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Abstract--This study investigates the stability control of a rider-motorcycle system based on fuzzy 
control in conjunction with both genetic algorithm (GA) and an auto-tuning method. The auto- 
tuning method, which entails tuning rules, is employed to on-line adjust output gains of fuzzy 
control. Although a GA has been used for fuzzy control in the literature, it has been confined to 
aiding membership functions' enaction. By contrast, this study employs a GA to determine optimal 
parameters in control rules for fuzzy control and in tuning rules for the auto-tuning method. Both 
computer simulation and experiment with regard to an inverted pendulum hinged to a rotating disk 
are carded out to represent the circular motion of the rider-motorcycle system, in which the inverted 
pendulum represents a rider's body in banking motion. The relation between riding speeds of the 
motorcycle and leaning angles of the rider is examined based on speed variations and Bode plots. 
Simulation and experimental results show the significant effect of the rider's banking angle on 
stability control. 

I. INTRODUCTION 

A rider-motorcycle system consists of a motorcycle that represents a mechanical 
system and a rider who perceives and steers the motorcycle. Although a motorcycle is 
statically unstable in nature, appropriate steering of the rider can stabilize the 
motorcycle during riding. Incorporating steering torque control and the rider's body 
control actions, Katayama et al. [1] constructed a rider model using proportional 
control. Liu and Wu [2] employed the fuzzy control method to investigate the 
performance of rider-motorcycle systems. In the current study, fuzzy control with 
both genetic algorithm (GA) and an auto-tuning method is proposed to improve the 
performance of fuzzy control that represents rider behavior. An experimental 
apparatus is designed and conducted to investigate how riding speeds of the 
motorcycle and leaning angles of the rider's body affect the stability of a rider-motor- 
cycle system in a circular motion. Both computer simulation and experiment are 
carded out. Of interest is stability control of the inverted pendulum that represents a 
rider's body in banking motion. 

Zadeh presented the fuzzy set theory [3] and the basic concepts of fuzzy sets using 
a nonmathematical approach [4]. There have been many applications reported in the 
literature. Fuzzy control research based on the fuzzy set theory was initiated by 
Mamdani [5]. Yamakawa [6] used a fuzzy controller hardware system to stabilize an 
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inverted pendulum. Procyk and Mamdani [7] proposed a self-organizing controller 
that employs a set of linguistic decision rules expressed quantitatively and mani- 
pulated by using the fuzzy set theory. OUero and Garc/a-Cerezo [8] developed auto- 
tuning methods to adjust parameters for performance improvement. Harris and 
Moore [9] presented a graphical analysis tool, similar to an algebraic phase plane 
approach, for fuzzy control system analysis. 

As model-free estimators, both neural networks and fuzzy control do not require 
mathematical models in implementation [10]. Lee et al. [11] proposed a strategy for 
controlling a class of nonlinear dynamical systems based on neural networks. 
Essentially, neural networks can approximate arbitrary nonlinear maps when suitable 
learning strategies are applied. Ozaki et al. [12] present a nonlinear compensator 
using neural networks for trajectory control of robotic manipulators. Generally, a 
multilayer network is implemented in neural networks, which learn through a 
collection of given input-output pairs. By contrast, a fuzzy controller is endowed with 
control rules that are constructed based on heuristic control of experienced human 
operators. This study develops fuzzy control integrated with both GA and an 
auto-tuning method to improve the performance of fuzzy control. Hong et al. [13] 
proposed an auto-tuning method, which entails fuzzy rules, to adjust proportional- 
integral-derivative gains. By contrast, in the current study output gains of fuzzy 
control are on-line adjusted using tuning rules. Unlike Karr [14], who employed a GA 
to select membership functions, this study employs a G A  to determine optimal 
parameters in consequences of fuzzy rules. The robust nature of GAs facilitates 
selecting parameters in not only control rules for fuzzy control but also tuning rules 
for the auto-tuning method. 

The remainder of this paper is organized as follows. Section 2 constructs fuzzy 
control integrated with both GA and auto-tuning method. Section 3 describes GAs. 
In section 4, the model of an inverted pendulum hinged to the rim of a rotating disk 
is developed for computer simulation. The computer simulation is described in section 
5. Section 6 describes experimental setup and results. 

