
360 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 1 1 ,  NO. 3, JUNE 1995 

Minimal Linear Combinations of the 
Inertia Parameters of a Manipulator 

Shir-Kuan Lin 

Abstract-This paper deals with the problem of identifying the 
inertia parameters of a manipulator. We begin by introducing the 
terminology of minimal linear combinations of the inertia param- 
eters (MLC’s) that are liiearly independent of one another and 
determine the manipulator dynamics while keeping the number 
of linear combinations of the inertia parameters to a minimum. 
The problem is then to find an identification procedure. for esti- 
mating the MLC’s and to use the MLC’s in the inverse dynamics 
for control. The recursive Newton-Euler formulation is rederived 
in terms of the MLC’s. The resulting formulation is almost as 
efficient as the most efficient formulation in the literature. This 
formulation also provides a starting point from which to derive 
a recursive identification procedure. The identification procedure 
is simple and efficient, since it does not require symbolic closed- 
form equations and it has a recursive structure. The three themes 
concerning the dynamic modeling of a manipulator-the MLC’s, 
the inverse dynamics in terms of the MLC’s, and the identification 
procedu-are treated in sequence in this paper. 

I. INTRODUCTION 
HE dynamic model of a manipulator is highly nonlinear T and requires knowledge of the kinematic parameters (re- 

lations between two adjacent links) and the inertia parameters 
(mass, center of mass and inertia tensor of each link). The 
kinematic parameters are usually provided by the manufacturer 
or can be calibrated precisely. However, the inertia parameters 
of industrial robots are almost all unavailable from manufac- 
turers, because these values are not needed for commercial 
controllers. Yet, the values of the inertia parameters are re- 
quired for most modern control schemes of manipulators that 
incorporate the inverse dynamics. To evaluate the inertia 
parameters of the manipulator dynamics, Armstrong et al. 
[l]  disassembled a PUMA 560 robot and used a mechanical 
method to measure the parameters. This approach is tedious 
and does not yield precise results. Fortunately, Atkeson et 
al. [3] found that the actuator forces of a manipulator are 
linear functions of the inertia parameters (i.e., the dynamics 
of a manipulator can be expressed as linear equations with 
respect to the inertia parameters), provided that friction can 
be neglected or considered separately. Previous attempts to 
identify the inertia parameters have tried to formulate the 
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linear equations either explicitly [6], [9], [ll],  [15], [171 or 
implicitly [3], [29], [30], [31]. 

Identifying the inertia parameters is still difficult, however, 
for not all parameters can be estimated. Some parameters 
affect the manipulator dynamics jointly, not independently. 
Khosla and Kanade [17] intuitively regrouped the closed- 
form dynamic equations, and other researchers [9], [Ill,  
[15] developed regrouping rules to minimize the number of 
inertia parameters appearing in the linear equations. These 
approaches are not practical for a manipulator with six or 
more joints since the closed-form dynamic equations of a 
six-joint manipulator are difficult to analyze. Some authors 
[3], [7], [34] have presented numerical approaches such as 
singular value decomposition and the QR method. Because we 
lackknowledge of the physical meaning of the identified 
parameters, these parameters cannot be used effectively in 
computing the inverse dynamics. 

Gautier et al. [8], [lo], [12] developed a regrouping rule to 
eliminate redundant inertia parameters and to symbolically 
form a set of the minimal parameters needed to determine the 
dynamic model. Mayeda er al. [25]-[28] found the minimal 
parameters in closed form. Although the results of Gautier 
et al. and Mayeda et al. are substantially the same [12], the 
approach of Gautier et al. requires a regrouping process for 
each type of manipulator. 

In this paper, we first show that the manipulator dynamics 
are uniquely determined by a set of minimal parameters 
which are linear combinations of the inertia parameters and 
are linearly independent. These parameters are termed the 
minimal linear combinations (MLC’s) of the inertia param- 
eters in this context. Although the notation of the MLC’s is 
equivalent to that of minimal parameters in the literature, we 
must emphasize that the minimal parameters are in fact linear 
combinations of the original inertia parameters. A set of 
MLC’s found by another approach in the present author’s 
earlier work [23] will be used to interpret the concept of 
MLC’s. 

Finding the MLC’s of the inertia parameters does not pro- 
vide a complete solution for the dynamic modeling of a ma- 
nipulator. The central problem is to find an efficient identi- 
fication procedure for the set of MLC’s. Application of the 
identified MLC’s to the inverse or forward dynamics is also 
essential for manipulator control and simulation. These three 
problems have seldom been addressed together in the context 
of a single paper. This paper attempts to solve the three 
problems in sequence. 
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A new version of the recursive Newton-Euler formulation 
in terms of the set of MLC’s is derived in this paper. From 
the new formulation, we deduce an identification procedure 
for estimating the MLC’s of the inertia parameters. The 
identification procedure is recursive from link n to link 1 
and does not require symbolic closed-form dynamic equations. 
The identified inertia constants of the composite bodies i + 1 
to n are used to numerically form the linear equations for the 
actuator force of joint i, so that the identifiable inertia constants 
(i.e., MLC’s) of the composite body i can be estimated by 
the linear least squares method. This procedure is distinct 
from the one used in an earlier work by the author [23]. The 
latter strictly requires that only one joint move at a time, so 
it is an off-line procedure, although the same MLC’s are 
estimated. 

