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Abstract 

In this paper  we consider  Bayesian analysis of the generalized growth  curve model  when  the 
covar iance  mat r ix  ,~ = tr2C where C = (pli Jl), a2 > 0 and  - 1 < p < 1 are unknown.  We 
consider  b o t h  pa rame te r  es t imat ion  and  predict ion of future values. Results are i l lustrated with 
real and  s imulated data.  © 1997 Elsevier Science B.V. 
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1. Introduction 

We consider a generalized multivariate analysis of variance model useful especially 
for many types of growth curve problems. The model was first proposed by Potthoff 
and Roy (1964) and subsequently considered by many authors, including Rao 
(1965, 1966, 1967, 1977, 1984, 1987), Khatri (1966, 1973), Grizzle and Allen (1969), 
Geisser (1970, 1980, 1981), Lee and Geisser (1972, 1975, 1996), Fearn (1975), Lee 
(1982, 1988c, 1991), Jennrich and Schluchter (1986), among others. 

The generalized growth curve model is defined as 

Y = X z A + ~ (1.1) 
pxN pxmmxrr×N pxN 

where z is unknown and X and A are known design matrices of ranks m < p and r < N, 
respectively. The columns of ~ are independent p-variate normal, with mean vector 0 
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and common covariance matrix X. In general, p is the number of time (or spatial) 
points observed on each of the N cases, m and r, which usually specify the degree of 
polynomial in time (or space) and the number of distinct groups, respectively, are 
assumed known• The design matrices X and A will therefore characterize the degree of 
the growth function and the distinct grouping out of the N independent vector 
observations• Potthoff and Roy (1964) gave many examples of growth curve applica- 
tions for the model (1.1). Grizzle and Allen (1969), Lee and Geisser (1975), Rao 
(1977, 1987) and Lee (1988c), Chi and Reinsel (1989), among others, applied the model 
to some biological data. Lee (1988a) and Keramidas and Lee (1990) applied the model 
to the forecast of technology substitutions• 

In Lee (1988c, 1991) and Keramidas and Lee (1990, 1995) the importance of the 
AR(1) dependence, or serial covariance structure, was demonstrated repeatedly for the 
covariance matrix X for the model (1.1). When the AR(1) dependence holds for X, we 
have 2; = o - 2 C ,  where C = (pli-sl) ,  for i , j  = 1, . . . ,  p, 0 .2 > 0 and -- 1 < p < 1 are 

unknown. The estimation of the parameters and prediction of future values for this 
model have been so far based on the method of maximum likelihood (ML), which is 
optimum in large sample. The purpose of the paper is to consider this model from 
a Bayesian point of view hoping that a more practical solution can be furnished when 
the sample size is relatively small. Indeed, several published data sets are relatively 
small in their sizes. We will compare our results with those based on the ML method 
via real and simulated data sets. 

The serial covariance structure is defined as 

X = o '2C,  (1.2) 

where C = (pli sl), i , j  = 1 . . . . .  p, i.e., 

C =  ~ ! .... p - 2  (1.3) 
p i l  p ; -2  ... 

and a 2 > 0 and - 1 < p < 1 are unknown. It is conceivably one of the most impor- 
tant covariance structures for the generalized growth curve model. 

In addition to the inferences on the parameters z, a 2 and p, we will also consider 
several types of prediction problem for the growth curve model as specified by 
(1.1)-(1.3). Let V be a set of p x K future observations drawn from the generalized 
growth curve model, i.e. the set of future observations are such that given the 
parameters z and I;, 

E ( V )  = X z F ,  (1.4) 

where E() denotes expected value, F is a known r x K matrix, and the columns of 
V are independent and multivariate normal with a common covariance matrix X. 



J.C. Lee, EL. Hsu/dournal of Statistical Planning and Inference 64 (1997) 205-229 207 

Geisser (1970, 1980) and Lee (1982) considered prediction of V, given Y as the sample, 
from a Bayesian viewpoint. Lee and Geisser (1972, 1975), Fearn (1975), Rao (1975), 
and Lee (1988c, 1991) considered the problem of predicting ~2), given i1(1) and Y, if 
Vis partitioned as V = (V (1)', V(2)') ,, where V (i) is pi x K (i = 1, 2) and p~ + P2 = P. If 
p is interpreted as the number of points in time being observed, then the problem is 
mainly concerned with predicting the generalized growth curve for future cases for the 
same set of p time points, or a subset of size P2. When P2 < p and K = 1, it is also 
called the conditional prediction of the unobserved portion of a partially observed 
vector. 

The third prediction problem is somewhat different. It is concerned with predicting 
the future values of the observed cases. Let y, of dimension q x n, be a set of n ( ~< N) 
future q-dimensional observations whose previous p-dimensional observations are 
a subset of E We are interested in predictingy given E This is a time series prediction 
and thus is important in practice. This type of prediction is called the extended 
prediction of y, because the prediction is made beyond the observed time range of the 
sample E The extended prediction ofy  was considered by Lee (1988c) and Keramidas 
and Lee (1990, 1995). 

In Section 2, Bayesian estimation of the parameters is considered. Section 3 is 
concerned with three types of prediction problem. The results developed in the paper 
are illustrated in Section 4 with real and simulated data. Finally, some concluding 
remarks are given in Section 5. 

2. Bayesian estimation of parameters 

For the sake of convenience we shall deal with the pseudo-augmented model 

e ( r )  : \ w  (2.1) 

The likelihood function of ~, a 2 and p given Y is 

L(z, rr 2, PlY) oc a-Pn(1 -- p2)-(p-1)N/2 

x e x p { - - 2 ~ t r C - I [ Y - ( X , Z ) ( o ) A I [ Y - ( X , Z ) ( ; ) A I '  }. 

