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Identifying cell cycle transcription factors (TFs) is important for understanding the transcriptional regulation
of the cell cycle process which controls the growth and development of all organisms. Existing computational
approaches for identifying cell cycle TFs are mainly based on methods with a fixed selection criterion. That is,
the same criterion was applied to each TF to determine whether it is a cell cycle TF or not. Since the
characteristic of each TF may be quite different, it is not suitable to use a fixed selection criterion in identifying
cell cycle TFs. Instead of using a fixed selection criterion, we propose a method with variable selection criteria
to identify cell cycle TFs in yeast by integrating the ChIP-chip and cell cycle gene expression data. Our method
is shown to outperform five existing methods which used the same ChIP-chip dataset as we did. Fifteen cell
cycle TFs were identified by our approach, 12 of which are known cell cycle TFs, while the remaining three
(Hap4, Reb1 and Tye7) are novel cell cycle TFs. The biological significance of our predictions is shown by four
lines of indirect evidence derived from the protein–protein interaction data, TF mutant data, ChIP-chip data
and the results of the previous computational studies.
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1. Introduction

Eukaryotic cell cycle is a complex process, which consists of four
main phases: DNA replication (S-phase) and mitosis (M-phase),
separated by two gap phases (G1 and G2) (Bähler, 2005). Proper
regulation of the cell cycle process is crucial to the growth and
development of all organisms. Therefore, understanding this regula-
tion is central to the study of many diseases, most notably cancer
(Whitfield et al., 2002). The cell cycle process is precisely regulated at
many levels and one important aspect of this regulation is at the
transcriptional level. Many genes specific to the cell cycle are
transcribed just before they are needed (Rowicka et al., 2007). To
have a good understanding of the cell cycle, it is essential to identify
the cell cycle-regulated genes and their transcriptional regulators.

DNAmicroarray technologies have been performed to identify cell
cycle-regulated genes. Typically, time course gene expression data are
collected by micoarray experiments in which gene expression levels
of thousands of genes are measured at a number of time points across
the cell cycle (Cho et al., 1998; Spellman et al., 1998; Pramila et al.,
2006). Many computational methods have been developed to identify
cell cycle-regulated genes using the time course gene expression data.
Thesemethods include Fourier analysis (Spellman et al., 1998), partial
least square regression (Johansson et al., 2003), single pulse modeling
(Zhao et al., 2001), k-means clustering (Tavazoie et al., 1999), QT-
clustering (Heyer et al., 1999), singular value decomposition (Alter
et al., 2000), and correspondence analysis (Fellenberg et al., 2001).

Transcription factors (TFs) play critical roles in controlling gene
expressions (Adachi et al., 2000; Gissot et al., 2004; Kikuchi et al.,
2005; Wu et al., 2006a; Wu et al., 2007; Lin et al., 2010; Chang et al.,
2011). To understand how the cell cycle-regulated genes can be
transcribed just before they are needed, it is essential to identify their
transcriptional regulators. Several computational methods have been
developed to identify yeast cell cycle TFs, including statistical methods
(ANOVA analysis (Tsai et al., 2005) and Fisher's G test (Cheng and Li,
2008)), network component analysis (Yang et al., 2005), linear
regression analysis (Cokus et al., 2006), rule-based modeling
(Andersson et al., 2007), and dynamic system modeling (Wu and Li,
2008b). These existing computational approaches for identifying cell
cycle TFs aremainly based onmethodswith a fixed selection criterion.
That is, the same criterion is applied to each TF to determine whether
it is a cell cycle TF or not. Since the characteristic of each TF may be
quite different, it is not suitable to use a fixed selection criterion in
identifying cell cycle TFs. Instead, variable selection criteria which
depend on the characteristics of the TFs should be developed for
identifying cell cycle TFs.

In this paper, we propose a method with variable selection criteria
for identifying cell cycle TFs. Our method consists of two steps. The
first step is to apply the relative R2 method (Wang and Li, 2009; Hsieh
and Wang, in press) to identify the regulatory targets of each TF in
yeast. The second step is to use a hypothesis testing approach to
determine whether a TF is a cell cycle TF or not. A TF is regarded as a
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cell cycle TF if a statistically significant portion of its regulatory targets
is cell cycle-regulated genes.

