TU3C-3

.

mil \blacksquare

RF MIM Capacitors Using High-K Al_2O_3 and $AlTiO_x$ Dielectrics

S. **B.** Chen, C. H. Lai, Albert Chin, **J.** C. Hsieh*, **and** J. Liu*

Dept. of Electronics Eng., National Chiao Tung Univ., Hsinchu, Taiwan 'United Microelectronics Cooperation, Hsinchu, Taiwan

Abstracf - **Record high capacitance density of 0.5 and 1.0** μ F/cm² are obtained for AI₂O₃ and AITiO, MIM capacitors **respectively, with loss tangent** < **0.01 and process compatible to existing VLSI back-end integration. However, the AITiO, MIM capacitor has large Capacitance reduction as increasing frequencies. In contrast, the** *A1203* **MIM capacitor has good** device integrity of low leakage current of 4.3×10^{-8} A/cm², **small frequency-dependent capacitance reduction, and good reliability.**

I. INTRODUCTION

RF MIM capacitor is one of the important devices for MMIC that is widely used for impedance matching and filtering. However, the area of total capacitors usually occupies a large portion of the whole ICs, because of the required relatively large capacitance value (a few **pF)** in MMICs and the small capacitance/area. Therefore, it is highly desirable *to* increase the capacitance per unit area. Besides, other capacitor requirements of low DC leakage current; small frequency dependent capacitance, low **loss** tangent, and high reliability should **also** be satisfied simultaneously. To achieve this goal, it is necessary to apply high dielectric-constant (k) dielectrics for RF MIM capacitors because the capacitance density is $\varepsilon_0 k/t_d$ and reducing dielectric thickness t_d usually generates undesired high leakage current and loss tangent. Recently, we have published high-k Al_2O_3 and La_2O_3 dielectrics for possible replacing conventional $SiO₂$ in the gate capacitor of MOSFET [1]-[4]. Several times larger k value than conventional $SiO₂$ (k=3.9) has been reported and at the same time achieves good gate dielectric integrity. However, the fabrication of high-k MIM capacitors faces the additional challenge from VLSI process integration: the maximum temperature of forming high-k MIM capacitor should not excess 400°C for back-end process integration [SI. In this paper, we report the application of high-k Al_2O_3 and $AlTiO_x$ for RF MIM capacitors. The advantage of AlTiO, capacitor [3] is the increased k value by adding Ti into AI-0 because very high-k of 86 has been reported in Ti02 [6]. Very large capacitance density of 0.5 and **1,0** μ F/cm² are measured for Al₂O₃ and AlTiO_x MIM capacitors respectively, which is the highest capacitance density reported in literature [7]-[8]. However, significant

capacitance reduction at high frequency is observed for AITIO, MIM capacitors. In sharp contrast, the Al_2O_3 MIM capacitor has good integrity of low DC leakage current, small capacitance reduction, low **loss** tangent, and high reliability that can minimize the size of MMIC
substantially and satisfies the VLSI integration and satisfies the VLSI integration requirement.

11. EXPERIMENTAL PROCEDURE

The MIM capacitors were fabricated using 4-in p-type Si with resistivity of $5-10$ Ω -cm. Additional 5000 Å thermal oxide was first grown for VLSI back-end process integration. Then coplanar transmission lines **[9]-[** 101 with GSG probe were fabricated on oxide-isolated Si substrates using deposited Pt/Ti bi-layer followed by subsequent patterning. The transmission line also serves as both top and bottom electrodes of MIM capacitor. Then thin Al or Ti/Al was deposited under high vacuum condition on patterned bottom AI transmission line, followed by subsequent oxidation and annealing to form respective high-k Al_2O_3 or $AlTiO_x$ [1]-[4]. The oxidation was performed only using *dry 02* because of the strong reaction between oxygen and AI or Ti. However, the maximum temperature is kept only at 400°C for VLSI process integration consideration. Finally, AI is deposited and patterned for both top capacitor electrode and transmission line, and the device area is 50 μ m × 50 μ m. The A1₂O₃ and AITiO, capacitors were measured using HP4284A precision LCR meter at 100 **KHz** and **1** MHz **[3],** while the S-parameters were measured by HP8510C network analyzer ranging from 200 MHz to 20 GHz **[9]-[** lo]. The measured S-parameters are de-embedded from a dummy device **[9]-[10]** and the high frequency capacitance plus resistance values are extracted using an equivalent circuit model shown in [Fig. 4.](#page-2-0)

111. RESULTS AND DISCUSSION

A. Low Frequencies Characteristics

[Fig.](#page-1-0) 1 depicts the C-V characteristics of Al_2O_3 MIM capacitors at different frequencies, and a large capacitance

per unit area of 0.5μ F/cm² is measured. It can be seen that no obvious reduction *of* capacitance is observed for frequencies ranging from 100 KHz to 1 MHz, which indicates the excellent qualities of $Al₂O₃$ MIM capacitor at intermediate frequency region.

