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Electron-atom scattering in an intense radiation field
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The electron-atom scattering in the presence of an intense radiation field is investigated by solving the
Schrodinger equation in momentum space, which facilitates the extraction of the rapidly varying part of
the wave function. It can be shown that the first-order Born approximation is only a limiting situation of
the general approach. The angular distributions of the scattering probability are calculated for dift'erent

field strengths and some interesting points regarding the multiphoton process are also discussed.

PACS number(s): 34.80.Qb

I. INTRQDUCTIQN

Charged-particle —atom scattering in the presence of a
radiation field is a fundamental process in many physical
systems such as plasma heating by electromagnetic radia-
tion, gas breakdown, etc. During recent years, the availa-
bility of increasingly more powerful lasers in a wide range
of frequencies has stimulated considerable interest in the
study of the multiphoton phenomena in such a process.
Many of the theoretical investigations of the laser-
assisted electron-atom scattering are based on the
lowest-order perturbative method [1—4]. It is obvious,
however, that this method is not adequate and should be
replaced either by a high-order perturbative calculation
[5,6] or by some nonperturbative methods when the in-
tensity of the laser field is strong. Starting with the well-
know Kroll-Watson work [7,8] on the soft-photon ap-
proximation, there exists only a few nonperturbative
treatments for this problem. Gavrila and Kaminski [9]
proposed a method based on the Kramers-Henneberger
transformation and suggested that this transformation
might be particularly useful in the case of intense high-
frequency fields. Several calculations and applications
[10,11] were then performed following this theory.
Shakeshaft [12] formulated a method of coupled integral
equations to calculate the diFerential cross sections for
stimulated photon absorption and a successful applica-
tion for the case of a separable potential was obtained.
Recently, an e%cient method of solving the time-
dependent Schrodinger equation for a system undergoing
multiphoton processes has been introduced [13—15]. An
important feature of this method is that the Schrodinger
equation is solved in momentum space, which facilitates
the extraction of the rapidly varying part of the wave
function. Another advantage of this method is that,
whereas in configuration space artificial boundaries must
be introduced to absorb the electron as it moves far away,
no absorbing boundaries need be introduced in rnomen-
tum space. A preliminary calculation [14] using this
method f'or the case of one-dimensional scattering of elec-
tron from a potential in the laser field was performed.
The result is interesting in that the multiphoton absorp-
tion process is manifested with many peaks in the transi-
tion probability function. In this paper, we shall extend

this method to the three-dimensional system and show
that the dynamics of the mulitphoton process of
electron-atom scattering in an intense field can be well
understood in this formulation. A detailed calculation of
the scattering probability from a hydrogen atom for
diFerent laser intensities will be performed and the
dependence on the laser frequencies will also be dis-
cussed.

II.THEORY

where HI(t) = —(e/mc ) A p is the interaction with the
radiation field. The A (t) term is removed by a trivial
contact transformation [7].

Initially, at time t~ —~, the electron is far from the
atom, i.e., free of the potential V=0, which is just the
problem for the free electron moving in the radiation
field. The solution to the time-dependent Schrodinger
equation was originally derived by Volkov [16] and can
be written in the form

H, ~y (t) &
= i% ~y, (t) &—

Bt
(2)

Ho= — — A p,p e
2pl 722C

~y„(t) & =exp[ i [E,t/%+8—„(t)]]~k&,

where E, is the initial energy, ~k.& is the eigenvector of p
with momentum eigenvalue A'k normalized as

(r~k&=(2') "2e

and the real phase 8i,(t) is given by

1 ~, Ak8~(t)= —I dt' E, +H,(t')—
0 2&1

(6)

Consider an electron moving in the radiation field of a
vector potential A(t) and scattering by the atomic poten-
tial V; the time-dependent Schrodinger equation is

d 2

iA ~%(t)&= P +V+H, (t) ~e(t)&,
dt 2m
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For a monochromatic, linearly polarized field
A = Aocoswt, we have

Using the Fourier-Bessel expansion

exp( —i gk sinwt ) = gJ„(gk )exp( i—nwt) (15)

ly), (t) & =(2n. ) exp[ i—(k r k—a sinwt E;—t/A')],

1
8),(t) =—(Ek E;—)t —(k a)sinwt,

(7)
and integrating Eq. (14) from t = —~ to t = + ~, we ob-
tain

ag(~)= y J.(gk)&kl vlk; &i~&[&.(k)],
where Ek =A' k /2m and a = (e lmcw ) Ao.