2. Materials and methods

The data sources used in this study are introduced in Section 2.1.
The two steps of the proposed method in identifying cell cycle TFs are
illustrated in Sections 2.2 and 2.3.

2.1. Datasets

Two data sources were used in this study. First, the ChIP-chip data
were from Harbison et al. (2004). They used genome-wide location
analysis to determine the genomic occupancy of 203 TFs in rich media
conditions. Second, the yeast cell cycle gene expression data were
from Pramila et al. (2006). The alpha30 dataset is used because it has
the largest number of time points. Samples for all genes in the yeast
genome are collected with a sampling interval of 5 min and a total of
25 time points, which cover two cell cycles. That is, each gene has a
25-timepoint gene expression profile.

2.2. Identification of the regulatory targets of each TF in yeast by the
relative R2 method

The transcriptional regulatory mechanism of a target gene was
modeled as a system with the expression profiles of several TFs as the
inputs and the expression profile of the target gene as the output. The
transcriptional regulation of the target gene is described by the
following linear regression model

yt = d0 + d1z1;t + d2z2;t :::: + dNzN;t + εt ð1Þ

where yt represents the target gene's expression profile at time point
t, d0 represents the target gene's basal expression level induced by
RNA polymerase II, N denotes the number of TFs that bind to the
promoter of the target gene (inferred from the ChIP-chip data), di
indicates the regulatory ability of TFi, zi, t represents the expression
profile of TFi at time point t and εt denotes the stochastic noise due to
the modeling error and the measuring error of the target gene's
expression profile. Here εt is assumed to be a Gaussian noise with zero
mean and unknown standard deviation σ.

Using the yeast cell cycle gene expression data from Pramila et al.
(2006), the values of {yt,zi, t} for t∈{1, 2,⋯,25}, i∈ {1, 2,⋯,N} can be
obtained. Then (1) at different time points can be rewritten as the
following matrix form:

Y = Zβ + e
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The parameter vector β can be estimated by the best linear
unbiased estimator as follows (Bickel and Doksum, 2007)

β̂ = ZTZ
� �−1

ZTY = d̂0 d̂1 ⋯ d̂N

h iT
:

Define SStotal = ∑25
i = 1 yi � yð Þ2 and SSreg = ∑25

i = 1 ŷi−y
� �2

;where
ŷi = Z β̂

� �
i
and y = 1

25∑25
i = 1yi. The R

2 value is defined as SSreg/SStotal,
which is used to measure how well the linear regression model fits the
data. The value of R2 lies between 0 and 1 and larger R2 valuemeans the
model fits better.
Since di stands for the regulatory ability of TFi, a large absolute
value of di means that TFi has a large regulatory effect on the target
gene's expression. For each of theN TFs, say TFi, whether its regulatory
ability di is statistically significantly different from zero is tested. The
p-value for rejecting the null hypothesis H0: di=0 is computed as

P jW j≥ j d̂i jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var d̂i
� �r

0
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where W denotes the standard normal variable (Bickel and Doksum,
2007). Then these N TFs are ranked from the one with the smallest p-
value to the one with the largest p-value. The first TF in the ranked TF
list is the most plausible regulator of the target gene and the last TF is
the most unlikely regulator.

From the ranked list of the N TFs, those TFs that are unlikely to
have any regulatory effect on the target gene's expression should be
removed. A TF is removed if its p-value is larger than a cutoff p0.
Assuming that only the first k TFs in the ranked list have p-values less
than p0, these k TFs are then checked whether their expression
profiles are able to fit the target gene's expression profile well in the
linear regressionmodel. The R2 value of the linear regressionmodel in
terms of the N TFs, say gN, is used as a baseline. Then these k TFs are
regarded as the high-confidence TFs of the target gene if gk≥s⋅gN,
where gk is the R2 value of the linear regression model based on these
k TFs and s is a given constant. Note that gk/gN is called the relative R2

value inWang and Li's paper (2009). The criterion gk≥s ⋅gN is variable
since s⋅gN is different for each gene.

The same process is applied to each gene of the yeast genome. As a
result, the high-confidence TFs of each of the 6000 genes in the yeast
genome can be identified. Using the above results, the regulatory
targets of each of the 203 TFs in yeast can also be inferred.

