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MicroRNAs (miRNAs) are small endogenously expressed non-coding RNAs that regulate target messenger

RNAs in various biological processes. In recent years, there have been many studies concentrated on the

discovery of new miRNAs and identification of their mRNA targets. Although researchers have identified

many miRNAs, few miRNA targets have been identified by actual experimental methods. To expedite the

identification of miRNA targets for experimental verification, in the literature approaches based on the

sequence or microarray expression analysis have been established to discover the potential miRNA targets.

In this study, we focus on the human miRNA target prediction and propose a generalized relative R2

method (RRSM) to find many high-confidence targets. Many targets have been confirmed from previous

studies. The targets for several miRNAs discovered by the HITS-CLIP method in a recent study have also

been selected by our study.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

MicroRNAs (miRNAs) are endogenous and single-stranded �23 nt
RNAs that play crucial gene regulatory roles in animals and plants by
pairing to the 30 untranslated regions (UTRs) of the target messenger
RNAs (mRNAs) of protein -coding genes to direct their post-transcrip-
tional repression (Carrington and Ambros, 2003; Bartel, 2004; Mattick
and Makunin, 2006). Extensive research has revealed the existence of
more than 700 different human miRNAs (Griffiths-Jones et al., 2008).
Griffiths-Jones et al. (2008)and several studies have demonstrated the
importance of miRNA-mediated regulation in a wide range of basic
biological processes, such as proliferation, apoptosis, cellular identity
and pathogen–host interactions (Pillai et al., 2007; Carthew and
Sontheimer, 2009).

The discovery of many miRNAs in various multi-cellular species
has raised many questions, such as how these small non-coding RNAs
function in cells. The key to answering this particular question is to
explore their regulatory targets. The most general feature of miRNA
regulation is the recognition of sequence motifs complementary to
the 30UTR of target mRNAs (Lewis et al., 2003; Grimson et al., 2007).

Several target prediction computational algorithms for motifs
complementary predictions have been developed, for example,
miRanda (John et al., 2004), TargetScan (Lewis et al., 2003; Lewis
et al., 2005) and PicTar (Krek et al., 2005), but they show poor
overlap between their predicted results, which might be caused
by a number of false-negative and probably also false positive
predictions (Bartel, 2009).
ll rights reserved.
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).
In addition to sequence motifs complementary predictions,
gene expression profiling can also provide useful information for
studying the biological functions of miRNAs. Therefore expression
data analysis has been used as a complementary method for
discovering miRNA targets (Lim et al., 2005). However, it can
become computationally complicated when considering multiple
miRNAs and their effects across multiple tissues. To overcome
this difficulty, Huang et al. (2007b) and Wang and Li (2009b)
proposed statistical methods to build up a network of associations
between the miRNAs and their target mRNAs.

Huang et al. (2007b) established a method, GenMiRþþ, using
Bayesian variation analysis to explore miRNA targets. However, it is
complicated and requires extensive calculations. In order to provide
a more effective approach, Wang and Li (2009b) proposed the
relative R2 method to select high-confidence targets of miRNAs
from prediction targets, which is easy to interpret and less compu-
tationally expansive. This method successfully obtained many high-
confidence targets for mouse miRNA in Wang and Li (2009b). In this
study, we generalize the relative R2 method to a more flexible
form and called it as RRSM. We also establish program codes for
performing RRSM for different original data and normalized data.

RRSM has several virtues for discovering high-confidence targets.
Although the paired correlation analysis between miRNA and their
targets has been discussed (Ritchie et al., 2009; Wang and Li, 2009a;
Liu et al., 2010), observing several confirmed targets in the literature
indicates that for many miRNAs, the correlation coefficient of the
microarray expression of a miRNA and that of its confirmed target is
nearly zero. The discussion and comparison of RRSM and the existing
correlation analysis methods (Ritchie et al., 2009; Wang and Li,
2009a; Liu et al., 2010; Wang et al., in press) are given in Section 3.

When the correlation coefficient is not high, it is hard to use any
standard statistical approaches to explore miRNA targets because
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there are no significant statistical evidence for a relationship
between a miRNA and its true targets in terms of the conventional
statistical methods. In contrast, since RRSM is derived from a
relative instead of an absolute statistical viewpoint, it can provide
an efficient way to identify the correct targets.