However, the identification procedure proposed here is 
limited in that friction must be treated separately from the 
dynamic model of the manipulator. The dominant dynamics 
of direct drive robots such as MIT DDArm [3] and CMU 
DDArm I1 [17] can be obtained from the standard Newton- 
Euler formulation [ 191, so the present identification method 
is valid for estimating the MLC’s of these manipulators. For 
a manipulator with high-ratio gear trains, such as the PUMA 
arm, the present method is valid only when the viscous and 
static friction and the inertia of the motor actuators can be 
identified a priori (techniques for doing so can be found in 
the work of Leahy and Saridis [19]). In any case, this pa- 
per provides a starting point for future investigation of the 
identification problem for manipulators with high-ratio gear 
trains. 

This paper is organized as follows. Section II describes the 
concept of minimal linear combinations (MLC’s) of the inertia 
parameters. The new version of the recursive Newton-Euler 
formulation in terms of the MLC’s is derived in Section 111. 
Section IV presents the identification procedure. 

11. MINIMAL LINEAR COMBINATIONS 
OF INERTIA PARAMETERS 

Knowing that the dynamics of a manipulator (neglecting 
the effects of friction) can be formulated as linear equations 
with respect to the inertia parameters [3], we consider dynamic 
system with the linear deterministic form of 

y = A(0)x (1) 

where y E En, 0 E Rm are observable signals, x E Rp 
consists of the system parameters, p > n, and A(0): Em + 

w x p .  

A set of columns a;(0): Rm + Rn is said to be linearly 
dependent over Rm if there exist constants ai, i = 1,. . . , n, 
not all zero such that 

n 

If ai,i = 1,. . . ,n, are all zero, the set is said to be 
linearly independent over Rm. By this definition we obtain 
the following lemma [22]. 

Lemma 1: The number of linearly independent columns of 
A(0) in (1) over Rm is k 5 p if and only if there exist 
A( 0) : RIz” + Rn IC whose columns are linearly independent 
over Rm, and w(x): X p  --t $?IC whose elements are linear 
combinations of x and are linearly independent over W, such 
that 

A(0)x = A ( ~ ) w ( x ) ,  V0 E RIz” and x E Rp. (3) 

According to the least squares theory [18], not all sys- 
tem parameters of the system (1) can be identified if the 
columns of A(0) are linearly dependent over Rm, i.e., A 
is rank-deficient. Conversely, if A is of full rank, all system 
parameters x are identifiable. Lemma 1 then states that a set 
of linear combinations of the system parameters, w(x), is 
identifiable since A is of full rank. A(0)x fully determines 
y, as does A(B)w(x). Hence knowledge of w(x) is sufficient 
to determine y. The parameter identification problem of the 
deterministic system (1) turns out to be to find and identify 
w(x). To make use of this fact, we introduce the following 
definition. 

Definition I :  A set w(x) is a set of minimal linear combi- 
nations (MLCs) of the system parameters for the system (1) if 
the set is linearly independent over the domain of w and there 
exists A(0) whose columns are linearly independent over the 
domain of A such that (3) holds. 

For a manipulator, we are concerned with the MLC’s of 
the inertia parameters. Ha et al. [ 151 showed that the dynamic 
model of a manipulator can be formulated in a form like (3) by 
using intuitive regrouping rules. Lemma 1 gives a necessary 
condition for the number of linearly independent columns 
of A(0) and rigorously interprets the relation between the 
system parameters and the MLC’s of the system parameters 
for the deterministic system (1). Since there are numerous 
methods for selecting A(0) from A(0), the set of MLC’s is 
not unique. The notations of base parameters [25]-[28] and 
minimum inertia parameters [SI, [12] in the literature refer 
to the same basic idea as the MLC’s of inertia parameters. 
The notation of MLC’s, however, provides direct insight into 
the parameter identification of a manipulator. In the following, 
we use the minimal parameters found in [23] to elucidate the 
concept of MLC’s. 

We consider a manipulator with n low-pair joints, which are 
labeled joints 1 to n outward from the base. Assign a body- 
fixed frame on each joint (i.e., frame E; is fixed on joint i) 
in accord with the normal driving-axis coordinate system [20] 
(known also as modified Denavit-Hartenberg notation [5]). The 
distance from the origin of Ei to that of Ej is designated Ss 
and that to the center of mass of link i is designated c;. 

In the normal driving-axis coordinate system (see Fig. l), 
the z-axis of a body-fixed frame is the driving axis of 
the corresponding link, i.e., the unit vector along joint i is 

representation of a vector with respect to frame Ei. The 
distance from the origin of frame to frame E; is shown 
to be 

= [ O , O ,  1IT, where the superscript “ ( 2 ) ”  denotes the 

bi b;CB; 
i-1 i s ( i - l )  - - [if::], or ;-is(;) = [ - b ; F ]  (4) 
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where k, = m,c!?, e,  = 0, U, = I?)-~,[c?)x][c?)x], 7' V, = 0 and 

U 

Fig. 1. Normal driving-axis coordinate system. 

where SO; sin Oi , CO; = cos 0i ,  and bi, d i ,  pi, and Bi are 
the geometrical parameters of the coordinate system shown in 
Fig. 1. The coordinate transformation matrix from Ei-l to E; 
is then 

0 
(i+;s(i+l))* O I) 

