PHYSICAL REVIEW E

VOLUME 51, NUMBER 6

JUNE 1995

Crucial formula for determination of the occurrence of the nonchaotic states
in rf-biased nonlinear oscillators

Tsung Hsun Yang
Institute of Electro-Optical Engineering, National Chiao-Tung University, 1001 Ta-Hsueh Road,
Hsinchu, Taiwan 300, Republic of China

Ching Sheu Wang
Telecommunication Laboratories, Ministry of Transportation and Communications, Taoyuan, Taiwan 300, Republic of China

Jeun Chyuan Huang
Communication Technology Division, Industrial Technology Research Institute, Chung Chen Road,
Hsinchu, Taiwan 300, Republic of China

Yih Shun Gou
Institute of Electrophysics, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan 300, Republic of China
(Received 16 September 1994)

Crucial formulas to determine the nonchaotic states in rf-biased nonlinear oscillators are derived from
numerical experiments. The nature of these formulas, which depends on symmetrical properties of the
potential well, is investigated in terms of the driven frequency as a function of the damping constant «.
These formulas provide crucial guideposts to check which kinds of solutions (simple or complicated) can
be tailored in the dissipative rf-biased nonlinear oscillators.
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I. INTRODUCTION

In nonlinear oscillating systems with an external driv-
ing force, the equation of motion can be expressed in a
general form,

X +kx + f(x)=F sinwt , (1)

where k denotes the damping constant, F and o represent
the amplitude and frequency of the external periodic
driving force, respectively, and f(x) is the nonlinear
term. If f(x) is expressed as x+x2+ ---, Eq. (1)
represents the dynamic motion of Duffing oscillators,
whereas if f (x)=sinx, the equation is called the resistive-
ly shunted Josephson junction model. Following previ-
ous work [1-8], the complicated solutions to Eq. (1), in-
cluding period-2%, chaotic, period-3X2*%, and period-
m X 2K solutions (k is a positive integer and m a prime
number), have been formed in the parameter region
where w and k are rather small. Moreover, the nonchaot-
ic solutions to Eq. (1), including symmetric and asym-
metric period-1 solutions, dominate in a region of large «
and large w. In this case, regardless of the value of F,
only symmetry-breaking bifurcations are observed.

In fact, an occurrence of nonchaotic states was first
noted by McDonald and Plischke [9] in their study of the
resistively shunted Josephson junction (RSJ) model
[10,11] with the following criterion:

1<<«k?, )

i.e., the damping constant is much larger than a unit.
Subsequently, Kautz and Monaco [12,13] pointed out
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that chaos does not occur for
O>>K . (3)

According to their suggestions, only simple or stable
states can survive in some confined region of the parame-
ter space of the higher damping and/or the faster driving
frequency cases. Although these criteria can simplify the
parameter regions of the complicated motion qualitative-
ly, a quantitative resolution of this problem needs to be
explored. In other words, the results described above im-
mediately raise an intriguing question: can one predict
quantitatively where or how a nonlinear oscillating sys-
tem will display nonchaotic states in terms of chosen pa-
rameters w and k.

To this end, we will attempt to deduce certain crucial
formulas in terms of the parameters, » and x with which
one may quantitatively distinguish the existence of chaos
from the occurrence of nonchaotic states in Eq. (1), not
only in the RSJ model but also in Duffing oscillators. In
what follows, we describe, with the aid of phase dia-
grams, bifurcation diagrams, state diagrams, and so on,
the method used to derive the formulas. As compared
with the RSJ model and the generalized Duffing oscilla-
tors, the physical implications of the symmetrical proper-
ties of potential wells with respect to the character of the
formulas will be examined. Concluding remarks will be
reported as well.

II. THE NUMERICAL SIMULATION

In order to derive the crucial formulas needed to dis-
tinguish the existence of chaos from the occurrence of
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nonchaotic states in the more general cases of the dissipa-
tive nonlinear oscillator, two typical nonlinear oscillating
systems, the RSJ model and Duffing oscillators, are con-
sidered here. All the variables and parameters used in
this work are rescaled as dimensionless by means of some
transformations [21,26] in order to directly compare the
nature of the dynamics. In the numerical simulation, the
fourth order Runge-Kutta algorithm [14] is employed to
perform integration. Based on the integration, the
Newton-Raphson method [14] is used to locate the stable
and unstable fixed points on the Poincaré sections. Two
scanning procedures, varying driving frequency at a fixed
driving amplitude (w scanning) and varying driving am-
plitude at a fixed driving frequency (F scanning), are em-
ployed with damping constant « as a fixed parameter to
extract as much information as possible. Consequently,
various characteristics of all the thresholds of possible
transitions in terms of the controlled parameters can be
obtained and depicted in a state diagram.