(2.2) 

For  the prior of ,, a 2 and p, we will use the following noninformative prior 

1 
g('L', 0 "2, p) OC ~-'~. (2.3) 

In (2.3), we have assumed that ~, a 2 and p have independent prior distributions and no 
information is available for each of the parameters. This is in the same spirit as Zellner 
and Tiao (1964). 
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Hence, the posterior density of ~, tr 2 and p given Y is 

P(~, a 2, plY) oc a-tvN+ 2)(1 -- p2)-(v-1)N/2 

x e x p { - - 2 ~ t r C - I [ Y - - ( X , Z ) ( o ) A I [ Y - ( X , Z ) ( o ) A I } .  

(2.4) 

Integrating out a 2 and using Lemma A.1 and the application of some algebraic 
identities yield 

P(x, PlY) oc (1 - p2)-(p- ,)N/2 SIPN/2, (2.5) 

where 

$1 = tr(X'C- 1X)(~ - ÷)AA'(~ -- ÷)' + b, 

÷ = (X'C- 'X)-  'X'C- 1YA'(AA')- 1, (2.6) 

b = tr(X'C 1X)- 1X'C- 1SC- 1X + tr(Z'CZ)- 1Z'YY'Z, 

s = YES - A ' ( A A ' ) -  1A] r ' .  

By Theorem A. 1, it is clear that conditional on p, 

[p ,-, Tr(÷, AA', b, X'C- 1X, pN). (2.7) 
m × r  

Moreover, integrating out • from (2.5) we have 

P(p[Y) oc b-~pN- mr)/2 IX'C- 1X[ r/2(1 -- p2)-~p- 1)N/2. (2.8) 

Since P(~, p lY)= P(~[p, Y)P(pIY) and P(xIY)= ~P(~, plY)dp, the integral can be 
approximated by 

P(TI Y) -- P(~ld, Y), (2.9) 

where ¢3 is the mode of P(plY), if P(plY) is concentrated and nearly symmetric, as 
pointed out by Ljung and Box (1980). Of course, the integration can be performed 
numerically as the one-dimensional integral can be done rather accurately. 

Hence, we have the following posterior distribution of ~: 

P(~IY)- Tr(÷*, AA', b, X'C- 1X, pN), (2.10) 

where 

~* = (X'C-  I x ) -  l x t c , -  IyAt (AAt)  - 1, 

b = tr(X'~'- 1X)- 1X'C- ISC-  1X + tr(Z'CZ) 1Z'YY'Z, (2.11) 

= ( ~ , ' - J , ) ,  

/3 maximizes P(plY), as given in (2.8). 
Thus, a posteriori, ~ has a trace T distribution. 
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Integrating w.r.t, z in (2.4) and using arguments similar to (2.9), we obtain the 
following approximation for the posterior distribution of tr 2, 

P ( a 2 I y ) - I G ( P N - m r ~ ) 2  , , (2.12) 

where b is given in (2.11) and IG(va, v2) is the inverse gamma distribution with 
parameters vl and v2. 

By Theorem A.3 and the fact that if V ~  Beta(½v2, ½vl) and F ~ F ( v l ,  v2), then 
V = v2/(v2 + v~F), 1 - ~ posterior region for z can be obtained from the following 
inequality: 

- l t r (X'~ ' -  ~X) ( z  - ÷*)A,4 ' (z  - ÷*)' <<. m r  F1 ~(mr, p N  - mr) (2.13) 
p N  - mr 

where F~_~(v~, v2) is the upper 100e percent point of the F-distribution. 
For  the special case in which r = 1, we have the following 1 - ~ posterior region 

for z: 

m 
N b  - ~(z - ~ * ) ' ( X ' C -  I X ) ( z  - ~*) <~ F~ _~(m, p U  - m) ,  (2.14) 

p N  - m 

and ÷* are given in (2.11). 

3. Prediction 

Three types of prediction for the model specified by (1.1)-(1.3) will be considered in 
this section. 

3.1. Predic t ion  o f  the whole  f u tu re  matr ix  V 

The prediction of the future matrix V, p × K, given the sample, Y, p × N, is 
considered here. Schematically, the matrices Y and V are shown below. 

N K 

The density function of V given z, o 2 and p is 

[1 ] 
f ( V I z ,  ~r e, p)  oc a vx(1 - p2)-(v- l~K/Zex p -- }--~2 tr C-  I(V -- XrF) (V - X z F ) '  . 

(3.1) 
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U p o n  combining with the poster ior  density of ~, a z and p as given in (2.4), and 
integrating out  a2, we have 

P(V, "c, p l Y )  oc (1 - p 2 )  ( p - 1 ) ( N  + K)/Z s 2 P ( N  + K)/2 ' (3.2) 

where 

$2 = t r C - ~ ( Y - - X ~ A ) ( Y - -  X x A )  ' + t r C  I (V - -  X x F ) ( V -  XxF) ' ,  

= tr C l(Yo - XZAo)(Yo - X~Ao)', 

Yo = (Y V), (3.3) 

Ao = (A V). 

By Lemma A.1, we obtain 

$2 = bo + trAoA~(~ -- ÷o)'(X'C- 1X)(~ - ~o), (3.4) 

where 

bo = tr(X'  C- aX) ~X' C-  lSoC- 1X -~- t r (Z 'CZ) -  tZ'Yo Y~Z, 

So = Yo[I -- Ao(AoA'o)- ~Ao] Yo', (3.5) 

÷o = (X 'C-  1X)- I X ' C -  I roA'o(AoA'o)- 1. 