2.3. Identification of cell cycle TFs

Since the regulatory targets of each of the 203 TFs in yeast have
been inferred, it is now possible to identify cell cycle TFs from these
203 TFs. Because the function of a cell cycle TF is to regulate the
expression of the cell cycle-regulated genes, the regulatory targets of a
cell cycle TF should be enrichedwith cell cycle-regulated genes. In this
regard, a TF is considered as a cell cycle TF if a statistically significant
portion of its regulatory targets is the cell cycle-regulated genes
(identified by Spellman et al. (1998)). The hypergeometric distribu-
tion is used to test the statistical significance (Wu and Li, 2008a). The
procedure for determining whether TFj is a cell cycle TF is as follows.
Let Fj be the set of genes that are bound by TFj (inferred from the ChIP-
chip data), Gj be the set of genes that are regulated by TFj selected by
the relative R2 method, Vj be the set of cell cycle-regulated genes
(identified by Spellman et al. (1998)) that are also bound by TFj, and Tj
be the set of cell cycle-regulated genes that are also regulated by TFj.
Then the p-value for rejecting the null hypothesis (H0: TFj is not a cell
cycle TF) is calculated as

p = P X ≥ Tj
��� ���� �

= ∑
x≥ Tjj j
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where X follows a hypergeometric distribution and |Gj| means the
number of genes in set Gj. A TFj is said to be a cell cycle TF if its p-value
is less than 0.05. This procedure is applied to each of the 203 TFs in
yeast.



Table 1
Known cell cycle-regulated genes and cell cycle proteins that have genetic or physical
interactions with the three novel cell cycle TFs (Reb1, Tye7, and Hap4).

Known cell cycle-regulated genes which
are regulated by Reb1 Teixeira et al.
(2006)

CDC5, CDC9, CDC21, CDC39, CDC50,
CLB2, CLB3, SWI5

Known cell cycle proteins which have
protein–protein interaction with Reb1
Wu et al. (2006b)

Abf1, Ace2, Cdc28, Fkh2, Hcm1,
Hir1, Hir2, Hir3, Mcm1,Mec1, Paf1,
Swi4, Swi5, Swi6, Tos4, Tos8, Yox1

Known cell cycle-regulated genes which
are regulated by Tye7 Teixeira et al. (2006)

CDC19, HIR2

Known cell cycle proteins which have
protein–protein interaction with Tye7
Wu et al. (2006b)

Ace2, Cdc28, Cdc37, Clb5, Cln3,
Fkh2, Gts1, Hcm1, Hir1, Hir2, Hir3,
Mcm1, Met30, Paf1, Reb1, Sis2,
Stb1, Swi4, Swi5, Swi6, Tds4, Tds8,
Yox1, Yrb1

Known cell cycle-regulated genes which
are regulated by Hap4 Teixeira et al.
(2006)

CDC31, CDC36, CDC50, YOX1

Known cell cycle proteins which have
protein–protein interaction with Hap4
Wu et al. (2006b)

Bub1, Stb1

174 H. Wang et al. / Gene 485 (2011) 172–176
Note that in (2), all terms (Fj,Gj,Vj,Tj) depend on j. Therefore, they
are different for each TF. That is, the criterion for determining whether
a TF is a cell cycle TF is a variable criterion.

3. Results

By integrating the ChIP-chip (Harbison et al., 2004) and yeast cell
cycle gene expression data (Pramila et al., 2006), our method
identified 15 cell cycle TFs. Among them, 12 are known cell cycle
TFs listed in the MIPS database (Mewes et al., 2002) with solid
experimental evidence, including Abf1, Hir3, Stb1, Yox1, and eight
well-known major cell cycle TFs (Ace2, Fkh1, Fkh2, Mbp1, Mcm1,
Swi4, Swi5, and Swi6).