X I  
- r + y )  x 3 r + p  

(12) 

The composite body i is defined as the union of link i to 
link n. Let the mass of the composite body i and the first 
moment of the composite body about the origin of Ei be 
denoted by mi and ti, respectively, i.e., mi = mj and 

mj(:s(;) + c:)), where m j  is the mass of link e(i) - - 
j. According to the Huygeno-Steiner formula [36], the inertia 
tensor of the composite body i about the origin of frame Ei is 

- r+ i~ (~)  x ] [(i+:Rb(ki+l)z) x ] 
- [(i+:Rb(ki+l)z) x ] [~+;S(Z) x ] 

Vi = i+l + Ui+l 

. .  
1=2 

(Ui+1)22 0 
- [ 0 (Ui+1)22 ])";RT 

0 0 (ui+1)33 

- m j  [ ( ! s ( ~ )  + c:)) x ] [ ( is( i )  + c r ) )  x ] (6) - r + i ~ ( ~ )  x ] [& x ] - [& x ] [ ; + ; s ( ~ )  x ] (13) 

whereas for translational joint i + 1, 
where 1:) is the representation of the inertia tensor of link j ui = Iji) -mi [,..ji) 1 rC!i) 3 + i+l 
with respect to frame Ej and [ax]  denotes a skew-symmetric 
matrix representing the vector multiplication, i.e., [ax lb  = 
a x b. In this paper, the hat symbol " ^ "  is used to denote the 
inertia parameters (mass, first moment, and inertia tensor) of 
a composite body. 

In the following, the notation ( . ) ; j  denotes the (i,j)th entry 

, R U ; + ~ ~ + ; R ~  - r i ~ ~ + ~  

x [b!?, x ] [b!?, x ] - [bj?, x ] [(i+;Rki+l) x ] 
- [(i+:Rki+l) x ] [b!?, x ] 

2 + 1  z + l  X I  

(14) 
Vi =i+;R(V. z+l - &+I [d!zl) x ] [dlz') x ] 

- &i+l [d(i+') x ] [b(i+l) 
of a matrix and (.)z the 2-component of a three-dimensional - 

- [djzl) x ] [e!$') x ] - [Cjz') x ] [djz') x ] 
[bjz') x ] [d!i+') x ] vector. Define z + 1  

K; (1 - K;)  - [b!:') x ]  [&+I x ]  - [&+I x big] [bjz') x ] ) ~ + ; R ~  (7) 
1, for rotational joint i, 
0, for translational joint i .  

(15) 
BY the Principle of mathematical induction, it has been shown 
P31 that the first moment and the inertia tensor of the com- 
posite body i can be expressed as the sum of a constant vector 
(k; or Vi) and a varying vector (Ci or Vi) as follows: 

Note that i+tRb is the third column of i+iR (i.e., i+:Rb = 
[o, - ~ p ; + ~ ,  c ~ ~ + ~ I T ) ,  bjg, = [bi+l, O , ~ T  and djzl) = 
[0, 0, d;+l]* (i.e., 

hi, the vectors k; in (10) and the matrices Ui in (12) 
and (14) are invariant to manipulator motion; we shall refer 
to these as inertia constants of composite bodies. It should 
be remarked that these constants are different from Renaud's 

= biyl + djg,). 

Z ( i )  - 
(*) 

(9) 

- k; + 4 
Jji' = U; + vi 
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inertia constants (i.e., the first moment and the inertia tensor of 
an augmented body when the composite body contains only 
rotational joints [32], [33]). The main difference is that the 
varying terms in I$’) and J j i )  can be calculated with only some 
(not all) of the inertia constants of composite bodies [23]. This 
property allows us to set forth the following theorem. 

Theorem 2: For a manipulator with n low-pair joints, in 
which joint r is the first rotational joint counting from the base 
and joint s is the nearest rotational joint not parallel to joint 
r ,  a set of MLC’s for determining the actuator forces T is the 
set S consisting of all nonzero elements of 

1) Kj*(Uj)33, SjKj*(kj),, SjKj*(kj), for r 5 j < s, 
2) Kj*((Uj)ll - ( U j ) 2 2 ) ,  Kj*(Uj)33, Kj*(Uj)lZ, 

Kj*(uj)13, Kj*(Uj)23r Kj*(kj)z, Kj*(kj)y for s 5 
j 5 n, 

3) Ki& for i = 1,. . . , n, 
4) K;(k;)z, K;(k;),, K;(k;), f o r s  < i 5 n, 
5 )  U;K;{-(u?’)z[(u?’)z(k;), + ( ~ ? ) ) , ( k i ) , ]  + [I - 

(U?)):] (k;)z}, dG[-(u?’),(k;),  + (u?)),(ki),] for 

where Sj = 0 for the case where u,//uk//g, Vk < j < s, and 
k s  (when j > r )  is zero or parallel to U, for every rotational 
joint m, r 5 m < j ,  otherwise Sj = 1; and a; = 0 for the 
case of u;//u,., r < i < s, otherwise U; = 1. 

Remark 1: In [23], it was shown that knowledge of the set 
S in Theorem 2 is sufficient to determine the actuator forces 
of a manipulator and that all elements of S are identifiable. 
According to Lemma 1, we can say that the set S is a set of 
the MLC’s. However, a direct and rigorous method should 
show that the dynamic equations of a manipulator can be 
reformulated as (3) in Lemma 1 with the elements of S as 
w. Such a method can be found in [22]. The advantage of 
this method is that it provides a systematic way of finding the 
MLC’s. 