Wang and Li (2009b) demonstrated a great improvement for
analyzing mouse miRNAs (Babak et al., 2004; Huang et al., 2007b).
In this study, we focus on human miRNAs target prediction
(Huang et al., 2007a). The analysis results clearly show that more
interactions occur as verified by TarBase (Papadopoulos et al.,
2009) and dataset mimiRNA (Ritchie et al., 2010) obtained from
the high-confidence targets selected by RRSM than from those
selected by GenMiRþþ in Huang et al. (2007a).

Recently, the HITS-CLIP method, an approach relying on
purifying RNA-binding proteins (RNABPs), has been developed
to directly identify protein–RNA interactions in living tissues in a
genome-wide manner. The unbiased nature of this platform has
the potential for new discoveries, including the elucidation of
preferred binding sequences and the identification of regulated
Fig. 1. The flowchart of th
RNA substrates (Jensen and Darnell, 2008; Licatalosi et al., 2008;
Chi et al., 2009).

For comparison with the HITS-CLIP method, we also show that
targets identified by the HITS-CLIP method can be identified by
RRSM for targets appearing in both datasets (Huang et al., 2007a;
Chi et al., 2009). The results reveal that RRSM can provide an
appropriate means to discover correct human miRNA targets.

In this study, we explore 1559 high-confidence targets (Table S1)
for human miRNAs and verify that many selected targets have been
confirmed through previous studies. The RRSM methods and codes
are provided on a website for readers to explore high-confidence
miRNA targets. An R code user manual for running the RRSM code is
given in the website to help biologists using the codes.
2. Results

RRSM is established based on a relative instead of an absolute
statistical point of view and it provides an efficient approach
e procedure for RRSM.



Table 2
Interaction numbers in TarBase and mimiRNA of the relative R2 method (RRSM)

and GenMiRþþ.

Number of high-

confidence targets

Number of

interactions in

TarBase

Number of

interactions

in mimiRNA

GenMiRþþ 1597 4 25

RRSM

s¼0.995,

p0¼0.77

1559 10 43

s¼0.995,

p0¼0.75

1342 9 34

s¼0.990, 1485 8 31
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for miRNA target identification. In this study, in contrast to the
mouse miRNA target analysis, we found that the approach using the
original data can lead to a more satisfactory result than using the
normalized expression profile, which was adopted in Wang and Li
(2009b) for mouse miRNA target analysis. Therefore, we adopt the
original data format in this study. Since we can select different
transformation form for the miRNA expression data and mRNA data
expression data, we propose a more generalized form for the relative
R2 method. The formula of the RRSM is given in Section 5.

Software for RRSM is available on http://www.stat.nctu.edu.
tw/�hwang/website_wang%20new.htm

The steps in this method are briefly described in the flowchart
(Fig. 1).
p0¼0.72

s¼0.950,

p0¼0.60

1388 8 35

s¼0.900,

p0¼0.57

1519 8 33

3. Data analysis

3.1. RRSM

The main aim of this study is to use RRSM to select high-
confidence targets for human miRNAs and compare with other
methods. We consider the miRNA and mRNA expression data for
114 human miRNAs and 16,063 mRNAs across a mixture of
88 normal and cancerous tissue samples common to the two
datasets used in Huang et al. (2007a). A dataset was filtered
from the data to include 6387 potential target pairs, covering 890
unique mRNAs, because some miRNAs have the same mRNAs as
their potential targets (Huang et al., 2007a). The purpose of
this study is to select high-confidence targets from the poten-
tial targets. Huang et al. (2007a) applied the Bayesian variation
method for analyzing this dataset, but this method is complicated
and has a high computational load. In this current study, we use
the RRSM to select high-confidence targets from the potential
targets and compare the results with Huang et al. (2007a).

We focus on the 6387 miRNA–mRNA potential target pairs,
determining each miRNA and its target, and use the results
corresponding to the microarray expression 16,063�88 data
matrix and 114�88 data matrix to fit the regression model.

In order to select about one-fourth of the targets from the 6387
potential targets, we set p0¼0.77 and s¼0.995 in RRSM, resulting in
1559 high-confidence targets being selected. Furthermore, there are
many other choices of setting p0 and s such that about 1600 targets
could be selected by RRSM. Table 1 shows that we can alter the
values of p0 and s to accommodate our requirements.