Integrating out  ~, we have 

P(V, PlY) oc bo(P(N+K)-mr)/2~¥'C XXl-r/2(1 - p Z ) - ( p  1)(N+K)/2. (3.6) 

By (4.12) of Geisser (1970), 

So = S + ( V -  YA ' (AA ' ) -  aF)M(V - YA'(AA')-  IF) ' , (3.7) 

where M = I -  F'(AoAo)-XF, and it can be shown that  

bo = b + tr M ( V  -- X ÷ F ) ' C -  1X(X'C- ~X)- ~X'C- a(V - X~F)  

+ tr(V - X ~ F ) ' Z ( Z ' C Z ) -  ~Z'(V - X÷F ), (3.8) 

where ~ is given in (2.6). 
We will consider the special si tuation in which r = 1. In this situation F = 1 and 

M is a constant.  Integrat ion w.r.t. V yields 

Pv(p lr )  ~ b -tpN m,~/2161-K/2 IX'C-1xI-r/2(1 - -  p2)-tp-1)tN+K)/2 (3.9) 

where 

G = M C -  xX(X'C-  aX)- 1XtC- 1 ~_ Z(ZtCZ)- 1Z' (3.10) 
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With arguments similar to (2.9), we obtain the following approximation for the 
predictive distribution of V: 

P ( V I Y ) -  Tr(X÷vF, 1, by, C,v, p(N + K) - mr), (3.11) 
where 

~V ~- (X '  ~-*v l x )  - 1 X ' e v  1YA ' (AA ' ) -  1, 

bv = tr(X'Cv 1X)- 1X'Cv 1S~'v 1X + tr(Z' CvZ)-  IZ' YY 'Z ,  

Gv = M~; lX(X' ~ 'X)- ix' ~ ' + Z(Z'~vZ) ~Z', (3.12) 

j3v maximizes Pv(PFY) as given in (3.9). 
It is noted that Zv and ~ are different because (3.9) is different from (2.8). Thus, the 
future matrix V has a trace T distribution. 

3.2. Conditional prediction of  V t2) given V ¢1) and Y 

We next consider the conditional prediction of V tz) given V tl) and Y, if V is 
partitioned as V = (V ¢a)', V¢2)') '. Schematically, we have the following: 

V(~) 
Y V(2) 

where Y, p x N, is the complete sample; V (~), pa × K, is the partially observed matrix 
and V (2), P2 × K, is the unobserved portion to be predicted. Of course, Pl + P: = P. 
From Eq. (3.6), it can be shown that 

P ( V  (2), p [ V  (1), Y )  cxl (1 - pZ) - (p  i)(N+K)/21XtC-1X[-r/2 

x [bl + (V (2) - IT"(2))'G22(V (2)-  I7'(2))] (p(N+K)-m~)/2, 

(3.13) 
where 

G = M C -  1 X ( X ' C -  1 X ) -  1 X ' C -  1 ~_ Z ( Z t C Z )  - 1Zt ' 

bl = b + ( V  (1) - X(1)÷F)'G11.2(V (1) - -  X(1)'~F), 

~,~-(2) - -  X(2) ,~F G~-I  ---(1) __ - -  G 2 1 ( V  - -  X ( 1 ) ~ F ) ,  

X = (X (l)', x(E)') ' , (3.14) 

( G l l  G21"~ 
G = \ G 1 2  G22 j ,  Gij is Pi × P j ,  

G l l . 2  ~ G i l  - -  G12G2~G21. 
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Integrating over V (2), we have 

P(pIV (1), Y)  oc (1 - p 2 ) - ( p -  1)(N + r)/21X,C-1XI ,/2 b~(pN + plK-mr)/ZlG221- P212" (3.15) 

With arguments similar to (2.9), we obtain the following approximation for the 
conditional distribution of V TM given V (1) and Y: 

p(V(2)IV(1), y)-Tr(l?(2)*,  1, bl, (722, p(N + K)  - mr), (3.16) 

where 

I~(2) * = x ( z ) , ~ I F  __ (~221 G Z l ( V  (1) - X ( 1 ) , ~ I F ) ,  

t)1 = ~ + (VO) - X ( 1 ) ' ~ I F ) ' G 1 1 . 2 ( V O )  - X ( I ) ' r l F ) ,  

~1 = (X'C*-IX)  - 1X' C* I YA' (AA' ) -  i , 

C, = M C *  IX(X' C* IX) -  1X'C*-' + Z (Z 'C*Z)-  1Z', (3.17) 

Gij is defined as Gij, 

and/31 maximizes P(plV (1), Y)  as given in (3.15). 

Thus, the predictive inference on V (2) given V (1) and Y can be based on the trace 
T distribution. Alternatively, P(V(2)IV(1), Y)  can be obtained from (3.13) by integrat- 
ing over p numerically, i.e., P(v(E) I V m, Y)  = 5P(V (2), p lV (1), Y )dp .  

3.3. Extended prediction of  y 

We now consider the extended prediction of y, given Y. This is a time-series 
prediction which is of practical interest for many types of growth curve data. In order 
to make this type of prediction the covariance structure generally has to be extendable 
to the future values of the individuals observed. 

Let x, q xm,  be a design matrix corresponding to y, Y=(YI ,  . . . ,  YN), 
A = (/11 . . . .  ,AN),y = (Yl . . . .  ,y,), and assume that for i ~< n, 

and 

2~ = Coy = a ~C21 C=2J (3.19) 
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where 

(c1, c,2"  
C2~ C 2 2 / = ( P l " - b l ) '  

a, b = 1 . . . . .  (p  --[- q), C,1 is p × p, C12 is p x q, C22 is q x q, and C21 = C12. Schemati-  
cally, Y and y are shown below: 

N 

q Y I 
n 

For  the extended predict ion of y, given Y, we will consider the special s i tuat ion in 

which r = n = 1. This is good  enough,  in practice, because condi t ional  on the know-  

ledge of~  and X, y l  . . . .  , y ,  are independent .  We will consider  the si tuat ion in which Yi 

will be excluded f rom the sample  when Yi is being predicted. Thus,  in this s tudy the 

sample  is Y(i) which is Y ( i ) = ( Y 1  . . . . .  Yi - l ,  Yi+l, . . . , Y  u) and let Yi* : ( Y i ' , Y ' ) ' ,  

X *  = ( X ' , x ' ) '  and A, )  = (A1, . . . ,A i  1,AI+1, -.-,AN). 
Combin ing  the density of  Yi* with the poster ior  of  z, a 2 and p given Y,) and 

integrat ing out  a 2, we have 

P(YI*, z, PlY(i)) ~: (1 - p2) ((p- 1)N+q)/2S3(PN+q)/2 ' (3.20) 

where 

S 3 --- 9 2 + ('r - -  + ) ' Q ( z  - +), 

b2 = (+1 - +2)'QIQ-1Q2(+l - +2) + t r ( Z * ' C Z * ) - ~ z * ' Y i  * Yi* 'z*  

+ t r ( Z ' C l l Z )  -1 , , z Y(i) Y(i)z + t r (X '  c[~ ~ X )  - 1 x '  c [ t  ~ s(1)c[11X, 