2. FUZZY CONTROL 

In this paper, fuzzy control is used to represent the role of a rider in steering a 
motorcycle. A fuzzy controller includes control rules and employs a deterministic 
algorithm that is essentially nonlinear and robust. A general scheme of a classical 
fuzzy controller as depicted in Fig. 1 includes five main parts. The rule base consists 
of fuzzy rules. The data base contains membership functions of fuzzy subsets. Kickert 
and Mamdani [15] showed that, under certain restrictive assumptions, a fuzzy 
controller can be viewed as a multilevel relay. In this study, fuzzy control in 
conjunction with both GA and an auto-tuning method as depicted in Fig. 2 is 
proposed, where K~ and Ko denote input and output gains. The present fuzzy control 
contains both coarse-tuning and fine-tuning controls. In order to improve the on-line 
performance of fuzzy control, the auto-tuning method includes tuning rules that are 
used to adjust output gains in fuzzy control. The form of tuning rules is the same as 
that of control rules employed in fuzzy control. Hence, the auto-tuning method 
entails the same inference mechanism as fuzzy control. The difference between tuning 
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Fig. 2. Block diagram of fuzzy control with genetic algorithm and auto-tuning. 

rules of the auto-tuning method and control rules of fuzzy control is the input and 
output variables. In this study, a GA is employed to select parameters in control rules 
for fuzzy control and tuning rules for the auto-tuning method, thereby it provides the 
controller with the adaptive capabilities necessary for complex systems. 

The fuzzy rule is one of the ingredients for a fuzzy controller. In this study, fuzzy 
identification rules [16] are employed to reduce the number of required fuzzy rules 
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and to adjust parameters. Accordingly, a fuzzy rule is of the form 

Ri: If xl is e~il and . . and xk is - i  y,  i i • Ak then = p'oxl + " ' "  + p k - t X k  + P k ,  

~ i  ~ i  i where A1 . . . . .  Ak denote fuzzy sets, p~ . . . . .  Pk crisp parameter values of the 
consequence determined by the GA, yi denotes variable of the consequence of the 
ith fuzzy rule, and x I, x~i~., xk denote variables of the premise, i.e. input variables. 
When the input values . . . . .  xk are singletons, the final action y0 derived from n 
fuzzy rules is written as 

pt 

E w i y  i 
y 0 _  _ _ i = 1  , (1) 

t l  

~ w  i 
i = 1  

where y '  is calculated by the consequence equation of the ith fuzzy rule and the truth 
value w z of the premise in the ith fuzzy rule is represented by 

w ' =  /~a,(x']) A . . .  A /~a~(x°). (2) 

The consequence of a fuzzy identification rule in this study represents a locally 
linear input-output  relation, in which parameters p~ of the consequence are crisp 
values. The fuzzy identification method reduces the number of fuzzy subsets for input 
variables and hence reduces the number of fuzzy rules. Furthermore, it facilitates 
adjustment of the crisp control value by tuning parameters in the consequences. To 
determine membership functions is a subjective issue and is usually performed in the 
knowledge acquisition domain. In this study, both input gains of fuzzy control and the 
number of membership functions for input variables are assumed to be constants. 
Membership functions of input variables are shown in Fig. 3, which comprise only 
two fuzzy subsets P (positive) and N (negative). Once two fuzzy subsets of input 
variables are fixed, the adjustment of the crisp control value can be accomplished by 
tuning parameters in the consequence. 

3. GENETIC ALGORITHM 

A GA is based on the technique of natural genetics and combines a Darwinian 
survival-of-the-fittest with a random structured information exchange. Since the 
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Fig. 3. Membership functions of input variables. 
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natural adaptation is the fundamental theme of the GA, they can be implemented to 
"discover" explicit solutions. Although artificial neural networks (ANNs) in AI 
techniques can learn through a collection of input-output pairs, it is difficult to 
extract information from ANNs. By contrast, the GA not only solves problems but 
also offers representations of answers. The GA was originally developed by Holland 
[17] and has been analyzed and extended further by Goldberg [18]. Krishnakumar 
and Goldberg [19] employed genetic algorithms to optimize aerospace control 
systems. In this study, in order to improve fuzzy control, optimal values of 
parameters in both control rules and tuning rules are determined by the GA, which is 
different from conventional search technique in the three following ways. 

(1) GA works directly with coding of the parameter set, not the parameters 
themselves. 

(2) GA considers a population of points, not a single point. 
(3) GA uses probabilistic rules to guide their search, not deterministic rules. 