Remark 2: The set of the MLC’s of the inertia parameters 
in Theorem 2 is different from the results of Gautier et aZ. [8], 
[lo], [12] and Mayeda et al. [25]-[28] only in some minor 
terms. In particular, the present result and theirs are almost 
the same (the U; are slightly different) when a manipulator 
has only rotational joints. Suppose that joint i is a translational 

r < i < s ,  

joint and joints i + 1,. . . , n are rotational joints; then h i - 1  

and k;- in this paper can be compared with their counterparts 
mR;-1 and [mXR;-1, mYR;-1, mZRi-11~ in [81, [lo], [121 
as shown in Table I. It is apparent that the present set of MLC’s 
is not identical to that of Gautier et al. for a manipulator 
with translational joints. Note that U;-1 is also different since 
it contains (ki),. The merit of Theorem 2 is that it clearly 
describes the set of MLC’s by introducing joints T and s. 

III. INVERSE DYNAMICS 

Khalil and Kleinfinger [ 161 modified the recursive Newton- 
Euler formulation [24] by using the first moments (m;cdi)) and 
the inertia tensors about the origin on the driving joint (Jji)) 
instead of the centers of mass (c,!;’) and the inertia tensors 
about the center of mass (1:;’). Their set -of MLC’s [8], 
[lo], [12] can then be used in this modified formulation by 
replacing the first moment and the inertia tensor of each link 
with their counterparts in the MLC’s (if the counterparts are 
not redundant) or with zero (if they are redundant, i.e., not in 
the MLC’s). This approach draws on the work of Atkeson et 
al. [3], who suggested that the value of each linear combination 
in the MLC’s be kept the same while one original inertia 
parameter in the linear combination is assigned the same value 
as the linear combination and the other inertia parameters are 
set to zero. Since the dynamic model is linear with respect 
to the MLC’s, the same values for the MLC’s determine the 
same dynamic model. However, this property does not hold 
for all sets of h4LC’s. 

Consider a manipulator with rotational joint i - 1 and 
translational joint i, i > s. The set of MLC’s in Theorem 2 
for the manipulator contains the z- and y-components of ki-1 
and all three components of k;. Since joint i is a translational 
joint, ki-1 has the contribution of k; (see Table I). m;-lc:?;’) 
should not be assigned the same value as k;-l, otherwise 
k; must be zero, which contradicts the principle that the 
values of MLCs should be preserved while distributing their 
values to the original inertia parameters. Hence the modified 
formulation [16] cannot be applied to the general case, where 
the values of the MLC’s are not preserved while using 
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$ ( A ) E  

Atkeson's technique, and so it cannot be applied to the present 
set of MLC's. 

Thus it is necessary to derive a new version of the recur- 
sive Newton-Euler formulation in terms of the present set of 
MLC's. The derivation process presented in this section could 
also be used for other sets of MLC's. At the end of this 
section, it will be seen that the result is identical to that 
of Khalil and Kleinfinger [16] when the manipulator has 
only rotational joints. This identity is because the two sets 
of MLC's are almost the same for a manipulator with only 
rotational joints. This also verifies the result of Khalil and 
Kleinfinger. Since these two formulations both use minimal 
parameters, it will be found that they are about equally effi- 
cient for a manipulator with one or more translational joints. 
However, the derivation of the new Newton-Euler formulation 
in terms of the present MLC's is tediously long. In the sense 
of deriving the formulation for the inverse dynamics, the 
MLC's of Gautier et al. [8], [lo], [12] is superior, since the 
formulation of Khalil and Kleinfinger [16] is applied to them. 

On the other hand, the formulation of the forward dynamics 
in terms of the present MLC's is easy to derive [23]. Re- 
naud's formulation of the forward dynamics [32], [33] uses 
the masses, first moments, and inertia tensors of composite 
bodies (&, e:) and Jja) ) ,  which are directly related to the set 
of MLCs in the form of (8)-(15). Since all possible constant 
terms of tia) and Jja)  are concatenated to be k, and U,, 
respectively, the computation of and Jia)  in terms of the 
present set of MLC's is more efficient than that in terms of 
the set of Gautier et al. When joint i + 1 is a translational joint 
and joint i is a rotational joint, the present set requires 8M + 
7A and 50M + 40A for computing and J;'), respectively 
(see (11) in this paper and (36) in [23]), while the set of 
Gautier et al. requires 11M + 9A and 55M + 41A (see (A7) 
and (A8) in [21]). Note that M denotes multiplications and A 
additionslsubtractions. 

In the following, we first derive a formulation in terms of 
the inertia constants of composite bodies, and then reduce this 
formulation so that it is expressed in terms of the present set 
of MLC's. 