To compare the performance of RRSM with the method of
Huang et al. (2007a), GenMiRþþ, we examine the accuracy of both
methods by exploring the confirmed targets appearing in TarBase.

We exhaustively searched the confirmed targets for the 6387
potential targets in TarBase and found that there are only 24 common
interactions in the 6387 potential targets and TarBase (Papadopoulos
et al., 2009). Table S2 shows the 24 TarBase interactions, which are
the targets of 8 miRNAs, including miR-16, miR-1, miR-15b, miR-29c,
miR-26a, miR-23a, miR-21 and miR-155, among 114 miRNAs.

For comparison, we list the numbers of interactions of the two
methods. Using p0¼0.77 and s¼0.995, we obtain 1559 high-con-
fidence targets by RRSM, containing 10 of the 24 interactions. For
comparison with the results of GenMiRþþ, we also exhaustively
searched the interactions between TarBase and the results of Huang
et al. (2007a) and found that there are only 4 interactions.
Table 1
Different choices of p0 and s such that the number of potential targets is

about 1600.

s 0.995 0.99 0.95 0.9 0.875 0.85

p0 0.77 0.73 0.63 0.58 0.56 0.55
Further comparisons with RRSM and GenMiRþþ are presented
in Table 2, where we consider five different thresholds for RRSM
such that the number of high-confidence targets selected by these
thresholds is near 1600.

For these thresholds there are at least 8 interactions in
TarBase. The number is significantly larger than the interaction
number 4 obtained from GenMiRþþ. This reveals that RRSM is
more powerful than GenMiRþþ (Huang et al., 2007a) for detecting
high-confidence targets.

Besides comparing RRSM with GenMiRþþ through the number of
interactions in TarBase, we also make the comparison through the
database mimiRNA (Ritchie et al., 2010) and Table S3 lists 118
interactions in 6387 potential targets appearing in mimiRNA. The
‘‘p-value cut off’’ and ‘‘Integrate with data’’ in the mimiRNA tool are
selected to be ‘‘0.01’’ and ‘‘none’’, respectively. Table 2 presents the
number of interactions of the methods. There are 25 interactions in
mimiRNA among the 1597 targets selected by GenMiRþþ. There are
at least 33 interactions in mimiRNA among the targets selected by
RRSM. In both databases, the numbers of targets selected by RRSM
are larger than those selected by GenMiRþþ. It shows there are more
validations of the high-confidence targets selected by RRSM than
those selected by GenMiRþþ, revealing the RRSM is a more effective
method in predicting high-confidence targets.

In addition to comparing RRSM with GenMiRþþ, we also
demonstrate its feasibility for selecting high-confidence targets
of human miRNAs by comparing randomly selected results. As
mentioned above, using RRSM to select the number of about one-
fourth targets in 6387 targets enables selecting 10 interactions in
the 24 interactions in TarBase, which is about 10/24(¼0.417),
making it larger than one-fourth. The larger proportion means
that RRSM performs well in selecting the correct targets for
human miRNAs. Fig. S1 shows that the proportion of interactions
derived by RRSM is greater than the proportions of interactions
obtained by a random selection.

This discussion shows that RRSM outperforms GenMiRþþ and
the randomly selecting methods for different thresholds of s and
p-value. RRSM consists of two important criteria, the s value and
the p-value. In this method, the threshold selection for the s value
is the main criterion and the threshold selection for p-value is an
ancillary criterion. Basically, we prefer a strict selection for the s

value that may be greater than 0.9 and allows a relax p-value
selection that may be less than 0.9.

In addition, we also compare the results with those from the HITS-
CLIP method in Chi et al. (2009) and other previous studies. Fig. 6 in
Chi et al. (2009) reveals Ago HITS-CLIP targets for miR-124, miR-9 and
miR-125, respectively, which are shown in the most significant
pathways (neuronal differentiation/cytoskeleton regulation).

http://www.stat.nctu.edu.tw/&sim;hwang/website_wang%20new.htm
http://www.stat.nctu.edu.tw/&sim;hwang/website_wang%20new.htm
http://www.stat.nctu.edu.tw/&sim;hwang/website_wang%20new.htm
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There are a total of two targets, RAf1 and IQGAP1, for miR-124
shown in Figure 6 of Chi et al. (2009) appearing in the human
miRNA dataset we used in this study. We conduct RRSM in our
dataset and find that RAF1 can be selected using p0¼0.69 and
s¼0.99, while IQGAP1 can be selected using p0¼0.85 and s¼0.999.