Q1 = (N - 1 ) X ' C l l l X  , 

Q2 = X * ' C -  1 X * ,  

Q = Q1 + Q2, (3.21) 

S<O -- Y<i)[I -- A~i)(A~oAII))-1A(i)] V<i), 

+1 = ( X t  C l l  1 x  ) - 1X t C l l  1 Yti)A(i)(A(1)Aii)) - i ,  

+2 = ( x  *' c -  ' x * ) -  l x * ' c - 1  Yi*A', (AiAI)-  1, 

+ = Q - a ( Q I +  1 + Q2+2), 

Z *  is (p  + q) × (p + q - m) and of rank p + q - m such that  X C Z  * = O. 
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Integrating over z yields 

P(p,  Yi*lr(i)) oc (1 -- p2)-(~p- 1)N+o)/2[Q[ 1/2b2ft, fN 1)+q-mr)/2, (3.22) 

where 

G* = C- ix* (X*'C- 1X*)- ' Q , Q -  1O2(X* 'C-1X*)- 'X* '  C-  1 jr_ Z * ( Z * ' C Z  *)-  ' Z  *', 

6;, = (6;t ,  6;t2  
\6;7, 6;t2)' 

6;*,.2 6;*, e ,  ~ , - '  ,,z_, (3.23) = -- v12"~22 u 2 1 ,  

b2 = b.) + (Yi -- X÷IAi) 'G*, .2(YI - X÷lA i )  + (Yi - fii)'G*2(Yi --.Vi), 

: t ] t t bti ) t r ( X ' C ; I ' X ) - a X ' C ? a l s , ) c x , I X  + tr(Z C l l Z )  Z Y.)Y.)Z,  

fii = X'~lAi -- G22 G21(Yi--  X ~ l h i ) .  

By arguments similar to (2.9), we have the following approximate predictive density of 

Yi given Y, 

P(y, I Y ) -  Tr~i*,  1, ~o + (Y~ - X ' ~ * ) ' 4 t , . z ( Y ,  - X ÷ * ) ,  4*2, p (N - 1) + q - mr), 
(3.24) 

where 

; *  = x ' r * A i - -  6;22^* 1 ^ ,  6 ; 2 1 ( Y i - - X + t A i ) ,  

+1" = ( X t C l ,  1 X )  ' X t C l l '  Y,)AIi)(A<i)A~o)-', 

G* = C - ' X * ( X * ' ~ ' - I x * ) - I O I O - I O 2 ( X * ' C - I X *  ) ' X * ' C - '  

+ Z * ( Z * ' C : Z * )  xz*', 

~.) = t r ( X ' C ; , ' X )  ' X '  C;a 'S , )C? , 'X  + tr(Z'~'l , Z ) -  ' Z'Y.)Y(i)Z; (3.25) 

~3r maximizes 

Py(PIY) oc (1 - p2) u,- ,)~N- ,)/2[Cl- U2lG,2l-1/21Ql-1/2[b,) + (y~ _ X~lAi) ,  

X G*I.2(Y i -- X.rlAi) ] -(p(N- 1)-mr)/2 (3.26) 

4. Numerical results 

This section is devoted to the illustration of the conditional prediction of V (2) given 
V tl) and K and the extended prediction ofy  given Y. For the conditional prediction, 
we will follow Lee and Geisser (1975), Fearn (1975) and Lee (1988c) in setting K = 1, 
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P2 = 1 and Pl = P - 1, that is, we will predict the last observation of the partially 
observed vector. For  the extended prediction, we will set q = 1 and n = 1, that is, we 

will predict one future component  at a time. 

4.1. Simulations 

In this subsection we will present some simulation results regarding the parameter  
estimation for ~ and p, the conditional prediction of V (2) given V (1) and Y, and the 

extended prediction o f y  given Y for the special situation in which r = 1 and K = 1. 

The posterior region for ~ can be obtained from Eq. (2.14). Meanwhile, from Lee 

(1988c, 199l), we can also obtain an approximate confidence region for T. From the 
asymptotic  result of +, the M L E  of ~, we have 

COV(+)~" o '2(X'C- lX)  -1 (~ (AA ' )  1, 

t r (X@ 1X)(~ - ÷)AA'(~ -- ÷)' 
&2 -,~ Z2r as N ~ Go. (4.1) 

Hence, 

p r [ t r ( X @ -  1X)(~ - ÷)AA'(~ - ~)' ] 
L 62 ~ zE~(ct) = 1 - ~. (4.2) 

Since AA' = N, we have the following 1 - ~ confidence region: 

(~ - ÷ ) ' ( X @  1 X ) ( ~  - ~) <~ c2, (4.3) 

where 

if2 2 0¢ 
c~ = ~ z m , ( ) ,  

'~ = (X'C- IX)-  1XtC-1 YAt(AA' ) -  1. 

~2 = [ t r ( X @ - l x )  1X, ~ 1S~ 1X + t r ( Z @ Z ) - I Z , y y , z ] / p N ,  (4.4) 

and fi maximizes the profile likelihood function 

Lmax(P) = (¢~2(p)) pN/2(1 __ p2)-~'(p 1)/2 (4.5) 

In order to compare the regions for • obtained by the two different methods, the 
values for N, p, ~, ~, ~r 2 and p are given in Tables 1 and 2. From the tables, it is clear 
that the percentage of the M L  regions covering the true values is consistently smaller 
than 0.95. The corresponding Bayesian regions are much better, because the percent- 
age is closer to 0.95 for each of the 12 situations. This explains the phenomenon in 
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Table 1 
Comparison of coverage probabilities between ap- 
proximate confidence region and Bayesian region for 
z ( m = 2 ,  r = l )  

N p Coverage probability 

Bayesian ML 

5 0.5 0.944 0.883 
5 0.8 0.934 0.872 

10 0.5 0.958 0.942 
10 0.8 0.918 0.886 
15 0.5 0.955 0.938 
15 0.8 0.942 0.923 

Note: p = 4, 1 -- c~ = 0.95, z = (25, 0.8)', cr z = 5 and 
no. of replications = 1000. 

