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Abstract-A three-dimensional unsteady numerical simulation was carried out to study the effects of 
Reynolds and Grashof numbers on the vortex flow structure and thermal characteristics in a buoyancy- 
induced time periodic mixed convective air flow through a bottom heated horizontal rectangular duct. The 
unsteady Navier-Stokes equations along with the continuity and energy equations were integrated by the 
Projection method with the convective and diffusive terms discretized by higher order finite difference 
schemes. Results for the Reynolds number varied from 1000 to 200 at a fixed Grashof number clearly show 
the splitting and merging of the longitudinal rolls. The flow destabilizes during the processes of roll merging 
and splitting. After the merging and splitting the flow gradually stabilizes as it moves downstream. For the 
Reynolds number at 100, stable thermal stratification appears in the upper half of the duct and the flow 

oscillation is significantly suppressed there. 

1. INTRODUCTION 

Forced convective heat transfer in ducts can be sig- 
nificantly modified by the buoyancy force when it is 
large compared with the inertia force. The degree of 
modification is determined by the values of the domi- 
nated parameters, namely, the Grashof, Reynolds and 
Prandtl numbers and duct geometry. Detailed under- 
standing of this modification is important in many 
technological processes, such as cooling of micro- 
electronic equipment, growth of single crystal from 
fluid phase, collection of solar energy, and many 
others. To unravel the complex mixed convective flow 
at a high buoyancy-to-inertia ratio, we numerically 
simulated the flow by performing unsteady and three- 
dimensional computation [ 11. The results clearly show 
the buoyancy-induced transition from steady laminar 
to time periodic laminar, then to quasiperiodic tran- 
sitional, and finally to weakly chaotic turbulent flow 
at increasing Grashof number for air flow through a 
bottom-heated horizontal rectangular duct with the 
Reynolds number fixed at 500. In a continuing effort, 
the present study intends to investigate the effects of 
the Reynolds and Grashof numbers on the flow and 
thermal characteristics. In what follows the literature 
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on the mixed convective flow in a horizontal rec- 
tangular duct is briefly reviewed. A detailed review is 
available in a previous study [ 11. 

Because of the limited availability of the com- 
putation facility to calculate the complex three-dimen- 
sional unsteady vortex flow considered here, most 
early studies [24] relied on experimental measure- 
ments to deduce the flow and thermal characteristics. 
Other studies [5, 61 used linear stability theory to 
predict the critical Rayleigh number for the onset of 
vortex flow. Besides, a numerical solution was 
attempted by Incropera and his colleagues [7, 81 for 
steady vortex flow. The above studies primarily 
focused on the large aspect ratio duct (A > IO) in 
order to simulate the flow in a plane channel. In spite 
of these studies the detailed processes on the for- 
mation of the vortex flow and the merge and splitting 
of the longitudinal vortex rolls are still poorly under- 
stood, especially for a finite aspect ratio duct in which 
the presence of the side walls can greatly change the 
vortex Row structure. 

Considered in the present study is a mixed con- 
vective air flow in a bottom heated horizontal rec- 
tangular duct which is thermally well insulated, as 
schematically shown in Fig. 1. Initially, at time t < 0 
the flow in the entire duct is fully developed and iso- 
thermal at T,. At time t = 0 a uniform heat flux q: is 

suddenly imposed on the bottom wall over a finite 
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NOMENCLATURE 

A aspect ratio, b/d .Y.J. z Cartesian coordinates 
b, d width and height of the duct X, Y. Z dimensionless Cartesian 
g gravitational acceleration coordinates, s/d, y,ld and z/d 
Gr modified Grashof number, Z’ modified Z coordinate, Z/( Rr Pr) 

g/Yy:d4/kv’ 
h local convection heat transfer 

coefficient 
k thermal conductivity 
1, L dimensional and dimensionless length 

of the heated plate, I/d 
NU Nusselt number, hdjk 
P, pm dimensionless and dimensional 

dynamic pressures, p,/pw: 
Pr Prandtl number, V/E 

Y’: wall heat flux 
Rr Reynolds number, wed/v 
I, T dimensional and dimensionless time, 

tl(d/M’J 
r, 0 dimensional and dimensionless 

temperatures, (T- T,)/(qLd/k) 
u, 21, w velocity components in X, y, 2 

directions. 
U, V, W dimensionless velocity components 

in X, Y, Z directions, u/w,, V/W~ and 
W/W, 

Greek symbols 

; 

thermal diffusivity 
thermal expansion coefficient 

v kinematic viscosity 

P density. 