In each state diagram of the respective systems, for ex-
ample that shown in Fig. 1, there may exist a threshold
frequency wr, at a fixed damping constant k. We found
that if the driving frequency is larger than the frequency
o7 in this damping case, no matter how large the driving
force amplitude is, the chaotic solutions cannot exist.
Then, by varying the damping constant k to the other
fixed value, we can obtain another w; via the same pro-
cess. Finally, by repeating the process again and again,
the relationship between w; and « can be established.
These relationships allow us to derive a boundary, and
then to formulate a closed mathematical form in the w-«
space by which the complicated solution region can be
differentiated from the simple stable period-1 solution re-
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FIG. 1. State diagram of the RSJ model with k=1.0. The
shaded area denotes the complicated behavior regions including
those caused by various kinds of bifurcations. There are no
chaotic behaviors found if the rf frequency exceeds wy. The in-
set shows the corresponding potential well, 1 —cosX. The in-
tegers from 1 to 7 reveal the corresponding number of local
wells of the infinite sinusoidal potential within which the oscil-
lating motion of the simple solution takes place. The phase por-
traits of the states marked a—# are presented in Fig. 3. The
symbols S and SB represents the symmetrical and symmetry-
broken solutions, respectively.

gion. The details of these w-« relationships for the for-
mulas for the RSJ model and the Duffing oscillators will
be discussed below.

A. RSJ model
The rf-biased RSJ model is given as
X +kx +sinx =F sinwt , (4)

where k is the damping constant, F is the amplitude of
the rf driving force, and w is the frequency of the rf driv-
ing force. Equation (4) describes the equation of motion
of the phase difference of the junction. The equation can
also be visualized as the dynamic motion of the swept an-
gle of pendulum [9,10,15], the charge density wave [9],
parametric amplifiers [16,17], etc. By means of the nu-
merical method described above, the features of the state
diagram with respect to various solutions of the states
[9-21] in Eq. (4) will be presented. For the sake of illus-
tration, only seven branches (shaded regions) are denoted
in the F-o state diagram where k=1.0, as shown in Fig.
1. There are two kinds of solution regions. One contains
the simple solution, including the period-1 oscillatory
(symmetric and symmetry-broken) and the phase-locked
traveling solutions. The other contains the complicated
solution, including period-2¥, chaotic, period-3 X2k,
period-m X 2¥ (k is a positive integer and m a prime), and
the phase-unlocked traveling solutions. The shaded re-
gions of the branches indicate the existence of the com-
plicated solutions. Outside these regions, especially in
the region where the frequency is above wy, the simple
solutions exist without the chaotic ones. In fact, the
scenario of a sequence of bifurcations along the F axis at
a fixed frequency o is nearly the same in each branch, as
shown in Fig. 2. They mainly contain period-doubling
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FIG. 2. Three bifurcation diagrams of the RSJ model with
0=0.313, 0.400, and 0.600, k=1.0, F=0.0-8.0. All the
responses on the Poincaré sectin are carried in the intervals of
[—r,7] by the transform of X+2m . Similar scenarios of bi-
furcations appear again and again in each branch »n.
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cascades, chaos, intermittency, crisis, and reverse
period-doubling cascades. The period-3 windows and
sometimes the period-5 windows very often burst out
within the chaotic events. Since similar scenarios of bi-
furcation appear again and again in each branch, it clear-
ly implies self-similarity of the solutions embedded in the
RSJ model. Such self-similar properties will be shown in
greater detail below.

As is also shown in Fig. 1, the territory of the each
branch is bounded by the terrain of the symmetry-
breaking (SB) solution. Also, the regions of the sym-
metric solution exist between the regions of the SB solu-
tions. Moreover, the frequency of both the symmetric
and the SB solutions is period-1. The shaded regions of
the branches will shrink and finally merge as o is de-
creased and F is increased further and further. We find
that in the upper left-hand corner of Fig. 1 many more
branches still exist.