We also examine the mouse miRNA data used in Wang and Li
(2009b). There is a total of two targets APC and VCL, for miR-125b
and miR-124a, respectively, as shown in Figure 6 of Chi et al.
(2009) appearing in the mouse miRNA dataset used in Wang and
Li (2009b). We conduct RRSM in our dataset and find that APC can
be selected using p0¼0.87 and s¼0.999 and VCL can be selected
using p0¼0.39 and s¼0.999.

This study shows that confirmed mRNA targets interacting
over Ago–miRNA–mRNA ternary maps can also be selected by
RRSM, which demonstrates the validity of RRSM for detecting the
relationship between the miRNAs and the mRNAs. The threshold
values and proportion of selecting targets are shown in Table 3.
Note that there is a total of 1770 targets in the mouse data used in
Wang and Li (2009b).
Table 4
The literature of confirmed targets and correlations between the targets and the

corresponding miRNAs selected by RRSM p0¼0.77 and s¼0.995.

MiRNA Target Correlation Reference

miR-1 ANXA2 –0.1374 TarBase

TAGLN2 �0.4129

SFRS9 0.0021

AP3D1 0.1528

H3F3B 0.0092

miR-23a CXCL12 0.1485 TarBase

miR-29c COL1A1 –0.0412 TarBase

COL1A2 0.1149

miR-16 BCL2 –0.0039 TarBase; Raveche et al. (2007), Calin et al.

(2007), Guo et al. (2009) and Tsang et al.

(2009).

miR-15b BCL2 –0.1625 TarBase; Guo et al. (2009).

miR-15a BCL2 0.0365 Calin et al. (2007), Garzon et al. (2007).

miR-181a PCAF –0.0266 Pichiorri et al. (2008).

miR-181b 0.0978
3.2. Correlation analysis

To show the superiority of the proposed method over the
standard statistical method for selecting the true targets, which
does not show substantial evidence in statistical correlation
coefficient analysis, we now examine correlation coefficients for
miRNA and their confirmed targets.

In our earlier discussion of the mRNA and miRNA expression
data, there are 6387 potential targets. We found that there are
3219 targets with the absolute correlation coefficients less than
0.1, 6174 targets with the absolute correlation coefficients less
than 0.3 and 6380 targets with absolute correlation coefficients
less than 0.5. For all of the potential targets, the maximal absolute
correlation coefficient is about 0.5533. This clearly shows that the
correlation coefficients of the miRNAs and their potential targets
are not large. Fig. S2(A) summarizes the investigation results. In
this case, we also calculate the rates of targets with positive
correlation and the negative correlation, respectively, among the
6387 targets, which are presented in Fig. S2(B). Previous studies
have pointed out that miRNA expression may be widely down-
regulated at its target mRNAs (Calin et al., 2002; Lim et al., 2005;
Ruby et al., 2007). But for the data we used, the proportion of
negative correlation is not significantly large. The evidence shows
that using only the correlation analysis to select miRNA targets
might not lead to satisfactory results.

We now apply RRSM to the data using the criteria, p0¼0.77
and s¼0.995, resulting in 1559 high-confidence targets selected,
and using p0¼0.72 and s¼0.99, resulting in 1485 high-confidence
targets selected.

To verify the agreement between the analysis from RRSM and
the down-regulation argument, we demonstrate that using the
RRSM to select targets can guarantee that there are a larger
proportion of negative correlation targets being selected, as shown
in Fig. S3. There are 17 miRNAs with negative correlation coefficient
targets proportion greater than 0.7 using the original 6387 targets.
Table 3
Threshold values for RRSM used in select targets in the HITS-CLIP method.

miRNA Target gene p0 s Ratio of high-confidence

targets to potential targets

Mouse miR-125b APC 0.87 0.999 1140/1770¼0.644

miR-124a VCL 0.39 0.999 234/1770¼0.132

Human miR-124a RAF1 0.69 0.99 1152/6387¼0.18

IQGAP1 0.85 0.999 2113/6387¼0.33
We consider two target sets selected by RRSM for p0¼0.72 and
s¼0.99 and p0¼0.77 and s¼0.995. The numbers of miRNAs with
the proportion of negative correlation targets greater than 0.7 in
these two sets are 28 and 30, respectively.