Subscripts 
e values at the duct inlet 
fd fully developed 

P period 
W of wall qualities. 

Superscripts 
- average value 
* provisional value 
11 value at the nth time step. 

Fig. 1. Schematic of the physical system and the detection points at a cross-section. The X and Ycoordinates 
at various points are as follows : l-(2,0.08) ; 2-(2.0.5) ; 3--(2,0.92) ; 4-(0.96,0,08) ; 5---(0.96,0.5) : 

6-(0.96,0.92); 7-(0.32.0.08); 8--(0.32,0.92). 

length I. This heat input produces upward buoyancy and Grashof numbers on the evolution of the vortex 
which is normal to the forced flow direction and hence flow structure and associated heat transfer at high 
can result in complex vortex flow structure. This study Grashof numbers, so that the flow does not reach 
numerically investigates the effects of the Reynolds steady state. 
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2. MATHEMATICAL FORMULATION AND 

SOLUTION METHOD 

2.1. Mathematical formulation 
Basic nondimensional equations describing the time 

evolution of a three-dimensional mixed convective 
flow of a Boussinesq fluid in a bottom-heated hori- 
zontal rectangular duct are 

au av aw 
x+Fy+z=O (1) 

~,~+“g+v~;+w!$ -g 

1 a2u a2u a2u 
+z z+s+= [ I (2) 

^ ~~~+~;;+vg+w~~ -gy 

+& g+z+g +ge (3) 
[ I 

C’W 
,+U;;+V;$+w>;= -!f 

az 

I a2w a*w 
+Rp ~+~+jgT F 

a2w 1 (4) 

68 i?e de ae i 

~-+“~+V~+W~Z&Pr irt 

a28 ale a28 

’ ax* [ 
-+*+s 

1 
(5) 

subject to the following initial and boundary con- 
ditions : 

at r=O or Z=O u=v=e=o 

w= w,, = (533~~-(,2Y-I,)“~, 

where the values of m, and m, depend on the aspect 
ratio [9], for 7 > 0. 

at z=2L g=g=g=g=o (7) 

at Y=O and O<Z<L 

~Y+l=U=v=w=o (8) 

at all other surfaces 
ae 
an=U= I/= w=o (9) 

where n is a unit normal to a surface. The above 
equations are in terms of the following non- 
dimensional variables : 

A’= .x-/d Y = y/d Z = z/d 

Re =xd/v Pr = v/cl Gr =T 
V 

e = CT- Tel t 
~ A=b/d 7=------- 

~dLd/k) (d/w,) 

p=&. 
P4 

(10) 

Note that in the above formulation an insulated sec- 
tion of length I is added to the exit end of the heated 
section to facilitate the prescription of the out-flow 
boundary conditions in the present elliptic flow analy- 
sis. This added section must be long enough so that 
the specified downstream boundary condition, equa- 
tion (7) is suitable. Care is always taken in the solu- 
tion process to examine whether this added length is 
long enough or not. 

The local Nusselt number on the heated plate 
measuring the convective heat transfer from the plate 
to the flow in the duct is defined as 

Nu=E= 4: d ’ ___=_ 
k T,-T, k 0,’ (11) 

The spanwise averaged Nusselt number is defined as 

o (TN - 7;)kdX (12) 

where A is the aspect ratio. 