7-41 11 - 
(A)22 

(A)33 (A) l2  (26) 

(A)13 
i(A)23 - 

A. Formulation 

We start with the recursive Newton-Euler formulation [24]. 
Let wi and wi be the angular acceleration and velocity of link i, 
ai the acceleration of the origin of frame Ei, g the gravitational 
acceleration, qi the joint displacement of joint i ,  fTi and tTi 

the inertia force and torque of link i, fi and ti the force and 
torque exerted on link i by joint i ,  and ~i the actuator force 
(or torque) of joint i .  The Newton-Euler formulation based on 
the normal driving-axis coordinate system is [5], [20]: 

a,  + wzwy w; - w, 
w; - w: CY= - wxwy '1 

The following three equalities are relevant to the derivation 
of the new formulation. The proof of them can be found in 
the Appendix. 

a x (nji)b) + b x (nji)a) = \k (3 j i ) ,wt i ) )$(A)  (29) 

where A = -[ax][bx] - [bx][ax], IC is a constant, and diag 
[a, b, c] denotes a diagonal matrix with entries of a, b, and c. 
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Lemma 3: The joint force of joint i acting on link i by 
joint i is 

n 

. .  3=2 

(33) 

where for j < i is assumed to be zero. It can be shown that 

n j - 1  n - 1  n 

j= i  k=i  k= i  j = k + l  j = i + 1  k = i + l  k = i + l  j = k  

in which the latter follows from (10). Since the angular 
velocity and acceleration of link j and those of link j + 1 
are the same for the case where joint j + 1 is a translational 
joint, we obtain 

K .  3+1 fi(j) j+1 ,Rkj+l = K j + l j + ' R f i ( j + ' )  j 3+1  kj+l (37) 

Substituting (30) and (35)-(37) into (34) yields (32). 0 
As was shown by (23), the actuator force requires only 

the z-component of the joint force or the joint torque. On the 
other hand, the joint torque of a translational joint need not be 
calculated if its effect on the actuator torque of the rotational 
joint in front of it can be merged in the inertia torque of the 
rotational joint. To achieve this, we introduce the following 
notation: 

Dji) = U: - diag[(Uf)22, (U:)22,0] 
m , - 1  

- f R (  [df) X ] [ k k X ]  + [ k k X ]  [dp' X ])!RT 
k = i + l  

(38) 

where 

and joint mi is the nearest rotational joint behind joint i ,  i.e., 
joints i + 1 to mi - 1 are translational joints. The intention 
of this notation can be realized by observing (47) and (52) 
below. It should be noted that 

Equation (41), and thus Gji), can be calculated for all rota- 
tional - joints even if (Ui)z2, i = 1,. . . , n, are unknown, since 
Uj = Uj and (U; - Uj)22 = 0 for the outermost rotational 
joint j .  It follows from (39)-(41) that 

U: - diag[(Uf)22, (U322, 01 
= Ui - diag[(Ui)22, (Ui)22, 01 

+ GL! - diag[(GE!),,, (Gi!)22,0] (42) 

: ] (43) [ :  0 - (um%)33 

(Gk!)22 0 
(GL? 122 G e l )  = 

Hence Dji) is expressed in terms of the MLC's in Theorem 2. 
Lemma 4: If joint i is a rotational joint, the z-component 

of the joint torque acting on link i by joint i is 
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where 

+ Ki 

+ 
(45) 

Note that &il = -fg’ and <Zl = -tg) - : S ( ~ )  x fg’ 
Proo$ It can be shown (see the Appendix) that 

which imply that 

Comparing (47) and (38) yields 
m,-1 

At)  = DjZ) + diag[(Uf)22, (Uf)22,0] 
k=i  

- m;Rdiag[(Uks 122, )22,  OIm:RT (52) 
Substituting (51) and (52) into (46) and using (31), we obtain 
the joint torque of rotational joint i, 

ti (4 - - qi (4 + [ ,k!lz] x (a:’) - g ( i ) )  

- i-1 i s ( i )  x p j i )  + *(Ljz(i),wji))+(Dji) 

+ diag[(U;)22, (U3223 01) 

+ K ; { R * ( G ~ ) , ~ ~ ) ) + ( D ~ ) )  (53) 
n 

j = i + l  

The rule of the vector product and (25) imply that 

According to Lemmas 3 and 4, we develop a new version of 
the recursive Newton-Euler formulation in terms of the inertia 
constants of composite bodies as follows. 

Forward recursion: 

a - a + KZ*uti)qi (57) 
“!i) - i - l & p )  

&(i) a - - i-ll&.Ji-l) + Ka* (uji)qi + wj!l x uj2)qi) (58) 

aji) 1 [GjO x ] + x 3 [@) x ] 

qj  (Q = kji) , p = 

(59) 

- rR(tg) + :s(~) x fg)) (48) 

a x  -P,Pz P Y P Z  

P X P Z  a y  - P x P z  

- P x P y  P X P Y  Q z  

Consider the case where joint i is a rotational joint and joint 
mi is the nearest rotational joint behind joint i. Thus 
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Backward recursion: 

It should be remarked that pcil  = -fg) and <21 = 
-tg) - F s ( ~ )  x fg'. Also note that (62) follows from (18) 
and Kiwji) = in order to save some computation. 
In this formulation, (57)-(62) are exactly (16)-(18) of the 
original Newton-Euler formulation in an alternative form. The 
inertia force and torque (f$i and t$!) are replaced by pi ,  , i j j i ) ,  
and [ji) in (63)-(65). The backward recursion (66)-(68) is still 
similar to that of the original formulation. If in (63)-(65) we 
set K; = 0, this formulation is identical to that of Khalil and 
Kleinfinger [ 161 for a manipulator with only rotational joints. 