We shall use the wave function of the "unperturbed"
system Ko as our basis. Initially, the incident electron
with incoming momentum ))ik, is in the state leak ( r) &; the

l

solution of Eq. (1) can be expressed as

where

g„=(k—k, ) a,

E„(k)=Ek E; ——nA'w .

(17)

(18)

Iq(r) &=Iy, (r) &+lp(r) & .

Expand I P(t) & in terms of the bases states

lp(r) &
= fdkak(t) y„(r) & (10)

Clearly the delta function 5[E„(k)] on the right-hand
side of Eq. (16) expresses the conservation of energy such
that the outgoing electron with momentum haik would
have energy

b), (t) = f dk'e "'
a), (t) & kl Vlk' & (12)

with the boundary condition a), (
—~ )=b), (

—~ )=0. It
has been shown [13,15] that, because of the phase factor
exp[i8), (t)] on the right-hand side of Eq. (11), the func-
tion a), (t) varies rapidly with both k and t. On the other
hand, b), (t) varies relatively slowly with k and t. Conse-
quently, we can interpolate b), (t). Let us discuss several
interesting points.

(i) Since b), (t) is a slowly varying function of k and r,
we first temporarily ignore its effect; Eq. (11)becomes

i8 (t)a„(r)=e' " e ' &klvlk, & . (13)
dt "

Substituting Eq. (8) into Eq. (13) we have

ih a), (t) =exp —(Ek E;)r-l

Xexp[ —i(k —k;) asinwt]&klVlk;& . (14)
l

with the boundary condition l+(t)&~lyk (t)& as
It~ —~, i.e., IP( —~)&=0. Substituting Eqs. (9) and

(10) into Eq. (1), an inhomogeneous integro-differential
equation can be obtained for the coefficient a), (t):

i8 (t)ih a (t)=e " [e '
&kl VIk; &+b„(t)],dt "

where

Ak
Ek = =E;+nkvd2' (19)

It is interesting to note that by substituting Eq. (4) into
Eq. (13), we find

ih a„(t)=&y„(t)IVI' (t)& .
d
dt " (20)

This result reduces to that of the first Born approxima-
tion (FBA) used in previous works [1,6]. Therefore, FBA
is only the limiting case of ours by setting the function
b),(t)=0 This is, . of course, an oversimplification. The
correct treatment must also take into account the effect
of b), (t), which we discuss in the following.

(ii) Equation (11)can be rewritten as

i8~(t) —i8k (t) i8~ (t)
iA a„(t)=e ' [&kl Vlk, &+b„(t)e '

] .
dt "

Using Eq. (12) for b), (t), we have

' &klvlk, &

di' ak(t)=e
dt

+ fdk" " ' "' a, (r)&klvlk'&

Substituting Eqs. (7) and (15) into the preceding equation
and integrating over t, we obtain

i f & ( /)i)(E F A' )

n

+ fdk'g g J„(gk)e " " J (gk. )a), (t)&kl Vlk'& . . (21)

Equation (21) gives the general expression for the scatter-
ing amplitude a), (t) of the electron scattered from the
atom at time t. The first term on the right-hand side of
Eq. (21) is just the result described in point (i). The im-

I

portant effect on the scattering process comes from the
second term on the right-hand side of Eq. (21). One sees
that a),, (t') represents the scattering amplitude of the
electron with momentum Ak', at time t', having absorbed
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m photons for which J (gk ) is the amplitude for this
process and, by conservation of energy, the electron ener-

gy is given by Ek =E;+mfita. Then it reabsorbs (n —m)
photons (due to the propagator exp {(i /A') [Ek E—

k
(—n —m)//lw]] t } with amplitude J„(gk ). The net result

is that the electron has absorbed n photons at time t and
is represented by the scattering amplitude az(t). There-
fore, Eq. (21) gives a general formulation to describe the
electron-atom scattering in an intense radiation 6eld.
The dynamics of the multiphoton process during the
scattering is clearly manifested in this theory.

