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QUANTUM DOT EXCITONS

YUEH-NAN CHEN∗ and DER-SAN CHUU

Department of Electrophysics, National Chiao-Tung University

Hsinchu 300, Taiwan
∗ynchen.ep87g@nctu.edu.tw

We propose to measure Purcell effect by observing the current through a semeiconduc-
tor quantum dot embedded inside a microcavity. The stationary current is shown to be
altered if one varies the cavity length. For the double-dot system, we find that the station-
ary current shows oscillatory behavior as one varies the inter-dot distance. Furthermore,
the current is suppressed if the dot distance is small compared to the wavelength of the
emitted photon. This photon trapping phenomenon generates the entangled state and
may be used to control the emission of single photons at predetermined times.
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1. Introduction

Historically, the idea of controlling the SE rate by using a cavity was introduced by

Purcell.1 Considering the interaction between the atomic dipole and the electromag-

netic fields inside a cavity, the SE rate can be expressed as (2π/~) ρcav(ω)|〈f |V |i〉|2,
where ρcav(ω) and V are the photon density of states and atom–vacuum field inter-

action Hamiltonian, respectively. For a planar cavity with distance Lc between two

mirrors, the photon density of states is Ncω/2πc2, where Nc is an integer less than

2Lc/λ. Thus, by varying the cavity length Lc, the SE rate can be altered. The en-

hanced and inhibited SE rate for the atomic system was intensively investigated in

the 1980s2–5 by using atoms passed through a cavity. Turning to semiconductor sys-

tems, the electron–hole pair is naturally a candidate for examining the spontaneous

emission. Experimentalists are now able to fabricate the quantum dot systems in

laterally-structured microcavities that exhibit photon confinement in all three di-

mensions. Both inhibition and enhancement of the spontaneous emission of the

quantum dot excitons have been observed.6

On the other hand, great attention has been focused on the entanglement issue

since the generation of highly-entangled states is one of the fundamental require-

ments for quantum information processing.7 Many previous works have been asso-

ciated with quantum-optic and atomic systems.8 However, due to the scalability of

the quantum processor, solid-state realizations of such phenomena are the favored
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choices.9 In fact, super-radiance effect can also generate entanglement by sponta-

neous emission. Therefore, a different way is proposed to observe Purcell effect and

generate the entangled states in this work. By injecting electrons and holes into

the quantum dots embedded inside a microcavity, photons are generated by the re-

combination of the excitons. This process not only allows one to determine Purcell

effect by measuring the stationary current, but also induces the entangled states in

quantum dot systems.

2. Current Through One Quantum Dot and Purcell Effect

We first consider a quantum dot embedded in a p–i–n junction, which is similar to

the device proposed by O. Benson et al.10 Both the hole and electron reservoirs are

assumed to be in thermal equilibrium. After a hole is injected into the hole subband

in the quantum dot, the n-side electron can tunnel into the exciton level because

of the Coulomb interaction between the electron and hole. Thus, we may assume

three dot states

|0〉 = |0, h〉 , |U〉 = |e, h〉 , and |D〉 = |0, 0〉 , (1)

where |0, h〉 means there is one hole in the quantum dot, |e, h〉 is the exciton state,

and |0, 0〉 represents the ground state with no hole and electron in the quantum

dot. One might argue that one cannot neglect the state |e, 0〉 for real device since

the tunable variable is the applied voltage. This can be resolved by fabricating a

thicker barrier on the electron side so that there is little chance for an electron

to tunnel in advance. Moreover, the charged exciton and biexcitons states are also

neglected in our calculations. This means a low injection limit is required in the

experiment.11 We can now define the dot-operators n̂U ≡ |U〉〈U |, n̂D ≡ |D〉〈D|,
p̂ ≡ |U〉〈D|, ŝU ≡ |0〉〈U |, and ŝD ≡ |0〉〈D|. The total Hamiltonian H of the system

consists of three parts: the dot Hamiltonian, the photon bath, and the electron

(hole) reservoirs:

H = H0 + HT + HV ,

H0 = εU n̂U + εDn̂D + Hp + Hres ,

HT =
∑

k

g(Dkb†kp̂ + D∗
kbkp̂†) = g(p̂X + p̂†X†) ,

Hp =
∑

k

ωkb†kbk ,

HV =
∑

q

(Vqc†
q
ŝU + Wqd†

q
ŝD + c.c.) ,

Hres =
∑

q

εU
q
c†
q
cq +

∑

q

εD
q

d†
q
dq .

