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ABSTRACT

We devel op amethod for automatic segmentation of natural video sequences. The method is based on low-level spatial and
temporal analyses. It features three designs to help facilitate good region segmentation while keeping the computational
complexity at a reasonable level. Firstly, a preliminary seed-area identification and a final re-segmentation process are
performed on each video frame to help region tracking. Secondly, a simple way to measure homogeneity of texturein a
region is devised and the segmentation tries to locate object boundaries at where the texture shows significant changes.
And thirdly, a reduced-complexity motion estimation technique is used, so that dense motion fields can be computed
at a reasonable complexity. The overall method is organized into four tasks, namely, seed-area identification (for each
frame), initial segmentation (only for the first frame in the sequence), motion-based segmentation (for all later frames),
and region tracking and updating (also for all later frames). Some examples are provided to illustrate the performance of
this method.
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1. INTRODUCTION

Partly due to the MPEG-4 standards work, 2 image sequence segmentation has received much recent attention. A
principal objective of such segmentation is to identify and track the motion of semantically meaningful (from a human
perspective) video objects (VOs), such as people, houses, and automobiles, so as to facilitate object-based video coding
or video content manipulation.®* It isthe experience of many researchers that current automatic segmentation methods
are far from being perfect and that human intervention helps in achieving better video segmentation.>® Nevertheless,
automati c segmentation cannot be dispensed with when there is alarge amount of video material to be analyzed.

If an automatic segmentation method is to approach the performance of human-assisted segmentation methods, so-
phisticated rule-based processing is perhaps unavoidable. In thiswork, we only resort to “low-level” spatial and temporal
analyses. We present an automatic method, which employs heuristic texture analysis and region tracking, for ssgmentation
of natural video sequences. In the following, the terms “video object” and “video region” will be used synonymously.

A primary difficulty in automatic video segmentation consists in maintaining accurate delineation of object boundaries
across video frames as their shapes evolve over time and as probable mutual occlusions among the objects occur. In
addition, the amount of computation should be kept at a reasonable level. In the method presented here, these issues are
addressed, in part, by the three following features. First, a preliminary seed-areaidentification and afinal re-segmentation
process are performed on each frame to help facilitate good region tracking. Secondly, the segmentation tries to locate
object boundaries at where the image texture shows significant changes. And thirdly, a reduced-complexity motion
estimation technique is used, so that the computation of dense motion fields for the objects can be kept at a reasonable
complexity.

The remainder of this paper is organized as follows. Section 2 describes our video segmentation method. Section 3
presents some experimental results. And Section 4 gives some concluding remarks.

Y.-H. Jan: yhjan.ee86g@nctu.edu.tw, D. W. Lin: dwlin@cc.nctu.edu.tw.

Visual Communications and Image Processing 2002,
C.-C. Jay Kuo, Editor, Proceedings of SPIE Vol. 4671 (2002) © 2002 SPIE - 0277-786X/02/$15.00 543

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms



544

Task 1 Task 2
video stream Seed-Area first frame Initial

Identification Segmentation

Task 4 - O
Region .
succeeding Tracl%gng and O P n&?ntatlon
frames Updating p
Task 3
Motion-Based Frame
Segmentation Memory

Figure 1: Structure of the video segmentation method.

2. THE SEGMENTATION METHOD

The proposed video segmentation method isillustrated in Fig. 1. It consists of four tasks, namely, seed-areaidentification,
initial segmentation, motion-based segmentation, and region tracking and updating.

Thetask of seed-areaidentification is performed on every input frame. Based on simpleintensity analysis, it identifies
anumber of relatively homogeneous seed areasin the framefor usein subsequent image segmentation and region tracking.
Thetask of initial segmentation is conducted on thefirst frame of the sequence only. Starting with the seed areas, it arrives
at a segmentation of thefirst frame by way of region growing and region merging, where the procedurefor region growing
tries to locate the region boundaries at where the local image texture shows significant changes. The other two tasks are
performed on all subsequent frames. The task of motion-based segmentation extracts the moving regions by estimating
the motion of each segmented region and integrates the regions showing similar motion. The task of region tracking and
updating projects each moving region onto the next frame according to the dense motion vectors obtained in the last task,
validates the mapping by examining the seed areas involved in the mapping, and re-segments the uncovered areas, the
overlapped areas, and other areas in the next frame which show undesirable features.