A parameter set has to be coded as a finite-length string. During each iteration 
step, called a generation, the population size maintains constant. The population of 
the first generation is chosen at random. The GA is composed of three operators: 
reproduction, crossover, and mutation. Reproduction is a process in which an old 
string is carried through into a new population depending on the fitness function. 
Under elitist reproduction, the survival of the current best string is ensured from the 
current generation to the next generation. In order to search other points in the 
search space, portions of two strings are exchanged under the crossover operator. The 
mutation renders lost values refreshing. Although mutation can play an important 
role in the GA, it occurs with a small probability and is secondary to reproduction 
and crossover. In this study, parameters in the consequence for fuzzy rules are coded 
as eight-bit strings. Strings of the parameter set are concatenated to form one unit of 
the population. According to the fitness function and three operators of the GA, the 
best parameter set can be determined after several generations. 

4. SYSTEM MODEL 

The system of an inverted pendulum hinged to a rotating disk as shown in Fig. 4 is 
used to represent a circular motion of a motorcycle on which a rider leans to maintain 
stability. This apparatus is designed in such a way that it can to some extent represent 
motion control involving the leaning angle of the rider's body (the inverted pen- 
dulum) and the banking speed of the motorcycle (the disk). The inverted pendulum 
representing a rider's body in leaning motion is hinged to the rim of the rotating disk. 
The centrifugal force resulting from the rotating motion of the disk enables the 
inverted pendulum to rotate relative to the tangential direction of the disk. Rotating 
speeds of the disk that correspond to riding speeds of the motorcycle dominate the 
leaning motion of the inverted pendulum that corresponds to the rider's leaning 
motion. This study controls the tilting inverted pendulum to approach target angles 
using fuzzy control with both GA and an auto-tuning method. It is desired to vary 
rotating speeds, so that the tilt angle can be regulated by the centrifugal force that 
arises from disk rotation. 
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Fig. 4. Schematic diagram of inverted pendulum hinged to rotating disk. 

The Lagrangian formulation is a systematic procedure that results in a set of 
second-order ordinary differential equations to represent the dynamics of the system. 
By contrast, the Hamiltonian formulation constructs the system in terms of general- 
ized coordinates and generalized momenta and results in a set of first-order equations 
of motion. Furthermore,  solution trajectories for equations of motion derived by the 
Hamiltonian formulation form a phase space. This facilitates visualization of the 
qualitative behavior of the system. For the present study, the Lagrangian L that is 
the difference of the kinetic energy and the potential energy is formulated as 

1 "2 ~ .2 _ Xmg l . cosOb,  L = 5IMO + ~IbO b (3) 

where 
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1 2 
I b = ~ml 

1 2 - -  s i n  Oh) 2 • I~  =~Mr + m(r  1 El. 

To derive Hamilton's equations, generalized coordinates and generalized momenta 
are defined as [~b I = r P ° b ~  (4) 

q = P LPo_J" 

By the Hamiltonian formulation [20], Hamilton's equations are written as 

1 
Ob = --~b P Ob 

O= 1 PO 
IM (5) 

I c 2 Cob 
Pob = mgl 's inOb -- 7 . 2 P o  -- ---~b pob 

2IM 

C~ 
Po = u - --Z-~po, 

Ia, 

where u denotes the generalized force, i.e. the torque of the motor, Cos and Co are 
respectively damping coefficients of the inverted pendulum and the disk to account 
for viscous damping at joints, and the moment of inertia is formulated as 

Ic  = ml(r  - ½1. sin 0b) COS 0 b. (6) 

Neglecting generalized force and friction, i.e. u = 0 and Cob--Co = 0, Eqn (6) 
gives equilibrium points: p = 0, Ob = 0, _+rr, +_2rr . . . . .  and 0 is arbitrary. Figure 5a 
shows the phase plane of Ob and Pob for examining stability. The phase portrait is 
periodic with a period of 2rr. A saddle point is present at equilibrium position (0, 0) 
whereas centers are at equilibrium positions Or, 0) and (-rr ,  0). By contrast, if 
Cob 4= 0 in Eqn (6), stable nodes are present at equilibrium positions (rr, 0) and (-~r, 
0) as depicted in Fig. 5b. Except for trajectories that terminate at the unstable 
equilibrium position (0, 0), all trajectories converge to the stable equilibrium positions 
(rr, 0) and (-rr ,  0). These stable equilibrium positions represent the vertically down- 
ward position of the pendulum. Nevertheless, the unstable equilibrium position (0, 0) 
cannot be maintained since the trajectory diverges away from that position. 