2.2. Solution method 
The time-dependent three-dimensional governing 

equations were solved numerically by the Projection 
method [IO] on a staggered grid system. This frac- 
tional step method, which was also used in the pre- 
vious study [1], consists of two steps. First, the press- 
ure gradient is ignored and a provisional velocity field 
is predicted by the simple explicit method [I I]. 
Second, the provisional velocity is corrected by includ- 
ing the pressure effect and enforcing the mass con- 
servation. The resulting pressure Poisson equation 
was solved by a vectorized SOR method. The energy 
equation was also solved by the simple explicit 
method. To ensure the converged solution, the CFL 
condition that the Courant number must be less than 
unity was imposed in selecting the time step size. In 
the spatial discretization the convective and diffusive 
terms were respectively approximated by the third- 
order upwind and fourth-order central difierence 
schemes. These higher order schemes can produce 
stable and accurate results. In the grid distribution 
41-61 nodes were placed uniformly in each coordinate 
direction. Computations were started from the begin- 
ning of the transient to the final steady state or to the 
statistical state when the flow does not reach steady 
state at large r. 

Stringent program tests were carried out in the pre- 
vious study [I] to verify the proposed solution 
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Re=100.Cr/Re2=90.~=225 
_-- 41~31x31 gnd 

CEZC 51x41~41 grid 
fkiX~%Y 61x51~51 grid 

Fig. 2. Comparison of the spanwise averaged Nusselt number 
at the same time from various grids for Pr = 0.7, Re = 100. 

Gr/Re’ = 90, A = 4 and L = 20. 

method. Good agreement between the present pre- 
dictions and published results in the literature was 
shown by comparing our predictions with the analytic 
and/or numerical results for the limiting case of pure 
forced convection and the experimental data for the 
steady mixed convective vortex flow in a horizontal 
flat duct [3, 41. To further validate the solution 
method, grid independence tests were conducted here. 
Figure 2 shows the sample results for the spanwise 
averaged Nusselt number for a typical case with a 
time-periodic flow induced in the duct for Re = 100 
and Gr/Re’ = 90 from such tests. Good agreement is 
found for the predictions from various grid densities. 
More details on the solution method are available 
from the previous study [I]. 

It is important to ensure the predicted flow oscil- 
lation does not result from numerical instability. 
When an oscillatory flow appears in the computation 
for a given set of parameters, the Reynolds number 
was raised by a certain amount and the computation 
is continued. The results indicate that the vortex flow 
gradually becomes steady for a large rise in Re. Thus 
the predicted oscillatory flow is due to physical insta- 
bility instead of numerical artifacts. 

3. RESULTS AND DISCUSSION 

In the present numerical simulation the Reynolds 
number was first systematically varied over wide 
ranges so that the flow of air (Pr = 0.72) changes from 
a steady laminar state to a turbulent chaotic state at 
fixed Grashof numbers, duct aspect ratio (A = 4) and 
heated section length (L = 20). Besides, the Grashof 
number was also varied over wide ranges at Re = 100, 
again for A = 4 and L = 20. Only a small sample of 
results will be presented here to mainly delineate the 
effects of the Reynolds and Grashof numbers on the 
vortex flow structure and associated heat transfer 
characteristics. 

Results for Gr fixed at 2.5 x IO6 and Re reduced 

from 1000 are presented first. The results indicate that. 
for 700 < Re < 1000, steady vortex flow in the form 
of longitudinal rolls prevails after the initial transient 
in the downstream portion of the heated section. 
When Re is reduced to 600, temporal flow oscillation 
is seen near the duct exit at large t. Reducing the 
Reynolds number further causes the oscillatory flow 
to be prevalent over a larger downstream region in 
the heated section. 

Continuing reduction of Re to 500 and 400 results 
in some unusual flow characteristics which deserve 
special attention. To illustrate these special flow 
characteristics, Fig. 3(a)-(d) shows the time histories 
of the temperature H and axial velocity W at large 5 at 
eight detection points, specified in Fig. I at four selected 
cross-sections. Note that the flow oscillates period- 
ically with single fundamental frequencyf’ ( = 117~ = 
0.14) in the entire duct. where tp is the nondimen- 
sional period of the oscillations. But the amplitude 
of the oscillation shows nonmonotonic variation 
with the axial distance. This defies the general 
conception that the flow gradually becomes dis- 
ordered when travelling downstream. Specifically, at 
locations 1, 2 ’ dnd 3 near the central vertical plane at 
X = A,‘2, the flow is steady in the duct. Near the side 
walls (locations 7 and 8), large oscillation is induced 
in the entry region [Fig. 3(a) and (b)] and decays 
significantly for Z > 7.1. In regions away from the 
central plane and side walls the oscillation increases 
with the axial distance for Z < 7.1. Downstream of it 
the oscillation decays. The consequence of this 
unusual decay in the flow oscillation can be attributed 
to the unusual axial flow development displayed in 
Fig. 4, in which. due to the flow being symmetric with 
respect to the central vertical plane, the isotherms in 
the left half and the streamlines of the secondary flow 
in the right half of the duct are plotted together at 
selected cross-sections at selected time instants in a 
typical period. These results clearly show that four 
pairs of vortex rolls in the entry region gradually 
merge into two pairs at Z 2 6.0. Comparing the 
results in Fig. 4 with those in Fig. 3 suggests that. 
during the process of the cell merging, the flow is 
destablized with amplifying oscillation, especially at 
the cell interfaces (locations 4-6). After the cell merges 
the flow gradually stablizes, as is evident from the 
periodic flow patterns in Fig. 4. It is of interest to 
mention that the change of the flow pattern with time 
is rather small after the cell merges (Z > 6.0). 