(iii) We have pointed out that b/, (t) is a slowly varying
function of k and t. Explicit and implicit methods [13,15]
have been proposed for treating this problem. In the ex-
plicit method, we extrapolate b/, (t) using the Taylor-
series expansion

b/, (t) =b/, (0)+b/, (0)t+

a/, (t) =tt„(t)+ha„(t), (28)

where a /, ( t } is the amplitude for the first Born approxi-
mation

a;(t}= —' f—'
&X,(t}IVlX), (t}& (29)

and ba/, (t) is the correction due to the eFect of the func-
tion bk(t),

ha/, (t)= ——b„(0)g J„(gk)
n

t
~

( l /R )( Ek E/ Q Pl AN )
X dt'eI

~

k
~

l/

~ ~ I

~

proximation in Eq. (26) so that the computational
difficulty involved in the three-dimensional case studied
here can be avoided. Substituting Eq. (26) into (11) and
using Eq. (15), we obtain the scattering amplitude

The time derivative of b/, (t) can be obtained from Eq.
(12), III. RESULTS AND DISCUSSIGN

(30)

b„(t)=fdk'. ——Fk (t)exp — F/, (t) a—k. (t)

+..p 'F, (t) —'—, (t) «I Vlk' &,k'

In this section we present the numerical calculation for
the scattering of an electron with a hydrogen atom in the
presence of a laser 6eld. %'e have calculated the scatter-

(23)

where 02

AkF (t)= —E, t —Ak asinmt .
2m

Using Eq. (11) for d/, (t), we have

b (t)= ——f dk' F„,(t)exp ——F/, , (t) a„.(t)

(24) 10 '

10-4
tl

10

10"-

+exp — F/, (t) (ki V—ik; &
/

1p-13 I

20
/

40
I

60
g (deg l

/

80

+b, , (t) (k~v~k'& . (25)
10 (b)

b/, (t) =b/, (0)exp( igt lfi), —

where

(26)

Q= fdk'[F (0)a„(0).+(ki .Vik; &+b/, .(0)]
b/, (0)

X&k~v~k & . (27)

Substituting Eq. (25) into Eq. (22} and to a first-order ap-
proximation, we find

10'

10-13
20

\

10
l

10-10
I

\ I

/ /

40 60

8 (d+g)

/

80

The convergence of the expansion series in Eq. (22) has
been checked in a preliminary calculation in a previous
work [14], where the one-dimensional electron-potential
scattering was studied by also including the t term in the
expansion series and it was found that the convergence is
reasonably good. Therefore, we use the 6rst-order ap-

FKJ. 1. Scattering probability density Pk = ~ak(t~ ao ) ~
as a

function of the scattering angle 0 for the incident electron ener-

gy E; =3.67 a.u. with the absorption of (a) one photon and (b)
two photons. The field strength is ED=0.003 a.u. and the laser
frequency is m =0.07 a.u. Dashed curve, results for the FBA;
full curve, full calculation using Eq. (28).
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ing probability density
~ ak ( ~ )