Table 2 
Comparison of coverage probabilities between 
approximate confidence region and Bayesian region 
for z (m = 3, r = 2) 

p Coverage probability 

Bayesian M L 

N1 = N2 = 5 0.5 0.936 0.842 
NI = N2 = 5 0.8 0.919 0.823 
Na = N2 = 10 0.5 0.940 0.905 
N1 = N2 = 10 0.8 0.934 0.891 
N1 = N2 = 15 0.5 0.954 0.932 
N1 = Nz = 15 0.8 0.952 0.932 

p = 4, 1 - ~ = 0.95, • = (22 3 0.27 0.26"]' Note: 
2012 1.03 --0.01 ] ' \ 

cr 2 = 5 and no. of replications = 1000. 

Fig.  1 in  w h i c h  t h e  c o n f i d e n c e  r e g i o n  for  z is s m a l l e r  t h a n  t he  p o s t e r i o r  r eg ion .  T h i s  

a l so  i n d i c a t e s  t h a t  t h e  a s y m p t o t i c  t e s t  b a s e d  o n  t h e  l i k e l i h o o d  r a t i o  c r i t e r i o n  will  b e  

b i a s e d  t o w a r d  r e j e c t i n g  t h e  n u l l  h y p o t h e s i s .  T h i s  t y p e  of  b i a s e d n e s s  h a s  b e e n  o b s e r v e d  

in  o t h e r  o c c a s i o n s  as  well ,  see  e.g. L a i t i n e n  (1978)  a n d  Lee  (1988b) .  

W e  n e x t  c o m p a r e  t he  c o n d i t i o n a l  p r e d i c t i o n  of  V t2) g i v e n  V (1) a n d  Y a n d  t h e  

e x t e n d e d  p r e d i c t i o n  o f y  g i v e n  E H e r e  we  set  p = 4, c~ = 0.05, z = (25, 0.8)', p = 0.8, 

a 2 =  5, N = 5, 10, 15 a n d  t h e  n u m b e r  o f  r e p l i c a t i o n s  g = 50. F o r  t he  c o n d i t i o n a l  

p r e d i c t i o n ,  we wil l  set  K = 1, P l  --  3 a n d  P2 = 1. F o r  p r e d i c t i v e  p u r p o s e s ,  we w i t h h o l d  

o n e  v e c t o r  a n d  use  t h e  res t  as  t h e  s a m p l e  for  p r e d i c t i n g  t h e  l a s t  c o m p o n e n t  o f  t h a t  

v e c t o r  a n d  r e p e a t  t h i s  for  e a c h  of  t he  N o b s e r v a t i o n s .  T h i s  g ives  N p r e d i c t e d  v a l u e s  for  
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Fig. 1. Confidence and posterior regions for tau. 

the last N observed values in each data set. Overall, there are 9 x N predicted values to 
be compared with 9 × N actual observations. The mean squared deviation (MSD), the 
mean absolute deviation (MAD) and the mean relative absolute deviation (MARD) of 
the predicted values from the actual observations are used to assess the relative merits 
of  the two methods. A comparison of prediction accuracy for V (2) given V (1) and 
Y between Bayesian and ML methods is given in Table 3. It is noted that in the 
prediction process, V (1) is not used in deriving the parameter estimation although it is 
used as part of the conditional mean vector. 

As for the extended prediction, we set the last row of the generated Y as y and the 
first three rows as the corresponding sample. Thus, we set p = 3 and q -- 1. Similar to 
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Table 3 
Comparison of prediction accuracy for V(2~ between Bayesian and M L 
methods 

Bayesian ML 

N = 5  N = 1 0  N = 1 5  N = 5  N = 1 0  N = 1 5  

MSD 2.1504 1 .9981  1.8389 2.3752 2.0089 1.8768 
MAD 1 .1505  1.1329 1 . 0 9 4 8  1.2304 1 .1423  1.1058 
MARD 0.0428 0.0418 0.0402 0.0455 0.0422 0.0407 

Note: p = 4, 1 -- c~ = 0.95, ~ = (25,0.8)', p = 0.8, cr 2 = 5 and no. of 
replications = 50. 

Table 4 
Comparison of prediction accuracy and coverage probability for y be- 
tween Bayesian and ML methods 

Bayesian ML 

N = 5  N =  10 N =  15 N - 5  N =  10 N =  15 

MSD 2.3008 1 .9371 1.9048 2.3585 1.9350 1.9066 
MAD 1.2106 1.1181 1.1009 1 .2341 1.1163 1.1019 
MARD 0.0444 0.0412 0.0437 0.0454 0.0415 0.0404 
Coverage 0.940 0.949 0.954 0.818 0.902 0.928 

Note: p = 3, q = 1, 1 - c~ = 0.95, z = (25, 0.8)', p = 0.8, a 2 = 5 and no. 
of replications - 50. 

t h e  c o n d i t i o n a l  p r e d i c t i o n ,  t h e r e  wil l  b e  g x N p r e d i c t e d  v a l u e s  to  b e  c o m p a r e d  w i t h  

9 x N ac tua l s .  A c o m p a r i s o n  of  p r e d i c t i o n  a c c u r a c y  for  y g i v e n  g b e t w e e n  B a y e s i a n  

a n d  M L  m e t h o d s  in t e r m s  o f  M S D ,  M A D  a n d  M A R D  is g i v e n  in  T a b l e  4. 