The remaining three predicted cell cycle TFs (Hap4, Reb1 and
Tye7) have not been reported in the literature with solid experimental
evidence and are therefore novel cell cycle TFs. The biological
relevance of our predictions is supported by four lines of indirect
evidence. First, Hap4, Reb1 and Tye7 have been shown (Teixeira et al.,
2006; Wu et al., 2006b) to have physical or genetic interactions with
some known cell cycle TFs (see Fig. 1), suggesting that these three TFs
may play a role in the yeast cell cycle. Second, Hap4, Reb1 and Tye7
have been shown (Teixeira et al., 2006; Wu et al., 2006b) to regulate
some known cell cycle-regulated genes or have protein–protein
interactions with some known cell cycle proteins (see Table 1),
indicating that our prediction is biologically meaningful. Third, Hap4
and Reb1 were predicted to be cell cycle-regulated by previous
computational studies (Pramila et al., 2006). Being cell cycle-
regulated themselves, these TFs may play a role in the cell cycle
process. Fourth, Hap4, Reb1 and Tye7 are also predicted as novel cell
cycle TFs by previous computational studies (Tsai et al., 2005; Cheng
and Li, 2008). Since the same results are predicted by different
computational methods, it indicates that our predictions are not
happened by chance and may represent novel findings.
Fig. 1. Physical and genetic interactions between a novel cell cycle TF and the other
identified cell cycle TFs. This figure shows the physical or genetic interactions between
a novel cell cycle TF ((a) Reb1, (b) Tye7, and (c) Hap4) and the other identified cell cycle
TFs. Each identified cell cycle TF is represented as an oval. The names of known cell cycle
TFs (according to MIPS database) and newly predicted cell cycle TFs are colored purple
and black, respectively. An undirected red line between two ovals indicates these two
TFs have physical protein–protein interactions (Wu et al., 2006b). A directed blue line
between two ovals indicate that these two TFs have genetic interactions indicated by
ChIP-chip or/and mutant data (Teixeira et al., 2006). For example, Reb1→Swi5 means
that either TF Reb1 binds to the promoter of gene SWI5 or the disruption of TF Reb1
results in a significant change of the expression of gene SWI5.
Note that Hap4 has been predicted by Tsai et al.'s method (2005)
as one of the seventeen (1/17) novel cell cycle TFs and Reb1 and Tye7
have been predicted by Cheng and Li's method (2008) as two of the
twenty nine (2/29) novel cell cycle TFs (see Supplementary Table 2 for
details). Both studies predicted many novel cell cycle TFs but did not
provide any evidence to validate Hap4, Reb1 and Tye7 as plausible cell
cycle TFs. Therefore, Hap4, Reb1 and Tye7 may not be picked by
biologists to do further study since there is no independent evidence
to support their biological relevance to the cell cycle process and there
are still many other candidates of novel cell cycle TFs that can be
chosen for experimental testing. In contrast, our method only
predicted three novel cell cycle TFs (Hap4, Reb1 and Tye7) and
provided four lines of indirect evidence to validate our predictions.
That is, our contribution is to provide high-confidence predictions of
three novel cell cycle TFs (Hap4, Reb1 and Tye7), which are worthy of
further experimental investigation by biologists.

4. Discussion

4.1. Evaluation of the usefulness of the two steps of the proposed method

The ChIP-chip data in Harbison et al. (2004) can only indicate the
binding targets of a TF where the yeast cell is grown in the rich
medium. Therefore, it cannot be knownwhether a TF bindDNA in a cell
cycle dependent fashion from their ChIP-chip data. By using yeast cell
cycle gene expression data, our method tries to extract the plausible
regulatory targets of a TF related to the cell cycle process. Then a TF is
regarded as a cell cycle TF if a statistically significant portion of its
regulatory targets is cell cycle-regulated genes. In summary, with the
aid of the information provided by cell cycle gene expression data, our
method tries to identify cell cycle TFs from the 203 TFs which have
ChIP-chip data. These 203 TFs containmany false positive cell cycle TFs
and our method aims to eliminate them as many as possible.

There are two steps of the proposed method. The first step is to
identify the regulatory targets of each TF in yeast by the relative R2

method and the second step is to identify cell cycle TFs using a
hypothesis testing approach. In order to evaluate the usefulness of
these two steps, we redid the analysis as follows. First, cell cycle TFs
were identified by the raw ChIP-chip data without using any step of
the proposed method. Second, cell cycle TFs were identified by using
only the first step of the proposed method. In these two situations, a
TF is regarded as a cell cycle TF if its regulatory targets contain at least
one cell cycle-regulated gene. Third, cell cycle TFs were identified by
using both the two steps of the proposed method. In this situation, a
TF is considered as a cell cycle TF if a statistically significant portion of



Table 2
Performance comparison of themethods applying none, only thefirst step, and both the two
steps of the proposed method to retrieve the known cell cycle TFs annotated in the MIPS
database. The Jaccard similarity score and F-measure value, both of which score the overlap
between amethod's prediction and the list of known cell cycle TFs, are used for performance
comparison. The definition of the Jaccard similarity score is TP/(TP+FP+FN), where TP
stands for truepositives, FP for false positives, and FN for false negatives. Thedefinitionof the
F-measure value is 2*precision*recall/(precision+recall) where precision=TP/(TP+FP)
and recall=TP/(TP+FN). Note that the high Jaccard similarity score or high F-measure
value indicates the high capability of a method in retrieving the known cell cycle TFs.