The comparison shown in Fig. S2(C) reveals that the high-
confidence targets selected by RRSM have larger proportions of
miRNAs with negative correlation targets, agreeing with the fact
that the miRNA usually down-regulates its target. Furthermore,
we list the miRNAs with the proportions of negative correlation
targets larger than 0.7 in Fig. S4 for the targets selected by RRSM
for p0¼0.77 and s¼0.995.

In addition to the above numerical argument used to verify our
results, we also find some confirmed targets from the literature in
the targets selected by RRSM. Table 4 summarizes the miRNAs and
their targets and represents the correlation and related studies. This
shows that the correlation analysis is not an effective approach to
select targets because most of the confirmed targets do not have
high correlation with their corresponding miRNAs, whereas, these
confirmed targets can be successfully selected by RRSM.

3.3. Existing correlation analysis methods

For each miRNA/mRNA pair, Ritchie et al. (2009) suggested to
calculate a correlation coefficient for human and another for
mouse data. Each pair was considered to be a conserved negative
correlation (CNC) pair if the correlation coefficient in both human
and mouse was below –0.3.

This type of interaction could be detected by miRNA/mRNA
pairs that show significant negative correlations in expression in
Ritchie et al. (2009). We apply this method to 6387 potential
targets of the human data. There are only 65 pairs with a
correlation coefficient below –0.3 and none of these 65 targets
are interactions in TarBase. Thus, Ritchie et al. (2009) may not be
suitable for analyzing the dataset (Huang et al., 2007a, 2007b).
miR-106b –0.0142

miR-25 –0.0005

miR-32 –0.2240

miR-223 LMO2 0.1445 Felli et al. (2009).

miR-21 JAG1 –0.0337 Hashimi et al. (2009).

miR-145 KLF5 0.1993 Cheng et al. (2009).

miR-124a RAf1 0.4339 Chi et al. (2009) (HITS-CLIP).

IQGAP1 –0.1177

Note that the target IQGAP1 for miR-124a can be also selected if we relax the

criteria for p0=0.85 and s=0.999.
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In addition, Wang and Li (2009a) and Liu et al. (2010) both
apply the correlation analysis on NCI 60 cell lines to investigate
the rates of targets with negative or positive correlation. It reveals
the significance of the expression profiles between miRNAs and
their targets in terms of the correlation analysis from these
papers. NCI 60 data are all cancer cell lines. Although the previous
studies show the feasibility of using correlation analysis on this
dataset, we cannot guarantee the appropriateness of the correla-
tion analysis approach to other dataset. Furthermore, Wang and Li
(2009a) mainly compare the proportions of negative correlations
of the predicted miRNA–mRNA interactions from TargetScan4.1
and miRBase using NCI 60 data. We apply the method of Wang
and Li (2009a) to TaregetScan-predicted interactions in our
dataset and discover that the proportion of negative correlations
is 57.5%, which is not very significantly larger than the proportion
of positive correlations. Based on the result and the aim of this
study, which is to predict high-confidence interactions, but not to
compare the correlations of interactions from TargetScan4.1 and
miRBase, predicts the high-confidence miRNA–mRNA interac-
tions, we did not present the comparison in our paper.

Especially for the dataset used in this study and other studies,
Huang et al. (2007a), Huang et al. (2007b) and Wang and Li (2009b)
reveal that the correlation analysis cannot show significant result for
these datasets and a more involved approach is necessary to be
developed for these datasets. We believe that the effect of an
approach can be affected by the characteristic of a dataset.
4. Discussion

RRSM has successfully discovered many high-confidence human
miRNA targets from the microarray expression data of the miRNAs
and the mRNA. It is worth mentioning that compared with Gen-
MiRþþ (Huang et al., 2007a), the number of targets obtained from
RRSM, which has been verified from TarBase and the previous
studies, is significantly larger than that obtained by GenMiRþþ. A
total of 1559 high-confidence targets (Table S1) were discovered in
this study and we list targets associating with the corresponding
p-values. In the statistical viewpoint, a small p-value indicates the
significance of a discovery. There are 269 high-confidence targets
with p-value less than 0.1 which can be ranked to be more potential
targets than the other 1290 selected targets. In addition, Table 4
shows the 21 selected high-confidence targets are verified through
previous studies to be true targets. Furthermore, we found that
using the original data format in RRSM can provide a more accurate
target prediction than using the normalized data format, which was
adopted for mouse data in RRSM. The R codes and MATLAB codes for
performing RRSM are established and available in http://www.stat.
nctu.edu.tw/�hwang/website_wang%20new.htm.
5. Methods

5.1. Relative R2 method (RRSM)

We generalize the relative R2 method proposed in Wang and Li
(2009b) to a more general form in this section.