5. SIMULATION RESULTS 

In this study, initial conditions are prescribed as: the angle of inverted pendulum 
Ob = 36 °, the angular velocity of inverted pendulum 0b = 0, and the angular velocity 
of motor to = 0. The inverted pendulum is initially supported by a vertical strut such 
that 0 b cannot be larger than 36 °. Four cases for target angles of 25, 20, 15, and 10 ° 
of the inverted pendulum are investigated. Fuzzy coarse-tuning control is designed to 
facilitate the angle of the inverted pendulum approaching the neighborhood of target 
angles. The fuzzy fine-tuning control is in turn carried out to achieve desired dynamic 
performance, i.e. smaller overshoot and oscillation. Since P (positive) and N 
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Fig. 5. Phase planes of Ob and po~, (a) without friction and (b) with friction. 

(negative) are fuzzy subsets for input variables as depicted in Fig. 3, four fuzzy 
identification rules are defined for fuzzy control: 

IF e(k) is P AND ec(k) is P T H E N  co = p~. e(k) + Pl 'ec(k)  + p~ 

IF e(k) is P AND ec(k) is N T H E N  (0 = p~. e(k) + p~. ec(k) + p~ 

IF e(k) is N AND ec(k) is P T H E N  (0 = p3. e(k) + p~.ec(k) + p~ 

IF e(k) is N AND ec(k) is N T H E N  w = p~.e(k)  + p~. ec(k) + p~ 

where error e(k) denotes the current angle of the inverted pendulum minus the target 
angle and error change ec(k) the current error minus the error of the previous 
sampling time. In the above four rules, 12 parameters p} in the consequence are 
determined by GA. Similarly, the auto-tuning method contains four rules of the form 

IF ec(k) is P AND ecc(k) is P THEN Ko = p~" ec(k) + p~. ecc(k) + p~ 

IF ec(k) is P AND ecc(k) is N THEN Ko = p~" ec(k) + p~. ecc(k) + p~ 

IF ec(k) is N AND ecc(k) is P T H E N  Ko = p~'ec(k) + p~. ecc(k) + p72 

IF ec(k) is N AND ecc(k) is N T H E N  K 0 = p~. ec(k) + p~. ecc(k) + p8 

where the change of error change ecc(k) denotes the current error change minus the 
i error change of the previous sampling time. Although the parameters PS, i = 1 to 8 

and j = 0, 1, 2, are crucial for both fuzzy control and the auto-tuning method, it is 
very difficult to determine the parameters. In view of the promising searching 
capability of GA,  the optimal set of the 24 parameters is determined by GA.  
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Each parameter in the parameter set is coded as an eight-bit string. The mapping of 
the parameter set onto the eight-bit string determines the desired range of resolution 
for the parameter set. The mapping is written as 

i binrep 
pj = -2 .5  + - - ,  (7) 

51 

where binrep is an integer value represented by the eight-bit string. In this eight-bit 
representation, maximum and minimum integer values represented by eight-bit strings 
correspond to parameter values of 2.5 and -2 .5 ,  respectively. The resolution is 
calculated as 0.0196. Since there are 24 parameters in the parameter set, the strings 
are concatenated to form a 192-bit string representing one unit of the population. 
One unit represents one possible solution among 2192 solutions. In this study, the 
population size is 40 and the mutation rate is 0.001. The fitness function for the GA 
implementation is executed only in the fine-tuning period, i.e. in the neighborhood of 
target angles. The fitness function can be defined as 

kf 

F = ~ [e2(k) + ec2(k)]. (8) 
k=k  o 

The average values of fitness functions for population size np of a generation are 
calculated according to 

np kf 

AF = 1 ~ ~ [e:(k) + ec2(k)]. (9) 
n p  i=1 k=k  o 

Thereby the variation of fitness functions between any two generations can be 
observed. The initial generation is chosen at random. An optimal solution can be 
found using operators in the GA, by which the fitness function can reach the 
minimum in numerous generations. 

