. <http://www.virtualbox.org/>.

Kuochen Wang received the B.S. degree in
Control Engineering from the National Chiao
Tung University, Taiwan, in 1978, and the M.S.
and Ph.D. degrees in Electrical Engineering
from the University of Arizona in 1986 and
1991, respectively. He is currently a Professor/
Director in the Institute of Networking Engi-
neering, National Chiao Tung University. He
was a Deputy Director of the Computer and
Network Center at this university from June
2007 to July 2009. He was a Visiting Scholar in
the Department of Electrical Engineering,

University of Washington from July 2001 to February 2002. From 1980 to
1984, he was a Senior Engineer at the Directorate General of Telecom-
munications in Taiwan. He served in the army as a second lieutenant

communication platoon leader from 1978 to 1980. His research interests
include wireless networks, network security, mobile cloud computing,
and power management for multimedia portable devices.

Chun-Ying Huang received the B.S. degree in
Computer Science from National Taiwan
Ocean University in 2000 and the M.S. degree
in Computer Information Science from
National Chiao-Tung University in 2002. He
received the Ph.D. degree in Electrical Engi-
neering from National Taiwan University in
2007. Since then he took the one-year com-
pulsory military service as a second lieuten-
ant. From August 2008, he joined the
Computer Science and Engineering Depart-
ment at National Taiwan Ocean University as

an assistant professor. His current research interests focus on various
aspects of computer networks and network security, including key
management, attack mitigation, intrusion detection, and traffic analysis.
Dr. Huang is a member of IEEE and ACM.

Shang-Jyh Lin received the B.S. degree in
Computer Science and Engineering from the
Yuan Ze University, Taiwan, in 2008, and the
M.S. degree in Computer Science from the
National Chiao Tung University in 2010. He
was a TA in the Computer Center, Department
of Computer Science, National Chiao Tung
University from July 2008 to June 2010. His
research interests include computer net-
works, network security, and web applica-
tions.
Ying-Dar Lin is Professor of Computer Science
at National Chiao Tung University (NCTU) in
Taiwan. He received his Ph.D. in Computer
Science from UCLA in 1993. He spent his
sabbatical year as a visiting scholar at Cisco
Systems in San Jose in 2007–2008. Since 2002,
he has been the founder and director of Net-
work Benchmarking Lab (NBL,
www.nbl.org.tw), which reviews network
products with real traffic. He also cofounded
L7 Networks Inc. in 2002, which was later
acquired by D-Link Corp. His research inter-

ests include design, analysis, implementation, and benchmarking of
network protocols and algorithms, quality of services, network security,
deep packet inspection, P2P networking, and embedded hardware/soft-

ware co-design. His work on ‘‘multi-hop cellular’’ has been cited over 470
times. He is currently on the editorial boards of IEEE Communications
Magazine, IEEE Communications Surveys and Tutorials, IEEE Communi-
cations Letters, Computer Communications, and Computer Networks. He
is publishing a textbook ‘‘Computer Networks: An Open Source
Approach’’ with Ren-Hung Hwang and Fred Baker through McGraw-Hill
in February 2011.

http://honeytrap.carnivore.it/
http://honeytrap.carnivore.it/
http://www.virtualbox.org/
http://www.nbl.org.tw

	A fuzzy pattern-based filtering algorithm for botnet detection
	1 Introduction
	2 Background and related work
	2.1 Overview of botnet behavior
	2.2 Existing solutions to traffic reduction
	2.3 Related work

	3 The proposed fuzzy pattern recognition filtering algorithm for botnet detection
	3.1 Problem statement
	3.2 Overview of the proposed algorithm
	3.3 Traffic reduction
	3.4 Feature extraction
	3.4.1 Feature extracted from DNS packets
	3.4.2 Feature extracted from network flows

	3.5 Fuzzy pattern recognition
	3.5.1 The DNS phase
	3.5.2 The network flow phase


	4 Evaluation
	4.1 Trace collection
	4.2 Numeric results

	5 Conclusion
	Acknowledgment
	References