As can be seen, the proposed method contains only one pass which operatesin the forward direction. Without higher-
level intelligence, a one-pass, forward-only method usually has difficulty making correct object segmentation in the first
few frames an object appears. The mechanism built in tasks 3 and 4 can modify the segmentation by adjusting the object
boundariesin later frames. In non-real-time applications or in applicationswhere longer delays are permitted, a backward
analysis or multiple analytical passes over the sequence may be performed based on the present method to attempt at an
improved segmentation.

Below we explain each task in detail.

2.1. Task 1: Seed-Area |dentification

As stated previousely, the purpose of thistask isto divide aframe into anumber of seed areasfor use in subsequent image
segmentation and region tracking. The rationale behind the particular approachisillustrated in Figs. 2 and 3.

Often, an image contains patches wherein the intensity (and color) values are relatively homogeneous. Still-image
segmentation often capitalizes on such property and analyzes intensity gradients to determine boundaries. Incidentally,
the watershed approach represents such thinking.”>®  Since our segmentation method assumes no high-level knowledge
concerning the image contents but employs only low-level signal processing, it is natural to base the initial segmentation
onintensity analysis. Andit isnatural to consider thresholding the intensity gradients so that gradients above the threshold
are considered to mark region boundaries. However, it may not be appropriateto use asingle global threshold for the entire
image, because the intensity structures of different areas of the image may be different. Using a single global threshold
may miss some finer local intensity structures. Figure 2 illustrates the situation where areas A and B are both composed
of two patches having relatively homogeneousintensities within each patch but significantly different intensities between
patches. But a single-threshold gradient-based segmentation does not find this out. Therefore, the intensity analysis
should be conducted more locally. On the other hand, since overly small objects are usually not considered appropriate,
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Figure 2. lllustration that a single global threshold may not capture local intensity structures properly. Above: a possible image
intensity profile; below: corresponding gradient amplitudes.
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Figure3. Illustration that amore local gradient intensity analysis may capture the more detailed structuresin an image. Above: looking
at two image regions separately; below: separate intensity analysis of the two image regions reveals detailed image structure in each
region.

the intensity analysis should avoid producing overly fine segmentations. Figure 3 illustrates the idea that a more local
gradient analysis may capture the more detailed structuresin an image.

In the proposed method, we first calculate the mean intensity 1. of the whole frame. The frame is called a bright
image if more than 50% of the pixels have intensity values greater than . 7; otherwiseit is called adark image. The pixels
whose intensity values are above iy are called bright pixels, and those whose intensity values are below 1, dark pixels.
The following describes the operations carried out on a bright image. The operations carried out on a dark image are
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complementary.

For a bright image, each connected set of bright pixelsis identified and rank-ordered according to descending sizes.
Let R; denotetheith such bright region. Itsintensity mean u i, and intensity variance aéi arecalculated. Starting withthe
largest bright region, a region-growing process is performed. The neighboring points whose intensity values are greater
than ugr, — or, are merged into the region. If these pointsfall in another bright region, then that region’s size is reduced
and its rank order may be affected. At the end of the process, some smaller bright regions may be merged completely into
alarger one. The remaining, unmerged dark pixels may form multiple connected regions. These regions are identified.

For each region in the final set, bright or dark, we analyze the gradient structure and find one or more areas of low
gradient values to form the desired seed areas. By this we achieve the localized gradient analysis illustrated in Fig. 3.
Specifically, we calculate the gradient values at the interior pixels of each bright or dark region. The boundary pixels are
disregarded, because their associated gradient values are expected to be larger on average. The mean gradient value in
each region is computed. The pixels with gradients lower than the region mean are obtained. Each connected set of such
pixels then constitute a seed area to be used in subsequent image segmentation and region tracking.

2.2. Task 2: Initial Segmentation

The task of initial segmentation is performed only on the starting frame of the video sequence. Its purpose is to effect
aninitial partition of the image content for later motion estimation and object tracking. The partitioning does not assume
high-level knowledge concerning the information content of the frame, but only relies on pixel-domain analysis to divide
the frame into regions of different textures.

Thetask is accomplishedin two steps: region growing and region merging. In region growing, we grow the seed areas
by examining the local variation and area-wide variation in pixel intensity values. Then in region merging, we merge the
small regionsuntil all theregion are at least of agiven size.