Although the derivation of this formulation is considerably 
long, the result is not complicated, since some terms in (64) 
and (65) are parts of a:') in (62). For instance, (62) can be 
decoupled into two parts and replaced by 

_____ 
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Thus (64) and (65) can be rewritten in more compact form 

Furthermore, a technique can be used to save some compu- 
tation for <j i ) .  Define 

(74) 

Then (67) can be reformulated as 

B. Algorithm 
The above formulation is suited for any joint of a manip- 

ulator. However, it requires knowledge of some parameters 
other than the MLC's for joint i, i < s. In order to replace 
the inertia constants with the MLC's, the individual joints 
must be taken into account. As usual, we set 

.Ip' =: -g(o) (76) 
In accord with Theorem 2, the joints are classified into three 
groups. 

1) Joints remaining in front of the first rotational joint T ,  

i.e., i < r. 
The angular velocity and acceleration of the links re- 
maining in front of joint T are all zero and Cji) are not 
required for ~ i .  Therefore, (57)-(61), (65), and (67) are 
redundant, while (62)-(64) can be replaced by 

(77) aj4 - - i-1 iRaj?)l + uji)ii 

p'  2 -  - f i . ($)  2 2 1, (78) 

,ijj4 = hiUji'qi (79) 

in which ,ijil) is also redundant (see (67)). As a result, 
only the members of the MLC's (i.e., hi) are required 
in the algorithm for i < r. 

2) Joints remaining between joint T - 1 and joint s, i.e., 
r L i < s :  
The rotational joints remaining in front of joint s are 
parallel to one another, so that <j" = k<jT) for rota- 
tional joint i (and then only its z-component must be 
computed) and 

wy 2 = U ,  ( i )  (w,!">* 

= U P )  { (wj:)l) + K,' ( u p )  . q z }  
&?) = uy($))z 

(80) 

= U:){ (&z(z)l)z + K , ~ ( u P ) ) ~ ~ ; }  (81) 

which replace (57) and (58). Note that ,ijp) is redundant 
if T = 1. 
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TABLE I1 

i < r  z = r  

r = l  r # 1  

0 

0 

1M 
- 

- 

3M 8M4A 
- 

0 4M2A 

3M2A 

pi<'> I - I8M4A 8M7A 

r < i < s  

R T 

1A 3M 

1A 3M 

1M 6M9A 
- - 
- 5M4A 

12M8A 14M10A 

- 4M2A 

4M2A 3M 

3M2A 6M3A 

8M7A 8M7A 

3M4At 4M5At 

0 1A 

8M5A 8M4A 

10M7A 8M4A 

6M9A 6M9A 

3A 3A 
- 5M4A 

17M13A 14M10A 
- 4M3A 

6M3A 3M 

22M19A 9M5A 

{ (3AE7;= n) 

12MllA 
( 6M 9A for i = n) 

0 1A 

t It additionally requires 3M2A for rotational joint s-1 or 11M6A for translational joint s-1 

As was mentioned above, (62) is replaced by (69x71). 
Applying (80) and (81), we modify (61) and (63)-(65) 
as follows: 

(85) 

(86) 

+ n1iqi + 2 K Z i  ( W p ) z 4 i  

where the constants are 

~ i i  E -(uf))y(ki)z + (Up))z(ki)y 

~ 2 i  E - ( ~ f ' ) ~  [(uf))z(ki)z + (~P))~(ki)y] 
+ [I - (uP)):](ki)z (87) 

which are the elements of the set of MLC's. Note that 
U?), i < s, are constant vectors. The reason for (84) is 
that the components of ki are not MLC's and thus are 
redundant for determining the actuator forces if 6; = 0 
(see Theorem 2). Furthermore, (60) is redundant since 
(85) does not require it to compute (<ji))*. 

In the backward recursion, only (67) needs to be mod- 
ified since only the z-component of cji) must be com- 
puted. According to (74) and (75), (67) is replaced by 

for i + 1 = s (88) 

An examination of (83x85)  indicates that all inertia 
constants in the formulation have been replaced by the 
MLC's described in Theorem 2. 

None of (57)-(68) needs to be further modified since 
joints in this group fall under the general case. However, 
(62), (64), (65), and (67) are replaced by (69)-(75), 
respectively. 

In addition, Dji) in (38) varies and must be calculated for 
each rotational joint each recursion. To save computation, (38) 
can be rewritten in the following more compact form: 

3) Joints remaining behind joint s - 1, i.e., i 2 s: 

Di(a) = U: - diag[(Uf)22, (U:)22,0] 
m,-1 

+ 1 dkWf) f o r i  2 s (91) 
k = i + l  
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TABLE I11 

Balafoutis 

et al. [4] 

Gautier and 

Khalil [lo] 

Present 

369 

M: 93n - 69 - 

A: 81n - 66 - - 

M: 92n - 127 232 142 

A: 81n - 117 218 99 

M: 89n - 82 231 139 

A: 77n - 71 219 101 

Method 

where the first two terms on the right-hand side are calculated 
by using (42) and 

different assumptions. For instance, if joint 1 is parallel to 
the direction of gravity, the operation count of the present 
formulation listed in Table I11 can be further reduced. Never- 
theless, Table 111 shows that the present formulation is almost 
as efficient as the most efficient formulation in the literature. 
This is demonstrated by the comparison for the Stanford arm, 
which has one translational joint. 

kRT (92) 

IV. IDENTIFICATION 
Our goal is to formulate the linear equations in a recursive 

form, so that the procedure for identifying the inertia constants 
of the composite body i can be executed on the basis 
of knowledge of the inertia constants of the composite bodies 

1 [ -(kk)z - ( k k ) y  0 

2(kk)z 0 -(kk)z 
Wt)  = ! R  0 2(kk), -(kk)y 

which is a constant symmetric matrix since $R, i < IC < mi, 
is constant. Note that U; is also constant. For a rotational joint 
in front of joint s, only the (3, 3)th entry of D,(i) is 
which is 

m,-1 

k=i+l 
(Dji))33 = (Uf)33 -k 2 K 2 k d k  for i < s (93) 2 + 1 to n. 