At an even lower Reynolds number, more structural 
changes in the vortex flow appear. The periodic flow 
patterns for Re = 200 are demonstrated in Fig. 5. 
Note that two pairs of longitudinal rolls occupy nearly 
the entire heated section of the duct, except in the exit 
region where the roll splitting takes place and two new 
pairs of rolls become visible. This roll splitting then 
destablizes the flow. The time records of W and (1 
given in Fig. 6 show that the flow in the entry region 
oscillates periodically at a frequency of 0.267 in a 
small amplitude [Fig. 6(a)]. Slightly downstream the 
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7 7 l- -r I- -i- 

(4 (b) (cl 
Fig. 6. Time samples for Wand 0 at eight detection points for Re = 200. Gr/Re’ = 62.5 at : (a) Z = 3.23 : 

(b) Z = 10.97 ; (c) Z = 18.70. 

oscillation amplitude decays somewhat, but some 
nonperiodic components are observed [Fig. 6(b)]. 
Near the duct exit the oscillation intensifies drastically 
and becomes chaotic [Fig. 6(c)] because of the roll 
splitting. As Re is further lowered to 100, the flow 
becomes highly unstable and fluctuates violently, 
except near the duct inlet. Hence we failed to obtain 
a converged solution. 

It is of interest to point out that the buoyancy- 
induced unsteady mixed convective vortex flow at low 
Reynolds numbers possesses some other unique 
characteristics. To explore these characteristics, a series 
of computations was conducted for Re fixed at 100 
and Gr gradually raised. The results from these com- 
putations indicate that the flow finally attains steady 
state for Gr/Re’ < 40 or Gr < 4.0 x 105. Figure 7 
shows that, at a very low buoyancy (GrlRe’ < 15 or 
Gr < I .5 x IO’), there is a single pair of buoyancy- 
driven longitudinal rolls occupying the entire duct at 
steady state. Thus, the roll size is about twice in the 
spanwise dimension as that in the vertical direction. 
When the buoyancy is slightly raised to the range of 
Gr/Re’ between 20 and 40, two pairs of longitudinal 
rolls are induced at steady state. The wavelength of 
the rolls is about 2d. As Gr/Re’ is raised to 50, flow 
starts to oscillate periodically in the region near the 

duct exit (Z 3 14.84), but there are still only two pairs 
of vortices in the duct, like those observed at lower 
buoyancy. For a higher GriRe’ the flow oscillation 
appears in the region close to the duct inlet, and the 
region in which steady flow prevails is smaller and 
hence confined to the duct entry. For instance the 
results for Gr/Re’ = 90 are shown in Figs, 8 and 9. 
The periodic vortex flow patterns in Fig. 8 suggest 
that, in the region for Z between 1.5 and 10.0. the 
rolls split over a certain interval of time in a period. 
but they merge later in another interval of time. 
Furthermore, at a given time instant the cells may 
split near the duct inlet and merge downstream. This 
complicated temporal and spatial variation in the vor- 
tex flow structure causes the flow to be highly fluc- 
tuating, as is evident from the time histories of Wand 
0 in Fig. 9. A power spectrum density analysis of the 
data in Fig. 9 indicates that the flow in the entire duct 
oscillates at a single fundamental frequency,/; = 0.093 
and the oscillations at various locations can be charac- 
terized by this frequency and its harmonics, Com- 
paring the oscillation amplitudes in Fig. 9(a)-(c) 
shows that the oscillation amplifies in the first half of 
the duct (3.23 d Z < 10.97), but decays in the sec- 
ondary half (Z > 11.0). It is worth mentioning from 
the results in Fig. 9(a) and (b) that the flow is nearly 
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Gr/Re*=lS Gr/Re*=20 
Fig. 7. Steady flow patterns at selected cross-sections for Re = 100, Gr/Re* = 15 and 20 at : (a) Z = I .29 : 