More specifically, in region growing, each seed areaobtained in task 1 is assigned a distinct label if its areais greater
than a certain threshold, say, V,.. Other points are merged into the seed areas one by one through the following process.
Let Ry, denote the kth seed area. We calculate its mean u g, and variance a?{k in intensity. We further calculate the local
texture information at each pixel represented by the local mean and variance in intensity in a3 x 3 window. For a pixel
pi,; a location (4, j), the local mean and local variance are denoted 1.(i, j) and o2 (i, j), respectively. For each seed area,
identify all the pixels which are just outside its border. Define the “distance” between one such pixel p; ; and the seed
area Ry, as

d(Rkvpi,j) = O‘|I(Zv.]) - NRk| + |6Rk - U(Zvj)| + |I(Zv.7) - M(ivj)|7 (1)

where I (i, j) isthe intensity of p; ;, o, iSthe average of the local standard deviations of all the pixelsin Ry, and ,
and are some weighting factors. From all the pixel-area pairs, find the one with the smallest distance. Merge that pixel
into that seed areaif the pixel intensity iswithin ug, + 3o, .

In the second step, namely, region merging, we make the size of each region at least as large as a predefined value V..
Thisis accomplished recursively as follows. For each region that is smaller than N,., find the nearest other region. From
all theregion pairs found above, obtain the nearest pair and merge the smaller regionin the pair into the larger one. Check
the areas of all the remaining regions. If at least one of them is smaller than IV,., then repeat the above process.

2.3. Task 3: Motion-Based Segmentation

This task is geared at estimating the motion of each region and extracting the moving regions. It first constructs a
dense motion field for each region using a forward motion estimation approach. To reduce the computational load while
obtaining reasonably accurate motion vectors, we first conduct motion estimation for each pixel on the region boundary.
The motion estimation employs block-matching techniques. The resulting motion vectors are called seed motion vectors.
Each pixel in aregion is tested only with these seed motion vectors and the best is selected for that pixel. Regions with
high percentage of moving pixels are considered moving regions. Connected moving regions are integrated into one big
moving region if certain criteriaare met. In line with MPEG-4 terminology, each such integrated region may be called a
VO.
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To test if two connected moving regions may be integrated, we first find the affine motion parameters of each region,
where the affine motion mode! for pixel p, , inregion R; is given by

ur, (z,y) = ai + apz+asy,
vR (T,Y) = Qi+ aisT + aisy, 2

with ug, (x,y) denoting horizontal displacement and vy, (x,y) vertical displacement. The affine motion parameters ay,
k=1,2,---,6, may befoundwith any appropriateerror-minimization method. For convenience, let (u gj (z,y), U};‘; (z,y))
denote the synthesized motion vector at pixel p, , in region R; obtained by substituting the affine motion parameters for
region R; into the equations (2) for region R;. Then we do the following.

For each pair of adjacent regions, say R; and R;, compute the sum of root-mean-square (RMS) motion vector errors
with synthesized motion vectors as

C(Ri,Ry) = ﬁ S (R @) -l @) + R () — o (2 9]}
* (z,y)ER;
+ \N% S {luf (@,y) — ul (@, )2 + [ofy (2.y) — o (e, 9)]2), 3
7 (z,y)ER;

where Ng, denotesthe number of pixelsin region R;,. Find the pair (i*, j*) with lowest error, that is,

(@*,3) :argr(ni_r)lc'(Ri,Rj). 4
]

For it, if both the RMS errorsin (3) are lower than a predefined value, then the two regions are integration into one. The

better set of affine motion parameter is used for the integrated region, and the same procedure is iterated until no more

region integration can be made.

2.4. Task 4: Region Tracking and Updating

In image sequence segmentation for video compression and content-based functionalities, of key importance is proper
object tracking over video frames, including proper adjustment of object shapes with time to deal with possible object
deformation, possible object occlusions from motion, and possible segmentation errors in earlier frames. By monitoring
the progression of each object over the frames, a human viewer may, for example, select some objects of interest and
observetheir life over the video sequence.

In the task of region tracking and updating, we first project each moving region into the next video frame using
the forward motion information obtained in task 3. Some covered and uncovered areas may appear. We look for seed
areas (found in task 1) which have nonempty intersection with the footprint of the projection. For each such seed area,
if over a certain percentage of its size (for example, 50%) is in the footprint and the area of intersection is no smaller
than a predefined threshold (for example, 20 pixels), then the intersection is regarded a valid new seed area. In addition,
pixels must have low percertage prediction errors (for example, under 0.05) to be included. The remaining pixels are
considered “uncertain areas’ to be re-segmented. They include covered areas (areas with overlapped projection from
multiple regions), uncovered areas (areas not in the footprint of projection of any region), areas showing relatively large
motion-compensated prediction errors, and areas which are isolated and small. The re-segmentation employs region
growing from the (modified) seed areas and region merging, as in the task of initial segmentation.