Substituting (63)-(67) into (68), we obtain 

This algorithm has been verified by a FORTRAN program. 
The number of operations for each variable in the algorithm 
is listed in Table 11. If we consider a manipulator with n 
rotational joints whose second joint is not parallel to the first 
joint, the total number of computations of the present algorithm 
is (89n - 82)M and (77n - 71)A, where “M’ and “A’ 
denote multiplication and additiodsubtraction, respectively. 
The number of computations for the coordinate transformation 
matrices i - iR  and the distance between two frames i - j s ( i - l )  
has not yet been taken into account; these total 4nM and n 
pairs of sin and cos for n rotational joints. In most industrial 
robots, adjacent joints are either parallel or perpendicular to 
each other, which reduces the number of computations for 
the product of a coordinate transformation and a vector to 
4M+2A. The total number of computations for an industrial 
robot is then 5(n - 1) (4M+2A) + 2M + 1A less than the 
number for a general manipulator since only the z-component 
of <il) needs to be computed. 

The efficiency of the present algorithm is compared with 
that of the other algorithms [4], [lo], [16] in Table 111. The 
algorithm of Gautier and Khalil [lo] is a reformulation of 
Khalil and Kleinfinger [16] using only the MLC’s. As was 
mentioned above, the present formulation is identical to that 
in [16] for a general manipulator with only rotational joints, 
so these two formulations should have same efficiency in 
this case. The difference in their efficiency shown in Ta- 
ble 111 may come from different programming techniques or 

(95) 
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(98) 

V T ~  

VR; 
P T ~  
V R ~  

for translational joint i ,  i 2 s, 
for rotational joint i ,  i 2 s, 
for translational joint i ,  r 5 i < s, 
for rotational joint i , r  5 i < s, 

= Gk! - diag [ (Gi!) 22, (G:!) 22, 03 
m,-1 v; 

+ d k w f )  (99) 
k = i + l  

provided joint mi is the nearest rotational joint behind joint i. 
Note that GkYi) in (99) is defined in (40). 

For the case of r 5 i < s, the angular velocity and 
acceleration of link i are in alignment with the direction of 
joint r (see (80) and (81). Equation (94) can be reduced to 

T .  t - - Ki { VT TiwTi - + (pjy1)2} 

+ K: { PZiW~i + (hji)) ( Dj;)) 33 

+ r+ i s ( i )  x p!yl + ~ j 2 ~ ) , }  for r 5 i < s 

(100) 

where 

*Ti E [$::I (101) 

(102) 

(103) 

( 104) 

m;-1 

(Dj i ) )33  = (Ggi)33 + 2 K 2 k d k  (105) 

It should be remarked that the parameters in the linear equa- 
tions (94) and (100) (i.e., w ~ i ,  w ~ i ,  WT;, W R ~ )  are MLC's. 

k = i + l  

For the case of i < r ,  (94) leads to 

7' 8 -  - (a?) a - g ( i ) ) 2 h i  + (pp!yl)z for i < r (106) 

since the angular velocity and acceleration of link i are both 
zero. The fact that (a!i) - g(z))2, i < r, is not zero implies 
that hi can be identified by means of (106). 

and @ denotes the ith sampling point. According to (94), 
(loo), and (107)-(110), we have 

where 

W T ~  

WR; 

W T ~  

WR; 

for translational joint i ,  i 2 s, 
for rotational joint i , i  2 s, 
for translational joint i, T 5 i < s,  
for rotational joint i ,r  5 i < s. 

(1 12) w; 

The number of rows of Ai is assumed to be greater than 
the number of columns, although the number of columns is 
different for different joints. The vector wi can be solved 
by a least squares method if the matrix A; is of full rank. 
Examining (97), (98), (103), and (104), we see that the ele- 
ments of these vectors are individually linearly independent 
over the domain of {q, q, q}. Thus there exist N sampling 
points such that A; for i 2 T are of full rank. 

Assume there is a persistently exciting trajectory (i.e., Ai, 
i = 1,. . . , n ,  are all of full rank along the trajectory). The 
linear equations (94), (loo), and (106) provide us with the 
following identification procedure: 

Identification Procedure: 
Step I: Compute Lj,(i), uji), hii), and a:;) from i = 1 to 

n for all sampling points (assume N points) of the persistently 
exciting trajectory by using (57x62). These values are saved 
in memory. If there is no rotational joint, i.e., r > n, go to 
Step 4. 
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Step 2: Use the values of LIP), UP), h?), a?) to 
calculate v, by (97), (98), (103) or (104) for each sampling 
point from point 1 to point N ,  and then form A,. Use the 
least squares method to solve w, from 

Step 3: If T > n - 1, go to Step 4; otherwise, set 
Dp) = 0 and do the following substeps for joint i recursively 
from i = n - 1 to i = T .  