TP FP FN Jaccard similarity
score

F-measure
value

The method using both the
two steps

12 3 24 0.308 0.471

The method using only the
first step

27 75 9 0.243 0.391

The method without using
any step

27 83 9 0.227 0.37

Table 4
Performance comparison of six cell cycle TF identification methods to retrieve the
known cell cycle TFs annotated in the MIPS database.

TP FP FN Jaccard similarity score F-measure value

Our method 12 3 24 0.308 0.471
Wu and Li's method 12 5 24 0.293 0.453
Tsai et al.'s method 13 17 23 0.245 0.394
Anderson et al.'s method 10 5 26 0.244 0.392
Cokus et al.'s method 9 3 27 0.231 0.375
Cheng and Li's method 13 29 23 0.200 0.333
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its regulatory targets is the cell cycle-regulated genes. As seen in
Table 2, the performance of the method using only the first step is
better than that without using any step of the proposed method,
showing the usefulness of the first step. Similarly, the performance of
the method using both the two steps is better than that using only the
first step, showing the usefulness of the second step. The second step
can greatly reduce the false positives with the expense of slightly
increasing the false negatives. Note that the second step is based on
the assumption “A TF is regarded as a cell cycle TF if a statistically
significant portion of its regulatory targets is cell cycle-regulated
genes”. The above analyses demonstrated that this assumption is
useful even though it is not necessary true for all cell cycle TFs.

4.2. Selection of cutoffs

There are two cutoffs p0 and s that we need to decide in the relative
R2 method. First, p0 was used to remove those TFs (among all the TFs
that bind to the target gene) that are unlikely to have any regulatory
effect on the target gene's expression. Then s is used to check whether
the left TFs are able to account for the dynamics of the target gene's
expression. Since p0 is used as a coarse filter to remove some TFs that
are unlikely to have any regulatory effect on the target gene's
expression, the selection of the value of p0 should not be too stringent.
Otherwise, some true TFs of the target gene may be accidentally
removed. On the contrary, since s is used as a criterion to determine
whether the TFs left can be regarded as the high-confidence TFs of the
target gene, the selection of the value of s should be more stringent.
Several combinations of p0 and s were investigated and it can be seen
in Table 3 that the combination (p0, s)=(0.72, 0.97) performs better
than the other combinations. Therefore, (0.72, 0.97) are chosen as the
default values of (p0, s) in this study.

4.3. Performance comparison with five existing methods

Five previous methods, which used the same ChIP-chip dataset as
we did, have been developed to identify the yeast cell cycle TFs. Tsai
Table 3
The Jaccard similarity scores of different combinations of (p0, s).

p0\ s 0.99 0.97 0.95

0.8 0.184 0.216 0.211
0.72 0.180 0.308 0.275
0.7 0.205 0.293 0.256
0.6 0.209 0.238 0.196
0.5 0.140 0.159 0.196
0.4 0.171 0.179 0.233
0.3 0.048 0.095 0.114
et al. (2005) identified 30 cell cycle TFs by applying a statistical
method (ANOVA analysis) and Cheng and Li (2008) identified 40 cell
cycle TFs by applying another statistical method (Fisher's G test).
Cokus et al. (2006) identified 12 cell cycle TFs by applying linear
regression analysis. Andersson et al. (2007) identified 15 cell cycle TFs
by applying rule-basedmodeling.Wu and Li (2008b) identified 17 cell
cycle TFs by using a time-lagged dynamic model of gene regulation.