(2)

In above equations, bk is the photon operator, gDk is the dipole coupling strength,

X =
∑

k Dkb†k, and cq and dq denote the electron operators in the left and right
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reservoirs, respectively. Here, g is a constant with a unit of the tunneling rate. The

couplings to the electron and hole reservoirs are given by the standard tunnel Hamil-

tonian HV , where Vq and Wq couple the channels q of the electron and the hole

reservoirs. If the couplings to the electron and the hole reservoirs are weak, then it is

reasonable to assume that the standard Born–Markov approximation with respect

to these couplings is valid. In this case, one can derive a master equation from the

exact time-evolution of the system. The equations of motion can be expressed as

〈n̂U 〉t − 〈n̂U 〉0 = −ig

∫ t

0

dt′{〈p̂〉t′ − 〈p̂†〉t′} + 2ΓU

∫ t

0

dt′(1 − 〈n̂U 〉t′ − 〈n̂D〉t′) ,

〈n̂D〉t − 〈n̂D〉0 = −ig

∫ t

0

dt′{〈p̂〉t′ − 〈p̂†〉t′} − 2ΓD

∫ t

0

dt′〈n̂D〉t′ ,

〈p̂〉t − 〈p̂〉0t = −ΓD

∫ t

0

dt′eiε(t−t′)〈XtX
†
t′ p̃(t′)〉t′

− ig

∫ t

0

dt′eiε(t−t′){〈n̂UXtX
†
t′〉t′ − 〈n̂DX†

t′Xt〉t′} ,

〈p̂†〉t − 〈p̂〉0t = −ΓD

∫ t

0

dt′e−iε(t−t′)〈p̃†(t′)Xt′X
†
t 〉t′

+ ig

∫ t

0

dt′e−iε(t−t′){〈n̂UXt′X
†
t 〉t′ − 〈n̂DX†

t Xt′〉t′} .

(3)

where ΓU = π
∑

q
V 2
q

δ(εU − εU
q
), ΓD = π

∑

q
W 2

q
δ(εD − εD

q
), and ε = εU − εD is

the energy gap of the quantum dot exciton. Here, p̃(t′) = peiεtXt′ , and Xt′ denotes

the time evolution of X with Hp. The expectation value 〈p̂(†)〉0t describes the decay

of an initial polarization of the system and plays no role for the stationary current.

Therefore, we shall assume the initial expectation value of p̂(†) vanishes at time

t = 0.

As can be seen from Eq. (3), there are terms like 〈n̂UXtX
†
t′〉t′ which con-

tain products of dot operators and photon operators. If we are interested in

small coupling parameters, a decoupling of the reduced density matrix ρ̃(t′) can

be written as ρ̃(t′) ≈ ρ0
phTrphρ̃(t′). By using the above equations, we obtain

Tr(ρ̃(t′)n̂UXtX
†
t′) ≈ 〈n̂U 〉t′〈XtX

†
t′〉0 and correspondingly the other products of op-

erators can be also obtained. For spontaneous emission, the photon bath is assumed

to be in equilibrium. The expectation value 〈XtX
†
t′〉0 ≡ C(t − t′) is a function of

the time interval only. We can now define the Laplace transformation for real z,

Cε(z) ≡
∫ ∞

0

dte−zteiεtC(t) , (4)

nU (z) ≡
∫ ∞

0

dte−zt〈n̂U 〉t , etc. , z > 0 , (5)

and transform the whole equations of motion into z-space. These equations can

then be algebraically solved. The tunnel current Î can be defined as the change of

In
t. 

J.
 N

an
os

ci
. 2

00
3.