In addition to the evidence of the above observations,
the self-similar feature of the bifurcation in each branch
in the RSJ model can be further illuminated as follows.
First, as shown in Fig. 1, the terrain of each simple solu-
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tion separated by the branches of the complicated regions
is indicated by a series of consecutive integers. We note
that the integers reveal the corresponding number of lo-
cal wells of the infinite sinusoidal potential within which
the oscillating motion of the simple solution is executed
in the RSJ model. For example, in the case of @ =0.313,
F=1.20, and k=1.0, the response is an oscillating
motion in the n =2 regime, as shown in Fig. 1, and corre-
sponds to the swinging between two local wells of the
sinusoidal potential within the interval of one period of
the rf biasing, as shown in Fig. 3(b). Similarly, the phase
portraits, as shown in Figs. 3(a)-3(g), illustrate these
behaviors from n=1 to n =7, respectively, when F in-
creases from 1.80 to 7.0 for =0.313. The situation is
further illustrated in Fig. 3(h) for n =51. In the compli-
cated region, the common response of swinging from the
nth local well to the n + 1th results from two stable solu-
tions merging with an unstable one located on top of the
sinusoidal well. In other words, the respective asymme-
trical solutions in the adjacent wells are merging into one
solution. This leads to the swinging to the next well after
the collision between the asymmetrical solutions and the
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FIG. 3. Phase portraits with
k=1.0, ®=0.313, and (a) F=1.00, n=1; (b)
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unstable.

It is also worth noting that all the branches in the state
diagram at a fixed damping constant « are located within
the region where the driving frequency is less than the
critical threshold frequency wy. If the driving frequency
is larger than the critical threshold frequency wy, no
matter how large the driving force amplitude is, the com-
plicated solutions cannot exist. As mentioned before, for
a fixed damping constant x, we obtain a threshold fre-
quency wr. Consequently, we find quantitatively that the
critical threshold frequency w; at the first branch, n =1,
is dependent on the damping constant «. This is shown
with a simple relation,

2
K

Ko

1— , (5)

W7 =Wy

where wy=1.450 and «,=1.681. Figure 4(a) shows the
relation between the critical threshold frequency w; and
damping constant « (both the numerical data and the
fitting function). It clearly shows the boundaries
differentiating the regions of the complicated solutions
and those of the simple ones. According to this relation,
it is apparent that chaos occurs not only in the over-
damped case, k>>1, but also in the underdamped case
@>>k. Although these results have been qualitatively
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suggested by McDonald and Plischke, and by Kautz pre-
viously, we can quantitatively predict here from Eq. (5)
that if the damping constant « exceeds a threshold value
of k,, then no chaotic behavior can be found. Therefore,
we emphasize that Eq. (5) provides valuable information
for determining quantitatively the nonchaotic states in
the RSJ model.

Using the self-similar feature mentioned above, we fur-
ther conjecture that each maximum driving threshold fre-
quency of the nth branches, w7, , depends on the damping
constant «, as does the critical threshold frequency wq
(for the branch n =1). From Eq. (5), we surmise that it
might be scaled as follows:

K

Ko

1— (6)

O =wrn =,

where the parameter 6 depends on the damping constant
k. In what follows, the equation will be verified tentative-
ly in order to make it appear plausible.

First, the respective threshold frequencies of the nth
branches, wp,, are traced out under one fixed damping
constant k by the driving amplitude scanning method (F
scanning). Then, changing the damping constant « to a
different value, a new set of threshold frequencies wr,
can also be found in the same fashion. After collecting
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FIG. 4. (a) Numerical simulation data (®) of wz -k compared with the fitting function () w7 =w,[1—(k/k,)?], where w,=1.450
and k,=1.681. (b) Numerical simulation data wy,-n for various values of x and fitted by the functional relation wy, =w.n 2. (c)
Dependence on « of fitting constant . (@) obtained from Fig. 4(b). (d) Dependence on « of fitting constant § obtained from Fig. 4(b).
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all of the wy,-n relations that depend on various values of
the damping constant «, we summarize them in Fig. 4(b).
In the log-log coordinate, we find the linear relation be-
tween the logarithm of the threshold frequency wy, and
the branch number n. The properties of @, and n enable
us to determine their functional equation,

O, =0, (k)n "3 (7)

where the function w.(k) is dependent on the damping
constant « and the exponent § is the slope of the straight
lines in Fig. 4(b) for the corresponding damping constant
x. Note that such a simple power law relation apparently
reveals the nature of renormalization, i.e., it reproduces
itself upon rescaling.

In order to verify Eq. (6), we still need to examine the
properties of w.(k) in greater detail. This immediately
raises the question of whether or not the function w_(x)
for arbitrary n can be taken as the functional form
or=wy[1—(k/Ky)*] for n =1 in Eq. (6). We resolve this
in Fig. 4(c). The figure clearly shows that the property of
the function w, is consistent with that of the functional
form w;=wy[1—(k/ky)*]. Note that the exactness of
Eq. (6) is entirely a consequence of the emergence in the
RSJ model of the self-similar feature under the nonlinear
dynamics.