First, suppose we have microarray expression data of n miRNAs,
z1,y,zn, across l tissues, t1,y,tl, where the expression levels of the n

miRNAs in tissue tj are denoted as z1j,y,znj. By prediction methods,
such as TargetScan and microarray analyses, potential targets for
each of these n miRNAs can be predicted.

RRSM is used to select high-confidence miRNA targets from
the set of the predicted miRNA targets using microarray expres-
sion data. For each mRNA in the target set, we can find the
miRNAs, say z1,y,zk, such that each of the miRNAs has this mRNA
as its potential target. We fit the microarray expression data of
the mRNA in terms of the microarray expression of the k miRNAs
using the regression model that is written as

f ðyjÞ ¼ b0gðz0jÞþb1gðz1jÞþb2gðz2jÞþ � � � þbkgðzkjÞþej, j¼ 1,. . .,l, ð1Þ

where ej is the error term and f(t) and g(t) are functions of t.
If we do not have any preference of choosing functions f(U) and

g(U), we can just set f(U) and g(U) to be the identity functions. To
select better transformations f(U) and g(U), we can selected several
commonly used functions as f(U) or g(U) and derive the results
based on different combinations of (f(U), g(U)). Finally, we can
select a combination of (f(U), g(U)) such that the model (1)
associated with this combination has the highest number of
targets selected. In this miRNA targets study, the functions f(t)
and g(t) are select to be the identity functions.

Under the model (1), the least squared estimator of b¼(b0,b1,

y,bk)T is b̂¼ ðb̂0,. . .,b̂kÞ
T
¼ ðZT ZÞ�1ZT Y where Y¼(f(y1),y,f(yl))

T, Z¼

(wij)l� k and wij¼g(zij). Let f̂ ðyiÞ ¼ ðZb̂Þi. Define SStotal ¼
P

iðf ðyiÞ�

f̂ ðyiÞÞ
2 and SSreg ¼

P
iðf̂ ðyiÞ�f Þ2, where f denotes the mean of f(y1),

yf (yl).
The R2 is defined as SSreg/SStotal, which is used as an indication

of the fitness of the linear regression model. The number of R2 lies
between 0 and 1 and the larger the value means the model fits
better.

We use the R2 value of fitting an mRNA in terms of the k

miRNAs, say gk, as a baseline to select the high-confidence targets.
The method is to select m miRNAs among the k miRNAs such that
the R2, say gm, for the regression model based on the m miRNAs
can satisfy gm/gkZs, where s is a given threshold. The value gm/gk

is defined as the relative R2 value. The smaller the m value means
the better the results because we want to find small proportion of
the high-confidence targets from the potential targets.

The steps of selecting m miRNAs are first to rank the miRNAs
based on their p-values under the framework of testing if their
corresponding coefficient bj is equal to 0. The smaller p-value
represents the more significant level. The p-value of miRNA zi is
defined as the following:

Pð9W9Z9b̂i9=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb̂iÞ

q
Þ

where W denotes the standard normal variable. Note here we can
set a threshold p0 for the p-value such that the p-values of the
selected miRNAs must be less than the threshold. Combining the
above results, we need to set two thresholds, s and p0, by applying
RRSM. Basically, we can select the p0 and s values based on the
proportion of high-confidence targets that we intend to obtain
from the set of potential targets.

In this study, we propose a flexible criterion to select a suitable
transformation function to build an appropriate regression model.
The regression model form can be adjusted by the characteristic of a
dataset. We did not find the significant result by applying the
correlation analysis to the dataset. With the significant result using
the proposed method compared with the correlation analysis, we
believe the new method is a potential tool in predicting targets for
other datasets.
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