I n  a d d i t i o n  to  t he  p o i n t  p r e d i c t i o n  we wil l  a l so  c o m p a r e  t he  i n t e r v a l  p r e d i c t i o n  for  

y g i v e n  E In  o r d e r  to  c o m p a r e  t h e  i n t e r v a l  p r e d i c t i o n  f o r y ,  we n o t e  t h a t  t he  B a y e s i a n  

m e t h o d  is b a s e d  o n  a p r o p e r t y  of  t h e  trace T d i s t r i b u t i o n  as  g i v e n  in  (2.14). F o r  t he  

M L  m e t h o d ,  we  wil l  use  t he  f o l l o w i n g  a p p r o x i m a t e  i n t e r v a l :  

"JC Zct/21~ f , (4.6) 

w h e r e  z~/2 is t he  1 0 0 .  e / 2  p e r c e n t  p o i n t  of  t he  s t a n d a r d  n o r m a l  d i s t r i b u t i o n ,  

~r} = ~rZEC22 - CzlC?11C12 + H ( N X ' C ? l l X ) - I H '  + 2 C 2 ~ C [ ~ X ( N X ' C ; ~ X )  IH'] ,  

(4.7) 

H = C 2 1 C l 1 1 X  - -  x .  (4.8) 
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It is noted that tr] is the variance of the forecast error fory  when the parameters are 
assumed known. For  the variance of forecast error for V <2) we will use Sm~ as 
indicated in (3.11) of Lee (1988c): 

Srn ~ = C22 -~- (blB 2 + C2x)C( l l (b lBz  + C2]  ) '  - -  (b ib  2 + C21)Cl11C12,  

- -  C2~Ca~(bIB2 + C2~)', (4.9) 

bx = F ' ( F F ' ) - F ,  (4.10) 

n 2  = ( x  - c2 ~ c ; /  x ) ( x ' c ~ x ) -  ~x'. (4. ] 1) 

From the simulation study, we see that both methods produce similar prediction 
accuracy for V t2) andy  in terms of MSD, MAD or MARD, as shown in Tables 3 and 
4, respectively. The Bayesian method yields longer predictive intervals fory, as shown 
in Fig. 2 for N = 10, which is typical in each of the 50 replications for each N which 
was conducted in the simulation. Similar results are also true with the real data 
examined in Section 4.2, as shown in Fig. 4. However, the percentage of the Bayesian 
predictive intervals covering the values to be predicted are closer to 1 - ~ than the 
ML intervals, as seen in Table 4. This is consistent with the comparison of the regions 
for r. It is therefore clear that the Bayesian predictive intervals are superior to the ML 
intervals when the samples size N is relatively small. 

× 
X 

X 0 X 0 
X 

• X 0 • 0 

X X ,, X 0 X 
0 0 0 0 • 

m, X 0 
0 • • 0 
X • X 0 X 

0 0 0 X 0 

X X X X 

2 4 6 8 10 

Observation 

Fig. 2. Compar ison of predictive intervals for y for simulated data. 
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4.2. Illustrative examples 

Some of the results  deve loped  in Sect ions 2 and  3 are  app l ied  to the denta l  

measu remen t s  of 11 girls and  16 boys  and  three o ther  d a t a  sets (ramus,  mice and 

glucose data).  The  denta l  d a t a  set, which is r ep roduced  in Tab le  5, was first cons idered  

by  Po t tho f f  and  Roy  (1964) and  la ter  ana lyzed  by  Lee and  Geisser  (1975), F e a r n  

(1975), R a o  (1987), and  Lee (1988c, 1991), a m o n g  others.  Den ta l  measu remen t s  were 

made  on 11 girls and  16 boys  at  ages 8, 10, 12, and  14 years. Each  measu remen t  is the 

dis tance,  in mil l imeters ,  f rom the center  of the p i tu i t a ry  to the p t e rygomax i l l a ry  

fissure. F r o m  Table  5 it is clear  tha t  the d is tance  being measu red  can decrease  with 

age, due  to the fact tha t  the d is tance  represents  the relat ive pos i t ion  of two points .  The  

r amus  d a t a  were or ig inal ly  given in Els ton  and  Grizzle  (1962) and  subsequent ly  

ana lyzed  by  Lee and  Geisser  (1975), F e a r n  (1975), Rao  (1987), Lee (1988c, 1991), 

a m o n g  others.  The  mice d a t a  were first r epo r t ed  by Wi l l i ams  and  I z e nma n  (1981) and  

la ter  ana lyzed  by  Rao  (1987), Lee (1988c, 1991), a m o n g  others.  The  glucose d a t a  were 

first r epo r t ed  by  Zerbe  (1979) and  la ter  ana lyzed  by  Chi  and  Reinsel  (1989) and  

K e r a m i d a s  and  Lee (1995). W e  will p r imar i ly  focus on the denta l  data ,  a l though  the 

p red ic t ion  results  will be summar i zed  for the o ther  three da t a  sets as well. 

W e  will next  dea l  with the den ta l  d a t a  in more  details .  Since the measurement s  are  

ob t a ined  at  equal  t ime intervals ,  the design ma t r ix  X is 

X =  - 3  - 1  1 ' 

Table 5 
Dental measurements of 11 girls and 16 boys 

IndividuaP Age IndividuaP Age 

8 10 12 14 8 10 12 14 

1 21 20 21.5 23 15 25.5 27.5 26.5 27 
2 21 21.5 24 25.5 16 20 23.5 22.5 26 
3 20.5 24 24.5 26 17 24.5 25.5 27 28.5 
4 23.5 24.5 25 26.5 18 22 22 24.5 26.5 
5 21.5 23 22.5 23.5 19 24 21.5 24.5 25.5 
6 20 21 21 22.5 20 23 20.5 31 26 
7 21.5 22.5 23 25 21 27.5 28 31 31.5 
8 23 23 23.5 24 22 23 23 23.5 25 
9 20 21 22 21.5 23 21.5 23.5 24 28 

10 16.5 19 19 19.5 24 17 24.5 26 29.5 
11 24.5 25 28 28 25 22.5 25.5 25.5 26 
12 26 25 29 31 26 23 24.5 26 30 
13 21.5 22.5 23 26.5 27 22 21.5 23.5 25 
14 23 22.5 24 27.5 

a Individuals 1 11 are girls, 12 27 are boys. 
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Also, from the findings in Lee and Geisser (1975) and Lee (1988c), the individual # 20, 
who is a boy, could be excluded because it is suspected to be an aberrant observation. 
Furthermore, from Lee (1988c, 1991) it is clear that the data should be treated as from 
two different populations with distinct mean functions and serial covariance ma- 
trices. However, for illustrative purposes, we will also include the situation in which 
a common serial covariance structure is assumed for measurements of both girls and 
boys. 