~
as a function of the

scattering angle 0 for different field strengths. We take
the geometry such that the electric field Eo is parallel to
the incident electron wave vector k;. Atomic units are
used in the calculation [the atomic units of the electric
field, frequency, and energy (hartree) have the following
standard equivalents: 5. 14X 10 V/cm, 4. 13X 10' sec
and 27.21 eV]. We first calculate the angular distribution
for the case that neglects the function b&, which is just
the result of the FBA, as pointed out in the preceding
section. Then the effect of the function b& is included in
the calculation according to Eq. (28). In order to calcu-
late hak in Eq. (28), we have to know the values of t2I,.(0),
which appear in the expression of Q in Eq. (27). The ex-
act values of a), (I) at I =0 are not known; however, a
reasonable approximation for a), (0) is obtained in the fol-
lowing. Please note that the results in Eqs. (26) and (27)
are obtained by taking the first-order approximation and
it can be seen from Eq. (26) that the term involving Q is
already in first order; therefore the quantities in Q can be
taken as a zeroth-order approximation. Thus we may use
the first Born result aI, (0) for ak. (0) in the expression of
Q, that is, aI, .(0)=aI,.(0). Following the standard adia-
batic approach in scattering theory, we replace the poten-
tial V by Ve 'I' t, where e is positive but very small, and
aI,.(0) can then be easily obtained from Eq. (29) by in-
tegrating from —~ to 0. Figure 1 shows the result for
the field strength EO=0.003 and frequency u =0.07 at
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FIG. 3. Same as Fig. 1, but for a field strength Eo =0.02 a.u.
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FIG. 2. Same as Fig. 1, but for an incident electron energy
E; =20 a.u.

the incident electron energy E, =3.67 with different num-
bers of photons absorbed. The results for a higher in-
cident electron energy E,- =20 is shown in Fig. 2. It can
be seen that, in general, the effect of the function bk gives
an enhancement relative to the FBA. Thus the function
bk gives an important contribution to the scattering pro-
cess that should not be neglected, as assumed in previous
calculations. One observes that the minima appearing in
the FBA occur at angles such that the scalar product
h, a=0, where the momentum transfer 5=k; —kf and a
is the polarization vector. We see that the minimum
shifts to a different angle as the effect of bk is included.
This is because there are two terms in the scattering am-
plitude, as given in Eq. (28). The minimum occurs when
these two terms cancel each other. Therefore, it will
occur at a value of scattering angle different from that of
the FBA. Trombetta and Ferrante [6] performed a calcu-
lation with the second-order Born approximation for the
charged-particle scattering in the presence of a strong
field. They obtained a similar enhancement relative to
the FBA and the minima are also shifted to larger angles.
Therefore, our results are consistent with theirs. Figures
3 and 4 show the results for a higher field strength
ED=0.02. Now the oscillations are enhanced due to the
larger argument of the Bessel functions. We see that the
effect of the function b& is also quite important for all
cases of photons absorbed. The minima are again shifted
to different angles. It is worth mentioning that Trombet-
ta and Ferrante [6] provided a criterion of validity of the
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the scattering probability appear because of the interfer-
ence effect of the correction term b,ak with the FBA, as
shown in the expression of the amplitude ak. This
behavior is more prominent for the case of a higher in-
cident electron energy, as shown in Fig. 6 for E, =20. In
this case, the condition h, -e, =0 cannot be rriet in the fre-
quency range displayed here (the minimum would occur
at w =0.63); therefore the curve for the FBA is monoton-
ic decreasing. However, as the effect of bk is included,
the curve is again modified with some oscillations.

IV. CONCI. USION

Based on the method of solving the Schrodinger equa-
tion in momentum space, we have shown that the dynarn-
ics of the multiphoton process during the electron-atom
scattering in an intense radiation field can be clearly man-
ifested in this formulation. It was found that the first-

order Born approximation is only a limiting situation of
the general approach. We have calculated the angular
distribution of the scattering probability for electron-
hydrogen scattering with different field strenghts. We
found that the correction due to the function b& is quite
important and, in general, gives an enhancement relative
to the FBA. The minima occurring in the distribution are
shifted to different angles. We also studied the frequency
dependence of the scattering probability. It was found
that the effect of the function bz also gives an important
modification due to the interference effect of the correc-
tion term with the FBA.
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