Fig. 1. C-V characteristics of the Al₂O₃ MIM capacitors measured at the frequencies of **100 KHz,** *500* **KHz** and **1 MHz.** Negligible capacitance reduction can be observed for increasing frequency from 100 **KHz** to 1 **MHz.**

Fig. 2 shows the C-V characteristics of $AITiO_x$ MIM capacitors at different frequencies, and a very large capacitance per unit area of \sim 1.0 μ F/cm² is measured at 1 OOKHz. However, severe capacitance reduction can be observed in AITiO_x even increasing frequency to 1 MHz. Although $AITiO_x$ capacitor exhibits higher capacitance and dielectric constant than Al_2O_3 , this merit is almost compensated by the capacitance reduction phenomena at 1 MHz.

Fig. 2. C-V characteristics of the AlTiO_x capacitors measured at the frequencies of 100 **KHz** and 1 **MHz.** Very large capacitance reduction is found from 100 **KHz** to **1 MHz.**

Figs. 3(a) and 3(b) shows the J-V characteristics of Al_2O_3 and $AlTiO_x$ MIM capacitors before and after

constant voltage stress, respectively. As shown in Fig. 3, the leakage current in Al_2O_3 MIM capacitor is only 4.3×10^{-8} A/cm² which is much smaller than that in AlTiO_x MIM capacitor. It is noted that the physical thickness of $A₁$, $O₃$ and AlTiO_x are the same of 120 Å. The relatively larger leakage current in AlTiO_x capacitor than in Al₂O₃ capacitor may be due to both smaller bandgap and weaker bond related higher defects in Ti-0. This is further confirmed by the larger magnitude of stress-induced leakage current (SILC) in AITiO_x capacitor than that in $Al₂O₃$ capacitor. The small amount of current increase after stress in Al_2O_3 MIM capacitor suggests the excellent reliability. The relatively large leakage current of $AITiO_x$ MIM capacitor as compared with the AlTiO_x MIS gate capacitor on Si **[4]** may be due to the limited annealing temperature in MIM case because of the VLSI process integration constraint.

Fig. 3. J-V characteristics of (a) Al_2O_3 and (b) $AlTiO_x$ MIM capacitors before and after stress. The small change of leakage current in Al_2O_3 MIM capacitor after stress suggests the excellent reliability.

B. High Frequencies Characteristics

To investigate the capacitor characteristics of these two dielectrics at RF regime, we have first established the equivalent circuit model for capacitance and loss tangent extraction. As shown in Fig. **4,** the shunt C and G are the basic models for high-k capacitor, whereas additional small series R and L represent the parasitic resistance and inductance in the coplanar transmission line used for RF measurements. Notice that the shunt G is originated from the gate dielectric leakage current; in another word, the gate dielectric having higher leakage current will produce larger loss tangent and power dissipation.

Fig. **4.** The equivalent circuit model for capacitor simulation at RF regime.

Figs. 5(a) and 5(b) illustrate the measured S-parameters for Al_2O_3 and $AlTiO_x$ MIM capacitors, respectively. For comparison, the simulated results using equivalent circuit model in Fig. **4** are also shown in these figures. The good agreement between measured and simulated data over the wide frequency range **fiom** 200 MHz to 20 GHz suggests that the equivalent circuit model shown in Fig. **4** is suitable and reliable for capacitor extraction.

We have further plotted the extracted capacitance from the measured and simulated **C-V** data and s-parameters shown in previous figures. Fig. 6 demonstrates the frequency-dependent capacitance reduction for Al_2O_3 and AlTiO_x MIM capacitors. Only a small amount of capacitance reduction for Al_2O_3 MIM capacitor is found over the entire frequency range from **100 KHz** to 20 GHz. In sharp contrast, very large capacitance reduction is observed for AITiO_x MIM capacitor and the capacitance value gradually reduces to the same value as that of Al_2O_3 MIM capacitor. The reason why AITiO_x MIM capacitor exhibits severe capacitance reduction may be due to the weak bonded $Ti-O_x$ and is dependent on the process and microstructure. The weak bonded $Ti-O_x$ can generate high defect density at low annealing temperature and may be

responsible to the large capacitance reduction in $AITiO_x$ MIM capacitor.

Fig. *5.* The measured and simulated scattering parameters of (a) $AI₂O₃$ and (b) AlTiO_x capacitors.

Fig. 6. The frequency-dependent capacitance for Al₂O₃ and AITiO, MIM capacitors. Very large capacitance reduction in

 AITiO_x MIM capacitor may be defect related because of the weak Ti-O_x band and low process temperature.