Before dwelling on the prediction results we note that from Fig. 3, the posterior 
densities of p for different subsets of the data are all well concentrated and nearly 

Den~d data Boys ~ m  (~nt~)  

oi 

: ~ : / i 

o ** 

0.0 0.2 0.4 0.6 0.II o 1.0 0.0 0.2 0.4 0.II O.a 1.0 

¢aO a~ 

Girls date (Dental) Boys clma excluding 20~ inclividual 

" - / i 

" i 

i f ,  
0.0 0.2 0,4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.4 1.0 

Fig. 3. Posteriors of rho. 
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Fig. 4. C o m p a r i s o n  of predic t ive  in tervals  for y (Denta l  girl  data).  

symmetric. This means that the corresponding approximations for the posterior 
distributions of • should be quite adequate. 

We begin by assuming that the girls and boys are from two different populations. The 
design matrixA is then a 1 x 11 vector for the girls and a 1 x 15 vector for the boys, both 
consisting of all l's. In case when the individual # 20 is not excluded, the design matrix 
A is a 1 x 16 vector of l's for the boys. When a common covariance structure is assumed 
for both populations, the design matrix A consists of 11 columns of (1, 0) followed by 15 
columns of (0, 1) when the individual #20  is excluded. In the situation in which the 
individual # 20 is included, then there are 16 columns of (0, 1) instead. 

It is noted that when two distinct covariance structures are assumed for boys and 
girls, the predictions are performed separately and then the results are combined. 
Although the sample sizes will be smaller when compared with the common 
covariance structure case, the prediction performance can be better if the two conva- 
riance matrices are quite different. 

The comparison of predictive performance for conditional predictions of V (2) 
given V (1) and Y is summarized in Table6.  The criteria used in the table are 
MSD, MAD and MARD. There are four different situations for this data set. 
Dental 1 is the dental data with girls and boys having identical covariance structure; 
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Table 6 
Comparison of conditional predictions for four data sets 

Bayesian ML 

MSD 3.0135 3.3575 
Dental 1 MARD 0.0499 0.0527 

MAD 1.0296 1.0741 

MSD 1.8594 1.9583 
Dental 2 MARD 0.0395 0.0414 

MAD 1.2899 1.3596 

MSD 2.1636 2.5070 
Dental 3 MARD 0.0432 0.0451 

MAD 1.1475 1.1969 

MSD 1.2585 1.3683 
Dental 4 MARD 0.0358 0.0376 

MAD 0.9435 0.9929 

MSD 0.4996 0.5092 
Ramus data MARD 0.0106 0.0107 

MAD 0.5562 0.5619 

MSD 0.0036 0.0037 
Mice data (rth) MARD 0.0606 0.0611 

MAD 0.0464 0.0465 

MSD 0.0019 0.0018 
Mice data (7th) MARD 0.0040 0.0039 

MAD 0.0362 0.0357 

MSD 0.1047 0.1080 
Glucose data (7th) MARD 0.0785 0.0803 

MAD 0.2792 0.2843 

MSD 0.0604 0.0590 
Glucose data (8th) MARD 0.0498 0.0506 

MAD 0.1924 0.1955 

Note: Dental 1 is the dental data with girls and boys having 
identical covariance structure; Dental 2 is the same data with the 
individual #20 excluded; Dental 3 and Dental 4 are similar to 
Dental 1 and Dental 2, but with girls and boys having distinct 
covariance structures. 

Dental 2 is the same data with the individual # 2 0  excluded; Dental 3 and 
Dental 4 are similar to Dental 1 and Dental 2, but with girls and boys having distinct 
covariance structures. It is clear that the best situation occurs when girls and boys are 
assumed to have two distinct covariance structures and with the individual # 2 0  
excluded. Also, the proposed Bayesian methods are slightly better than the corres- 
ponding MLE results. As for extended predictions, the comparison is summarized in 
Table 7 and is expressed in terms of MAD. This table shows a similar pattern. The 
prediction results are best when girls and boys are assumed to have two distinct 
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Table 7 
Comparison of extended predictions (MAD) for 
four data sets 

Bayesian ML 

Dental 1 1.2733 1.2903 
Dental 2 1.0890 1.1059 
Dental 3 1.0929 1.0989 
Dental 4 0.9969 1.0117 
Ramus data 0.5612 0.5655 
Mice data (6th) 0.0692 0.0692 
Mice data (7tb) 0.0364 0.0347 
Glucose data (7th) 0.2933 0.3002 
Glucose data (8th) 0.1831 0.1882 

Note: Dental 1-Dental 4 correspond to the four 
situations explained in Table 6. 

covariance structures and with the individual #20  excluded. Also, the Bayesian 
approximations are slightly better than the MLE results for each of the situations 
considered. 

With regard to the three other data sets, they will each be treated as from a 
single population. Hence, the design matrix ,4 for each data set is self-evident. For 
the design matrix X, it is trivial for the ramus data, while for the glucose data we 
will follow Chi and Reinsel (1989) and Keramidas and Lee (1995). For the mice data, 
following Rao (1987) and Keramidas and Lee (1995), we will use the most recent 
past three observations from each mouse, i.e., p = 3, for both conditional and 
extended predictions. For conditional predictions of V (2) given V °) and Y, they 
are done for the 6th and 7th observations for the mice data, the 7th and 8th 
observations for the glucose data and the 4th observations for the ramus data. 
The conditional prediction results are summarized in Table 6. It is clear that the 
proposed Bayesian methods are slightly better than the ML method for the ramus 
data, mice data (6th), glucose data (7th) and glucose data (8th), and are slightly worse 
for mice data (7th). As for extended predictions, the comparison is summarized in 
Table 7 and is expressed in terms of MAD. The table shows a similar pattern, i.e., the 
proposed Bayesian methods are slightly better than the ML method for the ramus 
data, mice data (6th), glucose data (7th) and glucose data (8th), and are slightly worse 
for mice data (7th). This perhaps means that some further modeling efforts are needed 
for the mice data. 