The above procedure allows splitting, merging, and deformation of regions, as are needed. In tracking, one also
needs to maintain the correspondence of regionsin two successive frames. To deal with splitting and merging of regions,
the newly segmented regions in the second frame which fall in the footprint of a region in the previous frame may be
considered a valid child of the region. The ideais illustrated in Fig. 4 with the point marked R. The correspondence
between regionsin two successive frames are then affirmed, completing the work of region tracking and updating.
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Figure4: lllustrative temporal progression of different regions.

(c) (d)

Figure 5. Segmentation performance of the QSIF Table Tennis sequence. (@) Initial segmentation of the first frame. (b) Background
portion found in the second frame (except for the small areain thelower-right corner showing the left hand of the player). (c) Uncovered
areasin frame 2 (dark points). (d) Tracking of aregion (the ball) from frame 1 to frame 35.

3. EXPERIMENTAL RESULTS

Toillustrate the performance of the proposed method, we now give some exampl e results from segmenting some common
test sequences.

Consider first the Table Tennis sequence, where for convenience the picture resolution used is QSIF (176 x 120).
Figure 5(a) shows the result of initial segmentation of the first frame. Figure 5(b) shows the background portion of the
second framein the sequence. The dark-filled areas mark the locations of two connected moving regionsin the foreground.
Not dark-filled is a small, third moving region in the lower-right corner of the picture which shows the left hand of the
table tennis player. The uncovered areas found in the second frame are shown in dark in Fig. 5(c). The segmented table
tennis ball, tracked from frame 1 to frame 35, is shown in Fig. 5(d). The segmentation result every fifth frame of the
ball-playing armis shownin Fig. 6.
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Figure 6. VO tracking result of the ball-playing arm. (a) Frame 5. (b) Frame 10. (c) Frame 15. (d) Frame 20. (c) Frame 25. (d) Frame
30. (c) Frame 35. (d) Frame 40.
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Figure 7: Tracking result of the foreground object in the Claire sequence. (a) Frame 1. (b) Frame 60. (c) Frame 70. (d) Frame 80.

Figure 7 shows some tracking result of the foreground object in the Claire sequence. Note that theinitial segmentation
at frame 1 does not yield the full outline of the talker but only her head. Thisis not surprising since we did not endow
high-level intelligence into the segmentation algorithm. As time progresses, the motion information is picked up and the
segmentation becomes more in line with human perception.

Figure 8 shows some tracking result of the foreground object in the Akiyo sequence. Here the outline of the talker
appears better identified in frame 1. However, the upper-right part of the talker’s head suffers continued mis-segmentation
due to likeness in intensity between the hair and the background. The left ear also caused some mis-segmentation at the
beginning, but the problem disappeared in frame 80.

These examples confirm the effectiveness of the proposed method to some extent. They aso indicate some areas for
improvement.

4. CONCLUSION

We presented a method for automatic segmentation of natural video sequences. The method is based on low-level spatial
and temporal analyses. It features three designs to help facilitate good region segmentation while keeping the computa-
tional complexity at areasonable level. Firstly, apreliminary seed-areaidentification and afinal re-segmentation process
are performed on each video frameto help region tracking. Secondly, a simple way to measure homogeneity of texturein
aregion is devised and the segmentation tries to locate object boundaries at where the texture shows significant changes.
And thirdly, a reduced-complexity motion estimation techniqueis used, so that dense motion fields can be computed at a
reasonable complexity.

The overall method is organized into four tasks. The task of seed-areaidentification identifies a number of relatively
homogeneous areas in each video frame for subseguent image segmentation and region tracking. The task of initial
segmentation segments the first frame in the sequence by a procedure which takes the homogeneity of texturein aregion
into consideration. The task of motion-based segmentation estimates the motion of each segmented region and integrates
the regions showing similar motion. And the task of region tracking and updating tracks the regions into the next frame
and deals with object occlusion and object deformation.
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Figure 8: Tracking result of the foreground object in the Akiyo sequence. (&) Frame 1. (b) Frame 60. (c) Frame 70. (d) Frame 80.

The experimental results show reasonably good segmentation performance, but also indicate some areas for further
improvement. For example, atemporally bidirectional or a multiple-pass segmentation procedure may yield better results.
Tracking with a longer memory may also help when objects show significant shape changes over time. And a motion
estimation method with an even lower complexity than the one used is desirable.
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