02
:5

27
-5

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



June 8, 2004 13:47 WSPC/175-IJN 00164

530 Y.-N. Chen & D.-S. Chuu

the occupation of n̂U and is given by Î ≡ ig(p̂− p̂†), where we have set the electron

charge e = 1 for convenience. The time dependence of the expectation value 〈Î〉t
can be obtained by solving the transformed equations and performing the inverse

Laplace transformation. For time t → ∞, the result is

〈Î〉t→∞ =
2g2ΓUΓDB

g2ΓDB + [g2B + ΓD + 2γΓ2
D + (γ2 + Ω2)Γ3

D ]
,

B = γ + (γ2 + Ω2)ΓD ,

(6)

where g2Ω and g2γ are the exciton frequency shift and decay rate, respectively.

Since the stationary current through the quantum dot depends strongly on the

decay rate γ, the results of a quantum dot inside a planar microcavity is numerically

displayed in Fig. 1. In plotting the figure, the current is in terms of 100 pA, and the

cavity length is in units of λ0/2, where λ0 is the wavelength of the emitted photon.

Furthermore, the tunneling rates, ΓU and ΓD, are assumed to be equal to 0.2γ0 and

γ0, respectively. Here, a value of 1/1.3 ns for the free-space quantum dot decay rate

γ0 is used in our calculations.12 In addition, the planar microcavity has a Lorentzian

broadening at each resonant modes (with broadening width equals to 1% of each

resonant mode).13 As the cavity length is less than half of the wavelength of the

emitted photon, the stationary current is inhibited. This is because the energy of

the photon generated by the quantum dot is less than the cut-off frequency of the

planar microcavity. Moreover, the current is increased whenever the cavity length

is equal to multiple half wavelength of the emitted photon. It represents the cavity

length exceeds some multiple wavelength, opens up another decay channel abruptly

for the quantum dot exciton, and turns out that the current is increased. With the

increasing of cavity length, the stationary current becomes less affected by the

cavity and gradually approaches free space limit.

0 1 2 3 4
Cavity Length

0.05

0.1

0.15

0.2

0.25

0.3

t
n
e

r
r

u
c

Fig. 1. Stationary tunnel current, Eq. (8), as a function of cavity length Lc. The vertical and
horizontal units are 100 pA and λ0, respectively.
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3. Current Through the Double-Dot System and the Induced

Entanglement

We now consider two spatially-separated quantum dot inside a p–i–n junction

(Fig. 2). One of the obstacles in measuring super-radiance between the quantum

dots comes from the random size of the dots which result in a random distribution

of energy gap and thus diminishes the coherent radiation. This can be overcome

by constructing a gate voltage over one of the quantum dots. The energy gap and

the orientation of the dipole moments of one of the quantum dots, can be well

controlled. In our calculation, we neglect the Forster process which may have some

influences on the results if the two dots are close to each other. The validity of this

assumption will be discussed later.

Thus, we may assume four dot states |0〉 = |0, h; 0, 0〉, |U1〉 = |e, h; 0, 0〉, |U2〉 =

|0, 0; e, h〉, and |D〉 = |0, 0; 0, 0〉, where |0, h; 0, 0〉 means there is one hole in dot 1

and |0, 0; 0, 0〉 represents the ground state with no hole and electron in the quantum

dots. The exciton states |e, h; 0, 0〉 (in dot 1) can be converted to |0, 0; e, h〉 (in dot 2)

through the exciton–photon interactions. By transforming |U1〉 and |U2〉 into Dicke

states: |S0〉 = (1/
√

2)(|U1〉 − |U2〉) and |T0〉 = (1/
√

2)(|U1〉 + |U2〉), we can now

define the dot-operators n̂S ≡ |S0〉〈S0|, n̂T ≡ |T0〉〈T0|, n̂D ≡ |D〉〈D|, p̂s ≡ |S0〉〈D|,
p̂T ≡ |T0〉〈D|, ŝU1

≡ (1/
√

2)(|0〉〈S0|+ |0〉〈T0|), ŝD ≡ |0〉〈D|. Similar to the one-dot

case, one can derive the stationary tunnel current through the double-dot system:

〈Î〉t→∞ =
4g2γ+γ−

γ− + γ+[1 + 2γ−(g2/ΓD + g2/ΓU + ΓD)]
, (7)

where g2γ+ and g2γ− are the super-radiant and sub-radiant decay rate of the ex-

citon, respectively.14 The corresponding decay rate for super-radiant and the sub-

radiant channels is given by

g2γ± = γ0

(

1 ± sin(2πd/λ0)

2πd/λ0

)

, (8)

 

Fig. 2. Two InAs quantum dots are embedded in a p–i–n junction. Above dot 2 is a metal gate,
which control the energy gap and the orientation of the dipole.
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Fig. 3. Occupation probability of the entangled states nS (—) and nT (- - -). The inset shows the
results inside a rectangular microcavity. The horizontal unit used here is λ0.

where d is the inter-dot distance and γ0 is the exciton decay rate in a quantum

dot. As can be seen from Eq. (6), the current is suppressed as the dot distance d is

much smaller than the wavelength of the emitted photon. This corresponds to the

trapping state in the two-ion system. As long as we choose only one of the dots to

be coupled to reservoirs, the generated photon is reabsorbed immediately by the

other dot and vice versa. The current is then blocked by this exchange process.

Similar to the two-ion super-radiance, the current also exhibits oscillatory behavior

as a function of dot distance.

In Fig. 3, we plot the expectation value of n̂S (n̂T ) as a function of the dot

distance. The maximum entangled state (|S0〉) is reached as d � λ0. This is re-

markable as the steady state is independent of the initial state. The entanglement is

induced by the cooperative decoherence in the system. In a recent paper by Schnei-

der and Milburn,15 the authors considered the behavior of an ion trap with all ions

driven simultaneously and coupled collectively to a heat bath. They also found that

the steady state of the ion trap can exhibit quantum entanglement. However, the

concurrence of their system is below the value of unity (maximum entanglement).

On the contrary, in our system the maximum entangled state can be generated by

tuning the band gap of dot 2 (linear stark effect), i.e., control the on/off of the

super-radiance. Another advantage of our scheme is shown in the inset of Fig. 3. If

the double-dot system is incorporated inside a rectangular microcavity, the maxi-

mum entangled states repeat as a function of inter-dot distance. This means that

even for remote separation, the entanglement can still be achieved. The reason can

be attributed to the creation of entanglement in our model that is governed by

the interaction with a common heat bath, while conventional creation of entangle-

ment depends on the direct interaction between two subsystems.16 When two dots

are coupled to the common photon fields, the collective decay process drives the
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system into the entangled states. The novel feature of the effect predicted here is

that entanglement in fact can be controlled electrically (without applying a laser

field) and read out in the form of a transport property, i.e., the electron current (as

a function of the dot distance or, alternatively, the cavity length).

Another possible application of this effect is that by tuning the coherence of

the dots, one can control the emission of single photon at predetermined times,

which is important for the field of quantum information technology. One might

argue that for small inter-dot distance the Forster process may play some role in

our system17; nevertheless, this only causes small energy splitting between state

|S0〉 and |T0〉. Comparing to the large energy difference in the III–V semiconductor

material, its effect on the decay rate g2γ± is negligible. As for the problem of

dissipation, decoherence due to interaction with other bosonic excitations (phonons

and electron–hole pairs in the leads) is inevitable but can in principle be (partly)

controlled by variation of the dot energies, or control of the mechanical degree of

freedom.18 In addition, scattering due to impurities are negligible since there is no

inter-dot transport in our system.

4. Summary

In conclusion, we have proposed a method of detecting Purcell effect in a semicon-

ductor quantum dot system. By incorporating the InAs quantum dot between a

p–i–n junction surrounded by a planar microcavity, the Purcell effect on stationary

tunnel current can be examined by changing the cavity length. For the double-dot

system, the super-radiant effect can also be observed by measuring the stationary

current. The maximum entangled state is induced as the inter-dot distance is much

smaller than the wavelength of the emitted photon. Our model provides a new way

to generate the entanglement in solid-state systems.
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