Following the spirit of the physical implication of the
renormalization method, we attempt to explore the
features of the exponent 8. Since the value of the ex-
ponent 8 depends on the damping constant « [as in Fig.
4(d)], we present three different cases. For the case of the
small damping constant « (50.1), the exponent &
reaches a constant (=2.589) and is nearly independent of
the damping constant k. In the case where the damping
constant k gets larger and larger ( R 0.5), the increasing
of exponent 8 behaves in hypertangent form and then
reaches its maximum. Finally, right after the damping
constant reaches maximum, the exponent § drops rapidly
to zero as the value of the damping constant k ap-
proaches the threshold value of k,. All these results of
the exponent & can be utilized to quantitatively demon-
strate the self-similar behavior.

B. Duffing oscillators

The generalized rf-biased Duffing oscillator governed
by the equation is given as

5é+k)'c+w=Fsinwt , (8)
dx

where the overdot denotes the derivative with respect to
time ¢, k is the damping factor, and ¥V (x) is an anhar-
monic potential function. This equation has been utilized
to model a wide variety of physical systems, such as opti-
cal bistability in the multiple-photon absorption process,
soft and hard springs, buckled beam, four wave interac-
tion, plasma oscillation [22-25], etc. In general, the po-
tential function V' (x) is described by

2 2. B 3.7 4
Vix) 2x +3x+4x N 9)

with a, 3, and y coefficients. Actually, by means of some
transformations [26], it embraces four fundamental types
of potentials: Vi=1lx?—1x3 V,=—1x2+1x*
Vi=1x 2— X 4 and Vi=1x 24 X 4 The features of the
state diagrams of these four types are listed, as follows.

1. V, potential (V,=4x%—1x?)[27,28]

The state diagram for this case is shown in Fig. 5(a).
The transition boundaries include hysteresis, period dou-
bling (PD), crisis, and intermittency. In this state dia-
gram, we also note that the PD curve folds back at a fre-
quency wp. The complicated solutions exist only with
the parameters w below the threshold value wy. Accord-
ing to our experiments, like that of the RSJ model, the
threshold frequency s is found to be a function of the
damping constant « through a simple form,
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FIG. 5. (a) State diagram of the rf-biased asymmetrical one-
well Duffing oscillator, including the primary ( 4;) and subhar-
monic (B;) resonance regions. C denotes the complicated solu-
tion region enclosed by period-doubling and reverse period-
doubling transition boundaries, and Es denotes the escaping
boundary. o indicates the maximum rf frequency at which
chaotic behaviors can exist. The potential well is drawn in
the inset. (b) the wy—« relation, wr(k)=wo[1+ C(k/Ko)
— C,(K/1p)? 4+ Cy(k /Ko —Calic /)] with  ©00=2.226, Ko
=2.220, C,=0.101, C,=4.011, C;=4.495, and C,=1.585, of
the rf-biased Duffing oscillator with asymmetrical one-well po-
tential. The black dots denote the experimental simulation data
and the solid line for fitting.
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2
K K
= 1+C, |— |—C, | —
or(k)=wy 1 P 2 ko
3 4
+C, | |~ [ T, (10)
Ko Ko
where wy=2.226, k,=2.200, C,=0.101, C,=4.011,

C;=4.495, and C,=1.585 [see Fig. 5(b)]. «, is required
in order to satisfy wr(ky)=0. Moreover, the nontrivial
coefficients of odd order of (k/ky), C,, and Cj, are in-
duced by the asymmetrical property of the potential well
with respect to the origin, while they are equal to zero in
the case of the symmetrical ones.

2. V; potential (V,=—1x2+1x%) [29,30]

Figure 6(a) shows the state diagram for this case. The
potential well ¥, has two local wells separated by a bump
in the middle. Due to the motion in one of the local
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K

FIG. 6. (a) State diagram of the rf-biased symmetrical two-
well Duffing oscillator including the primary ( 4;) and subhar-
monic (B;) resonance regions. C denotes the complicated solu-
tions region enclosed by period-doubling and reverse period-
doubling transition boundaries and H,, denotes the jump-up
boundary. The potential well is shown in the inset. As long as
the rf frequency is above wr and the rf amplitude is below the
H,, transition boundary, there are no chaotic behaviors found.
(b) wr-k relation [Eq. (11)] wr=wo[ 1—(k/K)?], with wy=3.218
and k,=2.050, of the rf-biased Duffing oscillator with symme-
trical two-well potential.
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wells, the shape of the transition boundaries resembles a
swallow’s tail. The curves of period doubling are folded.
The threshold frequency wy is found to be dependent on
the damping constant k, and this relation can be fitted to
satisfy the following equations:

2
K

Ko

or(k)=wy |1— , (11)

where the constants w;=3.218 and x;,=2.050 [see Fig.
6(b)]. If the driving frequency is beyond the threshold
frequency wy and the driving force amplitude does not
exceed the boundary H up? the complicated solution can-
not occur. Equation (11) provides a crucial condition
with which to determine whether the solution is simple or
complicated. All these observed features in this system
are the same as those of the RSJ model. With a further
increase of the excitation amplitude up to curve H,,, the
solution becomes stable with the swing through two val-
leys. In this situation, the dynamics of the swing closely
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F 1.00 —
0.00
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y ®  Numerical Data
—  Fitting Function
o 1.00
000 T I T I T I T ] T
0.00 0.50 . 1.00 1.50 2.00 2.50
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FIG. 7. (a) State diagram of the rf-biased symmetrical one-
well Duffing oscillator. The primary resonance region is
marked A;. C denotes the complicated solution region enclosed
by period-doubling and reverse period-doubling transition
boundaries, and Es denotes the escaping boundary. The poten-
tial well is shown in the inset. As long as the rf frequency is
above wr, no chaotic behaviors are found. (b) The w -k relation
[Eq. (12)] or=wo[1—(k/Ky)?*], with w,=1.528 and k,=1.985,
of the rf-biased Duffing oscillator with symmetrical one-well po-
tential.
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20.00
F 10.00 —
0.00 T T T
0.50 1.00 1.50 2.00 2.50

FIG. 8. State diagram of the Duffing oscillator with infinite
potential well. The transition boundaries shown include
saddle-node (H), symmetry-breaking ( AS), and period-doubling
and reverse period-doubling (C) bifurcation. The shaded areas
denote the complicated solution regions. There is no @ found.

resembles the case of the infinitely bounded potential V,,
while the small effect of the bump in the well is negligible.

3. V; potential (V;=1x?—1x"%)[31]

The state diagram for the transition boundaries with
the swallow-tailed form is shown in Fig. 7(a) with damp-
ing constant k=0.1. The transitions include hysteresis,
SB, PD, crisis, and intermittency. Because the potential
barrier is finite, the response will be escape from the well
after a sequence of bifurcations of Feigenbaum period
doubling and/or intermittency routes to chaos. The
threshold frequency w, at which the PD curve folds back
is well fitted in terms of the damping constant k, as
shown in the following relation:

2
K

Ko

or(k)=wy [1— , (12)

where the constants wy=1.528 and «x,=1.985 [see Fig.
7(b)]. With a driving frequency higher than the threshold
frequency wr, only the simple period-1 solutions are ob-
tainable.

4. V4 potential (V,=1x?+1x%)[32-35]

The potential is symmetrical, without any inflection
point, and is infinitely bounded as |x|— «. The state di-

agram is shown in Fig. 8. The shapes of the transition
boundaries are no longer swallow tailed and can be
classified into two groups with characteristic shapes asso-
ciated with odd and even resonances. The chaotic solu-
tions exist in the even resonant regions (marked C in Fig.
8). No threshold frequency wr is observed. Also, there is
no appearance of a similar wp-k functional relation func-
tion in a closed form.

III. CONCLUSION

In this work, we have systematically examined the rf-
biased Josephson junction and the Duffing oscillators in a
wide range of parameter space. The crucial formulas of
the functional relation, @y vs k, have been derived to give
clear-cut criteria for determining the existence of the
nonchaotic states. Together with our preceding report
[26], it is worth mentioning that the functional w-k rela-
tion can be obtained in those potentials that possess the
inflection points only. Furthermore, for potential
wells that are symmetrical with respect to the origin
of the potential, the wp-«k relation is in the form
or=wy[1—(k/Kg)?], while for asymmetrical potential
wells, the wr-k relation is in the form w;(k)=wy[1
+C(k/Ko)— CylK /Kg)*+ C3(k /i) — Cylk /ip)*]. In ad-
dition, the embedded feature of the self-similarity in the
RSJ model is also extended to obtain the power law rela-
tion between the threshold frequency of each branch,
®71,, and the branch number n. The threshold frequency
of each branch, wr,, is rescaled by the branch number n
as wp, =wo[1—(k/Ky)*1n "8 According to the conven-
tional physical implication of the renormalization
method, the exponent § has been found to present
different kinds of behaviors under three stages of the
damping constant x. On the basis of these formulas, a
solution to the nonlinear oscillating system could be al-
most precisely expressed as x =a sin(wt +¢) in a chaos-
free region. In other words, these formulas provide cru-
cial guideposts with which to check which kinds of solu-
tions (simple or complicated) can be tailored in the dissi-
pative rf-biased nonlinear oscillators.
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