Since these five approaches are different from ours, a performance
comparison should be done. As suggested by de Lichtenberg et al.
(2005), the ability of each of these six methods to retrieve the known
cell cycle TFs according to the MIPS database (Mewes et al., 2002) was
used as the performance index. Performance comparison was based
on twometrics: the Jaccard similarity score (Shakhnovich et al., 2004)
and F-measure value (van Rijsbergen, 1979), both of which score the
overlaps between amethod's result and the list of known cell cycle TFs
(i.e., the true answers). Therefore, the high Jaccard similarity score or
high F-measure value indicates high ability of a method to retrieve the
known cell cycle TFs. As shown in Table 4, our method has the highest
Jaccard similarity score and highest F-measure value among the six
methods (see Supplementary Table 1 for more details). Therefore, our
method outperforms the other five existing methods.

It should be note that some known cell cycle TFs have not been
identified by any of the above six methods. Since the above six cell
cycle TFs identification methods all relied on the ChIP-chip data, a cell
cycle TF cannot be identified if it has no ChIP-chip data. For example,
none of the six methods could successfully identify the known cell
cycle TFs Ime1, Nnf2,Wtm2 and YBR267W because no binding targets
of these four TFs could be found in the ChIP-chip data (Harbison et al.,
2004).

4.4. The novelty of our method

Previous existing computational approaches for identifying the
cell cycle TFs are mainly based on methods with a fixed selection
criterion. That is, the same criterion is applied to each TF to determine
whether it is a cell cycle TF or not. Since the characteristic of each TF
may be quite different, it is not suitable to use a fixed selection
criterion in identifying cell cycle TFs. To solve this problem, we
proposed a method with variable selection criteria which depend on
the characteristics of the TFs. Our method consists of two steps. The
first step is to apply the relative R2 method (Wang and Li, 2009) to
identify the regulatory targets of each TF in yeast. The second step is to
use a hypothesis testing approach to determine whether a TF is a cell
cycle TF or not.

Wu and Li's method (2008b) has been shown to be better than
other existing computational methods (Tsai et al., 2005; Cokus et al.,
2006; Andersson et al., 2007; Cheng and Li, 2008) in identifying cell
cycle TFs (see Table 4). Theirmethod also consists of two steps as ours.
In the first step,Wu and Li (2008b) used a regressionmodel to identify
the transcriptional regulators of each gene in the yeast genome.
However, their regression model has not been evaluated by any
model fitting criterion (e.g. R2, AIC, BIC) from the statistical point of
view. That is, their method was solely based on a linear regression
model without associating with any model fitting criterion. We fixed
this weakness by applying a more statistically rigorous method called
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the relative R2 method (Wang and Li, 2009). The relative R2 method is
a linear regression approach associated with a model fitting criterion
which can provide information about how well the linear regression
model fits the expression profile of each gene in the yeast genome.

In the second step of Wu and Li's method, the p-value for rejecting
the null hypothesis (H0: TFj is not a cell cycle TF) is calculated as

p = P X≥ Tj
��� ���� �

= ∑
x≥ Tjj j

Vj j
x

� 	 Fj j− Vj j
Gj

��� ���−x

 !

Fj j
Gj

��� ���
 ! ; ð3Þ

where Gj is the set of genes that are regulated by TFj selected by the
regression method, Tj is the set of cell cycle-regulated genes that are
also regulated by TFj, F is the set of all genes in the yeast genome and V
be the set of cell cycle-regulated genes (identified by Spellman et al.
(1998)). Therefore, F and V are the same for all TFs. Since the
characteristic of each TFmay be quite different, it is not suitable to use
the same F and V for all TFs. Our method fixed this weakness by
replacing F and Vwith Fj and Vj in (2). Both terms depend on j.
Therefore, they are different for each TF. That is, our criterion for
determining whether a TF is a cell cycle TF is a variable criterion. As
shown in Table 4, our method outperforms Wu and Li's method,
revealing that using variable selection criteria is very useful for
improving the performance of identifying cell cycle TFs.

5. Conclusions

We developed a method with variable selection criteria to identify
cell cycle TFs in yeast by integrating the ChIP-chip and cell cycle gene
expression data. Our method identified 15 cell cycle TFs and 12 of
which are known cell cycle TFs. The remaining three TFs (Hap4, Reb1
and Tye7) are novel cell cycle TFs. Our predictions are supported by
previous computational studies, the protein-protein interaction data,
ChIP-chip data or/and TF mutant data. Finally, we showed that our
method outperformed five existing methods in identifying cell cycle
TFs.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.gene.2011.06.001.
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