(b) 2 = 3.87; (c) Z = 6.45; (d) Z = 9.03; (e) Z = 11.61 ; (f) Z = 14.19; (g) Z = 16.77. 

steady at locations 3, 6 and 8 in the region adjacent 
to the duct top. This is conjectured to result from the 
stable thermal stratification in this region, as is evident 
from the isotherms in Fig. 8. This stable stratification 
also confines the cell motion in the lower half of the 
duct. To further elucidate the complicated flow 
motion, the phase space trajectories which relate the 
motion of three velocity components U, V and W at 
large T are plotted in Fig. 10 for the eight detection 
points at 2 = 10.97. At each location a limiting cycle 
(repeated curves) results, reflecting the flow at this 
location being completely periodic. These curves 
clearly show that the relative motion of U, V and W 

driven by the vertical buoyancy is rather complex, 
especially at locations 5-8. 

Results for the distributions of the bottom plate 
temperature and local Nusselt number, which are of 
value to thermal design, are given in Fig. 11 at selected 
time instants for the three selected cases discussed 
above. The results obviously reflect the buoyancy- 
induced vortex roll structures. Note that the time vari- 
ation of Nu with time is much smaller than that of 
velocity and temperature, due to the fact that Nu is 
an integral property of the flow. 

Finally, the condition for the onset of the Hopf 
bifurcation, a transition from a steady to time-per- 
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2.4 L $5 
8.4 

J.5 
L= 

2-4 k -1.5 kwvw 
w z= 

0.1 0.0 0.1 0.0 0.1 0.0 

Fig. 9. Time samples for Wand 0 at eight detection points for Re = 100, Gr/Re2 = 90 at : (a) 2 = 3.23 : 
(b) Z = 10.97 ; (c) Z = 18.70. 
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Fig. 10. Phase space trajectories of C’, V and W at eight detection points for Re = 100. Gr:Re’ = 90 and 
z = 10.97. 
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Fig. 11. The local Nusselt number distributions on the heated bottom plate for: (a) Re = 100, Gr!‘Re’ = 90 ; 
(b) Re = 200, Gr/Re’ = 62.5 ; and (c) Re = 400, Gr/Re’ = 15.625 at large 7. 

iodic state deduced from the large amount of the com- 
puter data, can be correlated as 

Ra*(Z+)” I5 = 2.62 x lo5 (13) 

where Z’ = Z/(Re Pr). 

4. CONCLUDING REMARKS 

Through a direct three-dimensional unsteady 
numerical simulation, the splitting and merging of the 
longitudinal rolls were predicted in a high Grashof 
and/or low Reynolds number mixed convective flow 
of air in a bottom-heated horizontal rectangular duct. 
These complicated structural changes in the vortex 
flow have substantial effects on the fluctuating charac- 
teristics of the flow. Usually, the flow becomes more 
unsteady during the processes of roll splitting and 
merging. But after the splitting and merging the flow 
gradually stabilizes as it moves downstream. At low 
Reynolds numbers and high Grashof numbers stable 
thermal stratification results in the upper half, which 
in turn suppresses the roll size and stablizes the flow 
there. 

Finally, it was recognized during the course of this 
investigation that the change in vortex flow structure 

is more severe in a large aspect ratio (wider) channel. 
since it provides larger lateral space for cells to move. 
Besides, the effects of duct inclination are expected to 
be significant. The evolution of vortex flow in mixed 
convection of water is also important in various appli- 
cations. Preliminary computations on these problems 
support these statements. 
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