Fig. 7. The frequency-dependent loss tangent for Al_2O_3 and AlTiO_x MIM capacitors. The small loss tangent less than 0.01 suggests the good capacitor performance.

We have also plotted the loss tangent from the measured and simulated C-V and s-parameters. Fig. 7 shows the loss tangent for Al_2O_3 and $AlTiO_x$ MIM capacitors. Good RF performance can be evidenced from the low loss tangent for AI_2O_3 and $AITiO_x$ capacitors. However, the loss tangent for AlTiO_x capacitor is near one order of magnitude higher than that for Al_2O_3 capacitor because of the larger leakage current in the $AITiO_x$ capacitor.

IV. CONCLUSION

To reduce the chip size effectively, it is necessary to reduce the MIM capacitance substantially utilizing thin and high-k dielectrics. Record high capacitance density of 0.5 and 1.0 μ F/cm² are obtained for Al_2O_3 and $AlTiO_x$ MIM capacitors respectively, but the $AITiO_x$ MIM capacitor has large capacitance reduction as increasing frequencies. Besides the high capacitance density, the **AI203** MIM capacitor exhibits low leakage current of 4.3×10^{-8} A/cm², low capacitance reduction rate, low loss tangent. The maximum process temperature of 400° C makes this technology compatible to current VLSI backend process.

ACKNOWLEDGEMENT

The authors would like to thank **Y.** M. Deng, K. M. Chen, and Dr. G. W. Huang at National Nano Devices Lab (NDL) for their help in the measurement. This work has been supported by NSC (90-22 15-E-009-052) and UMC.

REFERENCES

- **[l]** A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, "Device and Reliability of High-K Al₂O₃ gate dielectric with good mobility and low D_{ii} ," Symp. on VLSI with good mobility and low D_{it} ," *Technology,* pp. **133-134,** June **1999.**
- **[2]** A. Chin, Y. H. Wu, **S.** B. Chen, C. C. Liao, and W. J. Chen, "High Quality La_2O_3 and Al_2O_3 Gate Dielectrics with Equivalent Oxide Thickness **5-lOA,"** *Symp.* on *VLSI Technology,* pp. **16-17,** June **2000.**
- **[3]** M. Y. Yang, **S.** B. Chen, A. Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, "One-Transistor PZT/A1₂O₃, SBT/A1₂O₃ and BLT/AI2O3 Stacked Gate Memory," *Int. Electron Devices Meeting (IEDM),* Washington DC, USA, Dec. **2001.**
- **[4]** A. Chin, **S. B.** Chen, K. T. Chan, J. C. Hsieh, M. H. Chang, C. C. Lin, and J. Liu, "RF Performance Limitation of Highk AITiO, and A1203 Gate Dielectrics," *Int. Workshop on Gate Insulator,* pp. **62-63,** Tokyo, Japan, Nov. **200 I.**
- **[5]** Y. **H.** Wu, A. Chin, K. H. Shih, C. C. Wu, C. P. Liao, **S.** C. Pai, C. C. Chi, "The fabrication of very high resistivity Si with low loss and cross talk," *IEEE Electron Device Lett.* **21,** pp, **394-396,2000.**
- **[6] S.** A. Campbell, D. C. Gilmer, X. C. Wang, M. T Hsieh, H. *S.* **Kim,** W. L. Gladfelter, and T. Yyan, "MOSFET transistors fabricated with high permitivity $TiO₂$ dielectrics," *IEEE Trans. Electron Devices,* vol. **44,** no. **I,** pp. **104-109, 1997.**
- **[7]** C. P. Yue and **S. S.** Wong, "A study on substrate effects of Silicon-based RF passive components," *IEEE MTT-S Intl. Microwave Symp. Dig.,* pp. **1625-1628,** June **1999.**
- **[8] P.** Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, **R.** Henderson, J. Mendonca, M. Kim, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, **S.** Straub, T. Sparks, M. Tarabbia, H. Thibieroz, and M. Miller, "Integration of thin **film** MIM capacitors and resistors into copper metallization based RF-CMOS and Bi-CMOS technologies," in *Int. Electron Devices Meeting (IEDM) Tech. Dig.,* pp. **153-156,** Dec. 2000.
- **[9] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J.** Lin, "Transmission line noise **from** standard and protonimplanted Si," in *IEEE MTT-S* Intl. *Microwave Symp. Dig.,* pp. **763-766,** June **2001.**
- [IO] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, C. P. Liao, **S.** C. Pai, and C. C. Chi, "RF loss and crosstalk on extremely high resistivity (10k-1M Ω -cm) Si fabricated by ion implantation," in *IEEE MTT-S Intl. Microwave Symp. Dig.,* pp. **221-224,** June **2000.**