Thus, it is clear that the Bayesian results developed in this paper are reasonably 
useful for real data. All the conditional and extended predictions are somewhat 
comparable to those produced by the ML method. The adequacy of the approxima- 
tion for the conditional predictive density of V (2) given V (1) and Y is illustrated in 
Fig. 5 when the first column vector is treated as Vin the dental data set for girls alone. 
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Fig. 5. Comparison of exact and approximate density of V2 given VI and Y. 

Finally, the computation involved is relatively simple and is conducted in the S-plus 
environment. 

5. Concluding remarks 

The Bayesian method presented in this paper provides an alternative way of dealing 
with the growth curve model when the serial covariance structure holds. The serial 
covariance structure is conceivably one of the most important dependence structures 
for this model. Although the results obtained so far are approximate in nature, they 
are at least comparable to those obtained by the ML method. 

It is noted that the method presented in this paper provides an alternative way of 
constructing reliable regions for the parameters and the future values. Furthermore, 
the computations involved are relatively easy and should present no difficulty. It is 
therefore fair to say that the proposed method should be quite useful for practitioners 
in dealing with growth curve data. 
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Appendix 

Theorem A.1. Let  X be distributed as xEv. I f  Y IX = x ~ N (p, bE  ® (xA)-1)  where 
m x r  

is m x m p.d., A is r x r p.d., b > O, then the distribution o f  Y is given by 

f ( Y )  = K(m, v, r)lAIm/Ebm~/Zl~,l-r/zEb + t r , ~ - l ( y _  t~)A(Y- ~u)'] mtv+r)/2, (A.1) 

where 

~Fm(v[  2+ r) 1 
K(m,  v, r) - I n-,~r/2. (A.2) 

Proof. The joint distribution of Y and X is 

(2~) ,~r/2 h-mr/2[yjl-r/2MIm/2 ym(v+r)/2 1 
f ( Y ,  X ) - -  r ( m v / 2 ) 2 . ~ / 2  v , _ ,  ~ . ,  . .  

+ g t r ,~ -  ( Y - -  p ) A ( Y -  . 

Next, integrating out X, we can obtain Eq. (A.1). 
The density of Y as given in (A.1) is called the trace T distribution and will be 

denoted as 

Y ~ T r ( p , A , b ,  ~,-a ,m(v  + r)). (A.4) 

It is noted that the distribution as given in (A.4) is one type of matrix generalization of 
the Students t-distribution and involves the trace of a matrix. When m or r is 1, then it 
will be reduced to the well-known multivariate T distribution. The first two moments 
of this distribution are given in the following theorem. 

Theorem A.2. I f  Y ,,~ Tr(~u,A, b, Z -1, m(v + r)), then 

E(Y)  = p (A.5a) 

and 

b 
Cov(Y) - - -  Z ® A - 1 (A.5b) 

mv - 2 

Proof. The proof is completed by using the fact that 

E ( Y )  = E x [ E ( Y I x ) ]  and V a r ( Y ) =  Varx[E(YIx)]  + Ex[Var(Y]x)]  

and X ,-~ ZZm~ implying E ( X - 1 )  = 1/(mv -- 2). [] 
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Theorem A.3. I f  Y ~ Tr(p ,  A, b, X -  1, m(v + r)), then 

b 
U = b + t r ,~-  I(Y - p ) A ( Y -  p)' "~ Beta(v1, v:),  (A.6) 

where vl = ½my and v2 = ½mr. 

Proof.  The  mhth m o m e n t  of  U is 

EUmh = _f'(v 1 + v2)['(v 1 + mh) 
F(Vl + v2 + mh)F(vO 

which is the mhth m o m e n t  of  Beta(v1, v2). Since U is a bounded  r a n d o m  variable, its 
dis t r ibut ion is uniquely determined by its moments .  

Theorem A.4. Let 

{y(1)'] flit1)'] ( A l l  A12~ 
Y =  \ y ( 2 ) / '  fl = ~ ~ ( 2 ) J '  A = 2; -1 = \A21 A22/]  

where yti),p(o are mi×r; Aij is mi×mj; ml + m z = m .  I f  Y . .~Tr(p ,A ,b ,  2 -1, 
m(v + r)), then the marginal distribution of y(2) i s  

y(2) ~ Tr(pt2),A, b, A22.1, m(v + r) - mlr) (A.7) 

and the conditional distribution of y(1) [y  (2) is 

Y(I)Iy(2) ~ Tr(/ ta .z ,A,  c, Al l ,  m(v + r)), (A.8) 

where 

]~1.2 = ]~(1) + ,~12~221(I,r(2) - -  ][/(2)), 

c -= b + t r A 2 2 . 1 ( Y  (2) - -  ~ . / ( 2 ) ) A ( y ( 2 )  - -  t / ( 2 ) ) , ,  (A.9) 

A22.1 = A 2 2 -  AzlAl11A12 . 

Proof.  It  can be shown easily and  hence is omitted.  

L e m m a  A.1. For the generalized growth curve model, 

t r C -  1(¥ _ X~A)(Y - X~A)' 

= t r ( X ' C -  1X) [(X'C- 1X)- 1X'C- 1SC- ~X(X'C 1X)- 1 + (~ - ÷)AA'(~ -- ÷ ) ' ]  

+ t r (Z 'CZ)  ~Z 'YY 'Z ,  (A.IO) 
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where  

S = Y [ !  - A ' ( A A ' ) -  ' A ] Y ' ,  

÷ = ( x ' c - l x )  lX'C-lVA'(AA') -1,  (A.11) 

and  Z is p x (p - m) and  o f  rank  p - m such  tha t  X ' Z  = O. 

It is noted that this is essentially (3.6) of Lee (1988c). 
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