Figure 6 shows the evolution of the average and best fitness functions over 200 
generations for four target angles. Since the crossover operator is implemented to 
provide new points for further testing, there are several local peaks in Fig. 6a. 
Nevertheless, values of fitness functions decrease in trend and converge. Figure 7 
shows simulation results of Ob and 09 for four target angles. From Fig. 7b, it can be 
seen that the steady state values of to increase with target angles. The variation for 
angular velocity to of the motor with four target angles is depicted in Fig. 8. The solid 
circle denotes the steady state value of to. Moreover, the upper and lower circles 
indicate the maximum and minimum values of to through the period of fine-tuning 
control, respectively. The variation of to for target angle 25 ° is the smallest. For a 
circular motion of a rider-motorcycle system, a rider banks at an angle in order to 
maintain an adequate balance between the gravitational and centrifugal forces. Both 
the banking movement of the rider's body and the riding speed play important roles 
in stabilizing circular motion. Stability can be achieved by an appropriate relation 
between riding speeds and leaning angles of the rider. Riding speeds corresponding to 
the values of to increase with required leaning angles of the rider's body that 
correspond to the values of 0 b in the experimental apparatus. Comparison of four 
cases of inverted pendulum motion shows that a larger leaning angle of the rider 
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requires a faster riding speed for stabilization and results in smaller variation of the 
riding speed. In addition, larger leaning angle exhibits a better stability of the system. 

6. EXPERIMENTAL SETUP AND RESULTS 

The schematic diagram and photograph of the experimental setup are shown in Figs 
9 and 10, respectively. A shaft encoder at the root of the inverted pendulum is used 
to measure the tilt angle. An interface card transmits the position count to the PC for 
fuzzy control. The sampling time of PC command is 1 ms. A motor driver receives 
control signals via the interface card, and enables instantaneous rotation motion of 
the A.C. servo motor. The initial angle of pendulum Ob is 36 ° and the rotational 
velocity of the motor 09 = 0. 

Figure 11 depicts experimental results for variations of 0 b at three different target 
angles. Data are collected at a sample rate of 50 Hz. Curve wiggle is present in 
Fig. 11 due to backlash in the gear box and limited resolution of the encoder. The 
collision generated from the backlash of the gear box occurs whenever the motor 
undergoes large acceleration and deceleration. The collision can hence be treated as 
random disturbances. Moreover, as variations of (0 decrease, the degrees of collision 
decrease. The proposed method can work well as shown in Fig. 11 despite random 
disturbance. Figure 12 depicts power spectra that account for control effort arising 
from motor output. Since the power amplitude of w increases with target angles as 
shown in Fig. 12, the collision increases with target angles. The angular oscillation of 
the inverted pendulum as shown in Fig. l l c  is hence smaller than those in Fig. l l a  
and b. Figure 13 shows Bode plots of 0b versus motor angular velocity ¢9 at different 
target angles. Gain margins of all three cases are very large. Phase margins of target 
angles 10, 15 and 20 ° are 19, 10 and 42 °, respectively. The smaller target angle results 
in larger gain and phase lag. Compensating for larger phase lag requires more control 
effort. Corresponding to a circular motion of a rider-motorcycle system, a rider must 
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Fig. 10. Photograph of experimental setup. 
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bank at a large enough angle in order to maintain balance when the radius of the 
circular motion is constant. As the target angle decreases, the sensitivity of 0b versus 
to, i.e. gain in Fig. 13, increases. Accordingly, a smaller leaning angle exhibits a poor 
stability control for the circular motion of a rider-motorcycle system. 
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7. CONCLUSIONS 

This study develops fuzzy control integrated with both GA and an auto-tuning 
method for stability control of a r ider-motorcycle  system. The proposed experiment 
provides a useful means to understanding stability of a r ider-motorcycle  system 
during circular motion. In contrast to previous works in which the auto-tuning method 
is used to adjust PID gains, the current study employs the auto-tuning method to 
on-line tune output gains of fuzzy control. Unlike previous works in which member- 
ship functions are determined by a GA,  in this paper the optimal 24 parameters of 
both control rules and tuning rules are obtained by a GA. Simulation results show 
that a larger leaning angle of the rider exhibits a better  stability control. The steady 
state angular velocity of the motor increases with target angles. Experimental results 
depict curve wiggle of pendulum angles in the time domain due to backlash in the 
gear box and limited resolution of the encoder. Bode plots obtained from experi- 
mental data are given to illustrate the degree of influence of rider's leaning angle 
during circular motion. The smaller the desired leaning angle, the more difficult it is 
to maintain stability. The results are consistent with a human's riding experience. 
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