3.1 For joint i, do the following substeps for each sampling 
point from point 1 to point N .  

3.1.1 If joint i + 1 is a rotational joint, compute DjZ') 
for i + 1 2 s by 

1 ( u i + l ) l l  - ( u i + 1 ) 2 2  ( u i + 1 ) 1 2  ( u i + 1 ) 1 3  

0 ( u i + 1 ) 2 3  

( u i + 1 ) 2 3  ( u i + 1 ) 3 3  

(1  14) 

or compute ( D j z 1 ) ) 3 3  for i + 1 < s by 

3.1.2 Use the values of bjz l ) ,  wiz1) ,  hi:'), 
a(i+l) 

z + l  , wi+l (i.e., parts of %+I7 k;+l and 
U;+1), and D j z ' )  to calculate jijzl) , by 
(59), (60), (64) and (65). Then compute p j Z ' )  

to pjyl and <j21. 

i 2 s by (99) or ( D j i ) ) 3 3  for i  < s by (105). 

(103) or (104). 

and <(Z+l) z+l  by (66) and (67) and transform them 

3.1.3 If joint i is a rotational joint, compute Dji) for 

3.1.4 Compute cp; by (110) and form vi by (97), (98), 

3.2 Compute y; by (108) and then form (1  11).  Finally, use 
the least squares method to solve wi from (111). 

Step 4: If T > 1, do the following substeps for joint i 

4.1 For joint i, do the following substep for each sampling 
recursively from i = T - 1 to i = 1. 

point from point 1 to point N .  

4.1.1 Use the values of b$'), wjZ1) and h(i+l) 2 + 1  to 
calculate ,!ijz1) by (59) and (64). Then compute 
p / z 1 )  by (66) and transform it to pj$. 

4.2 Form 

and use the least squares method to solve riti from 
(1  16). 

As just stated, the identification procedure requires a per- 
sistently exciting trajectory along which all modes of the 
system should be excited [35]. Since the actuator forces of 
a manipulator are bound, we can describe the persistently 
exciting trajectory in the following mathematical form. 

De$nition 2: The sampling signals {q, q, q} of a trajec- 
tory are said to be persistently exciting for the least squares 
estimation of the system (1 11) if 

N 

M; = v?(v?)T (1 17) 
k = l  

is positive definite, where N is the number of sampling points 
in the trajectory. 

It is apparent that M; = A'A;. If matrix Ai is of 
full rank, A'A; is symmetric and positive definite [14]. 
Examining (97), (98), (103), and (104), we find that A; is 
of full rank for most trajectories. This is why the trajectories 
arbitrarily selected in the literature [3], [15] are all persistently 
exciting. We performed computer simulations of the identifi- 
cation procedure on the Stanford arm for several persistently 
exciting trajectories, and the identified results matched the true 
values very closely. A detailed report on these simulations can 
be found in [22]. 

In practical identification, there are measurement errors, 
which were not taken into account in the computer simula- 
tion. The measured values, especially the joint velocities and 
accelerations, are perturbed within a certain error bound. In 
regression theory, the width of the prediction interval of the 
estimated values is proportional to the standard deviation of 
the residuals (i.e., the square root of the error mean square). 
Least squares theory [14], [18] indicates that the upper bound 
of the relative error, and thus that of the residuals, is about 
proportional to the condition number of the excitation matrix 
A; in (111). As a result, the accuracy of the least squares 
estimation depends on the condition number of the excitation 
matrix. An arbitrary, persistently exciting trajectory cannot 
ensure small condition numbers for A;, i = 1,. . . , n, so it 
is necessary to search for an optimal exciting trajectory. Two 
good references [2], [ 131 discuss this optimization problem. 

V. CONCLUSION 
This paper addresses the minimal linear combinations 

(MLC's) of the inertia parameters of a manipulator, the 
inverse dynamics in terms the MLC's, and an identification 
procedure for estimating the MLC's. These three themes are 
closely related to one another in the sense of the dynamic 
modeling of a manipulator, and so should be treated 
together. Knowledge of a set of MLC's facilitates parameter 
identification. The purpose of identifying the parameters is to 
use them in the inverse dynamics to control a manipulator. 
This paper formulates the inverse dynamics in terms of the 
set of MLC's; the proposed formulation is almost as efficient 
as the most efficient formulation of the inverse dynamics 
[lo], [16]. It is interesting that the identification procedure 
is derived from the formulation of the inverse dynamics. 
The identification procedure is simple and efficient, since it 
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does not require symbolic closed-form equations and it has 
a recursive structure. 

In the literature [3], [17], there have been successful ex- 
amples of experimental identification of the parameters of 
a manipulator whose dominant dynamics can be described 
by the standard Newton-Euler formulation, e.g., a direct drive 
robot. It is reasonable to believe that the present identification 
procedure is valid in practice for direct drive robots since the 
procedure is also based on the Newton-Euler formulation. 

The effects of friction from high-ratio gear trains on 
the manipulator dynamics will invalidate the proposed 
identification procedure for manipulators with high-ratio 
gear trains. Further investigation will be required to extract the 
friction terms from the dynamic model and to estimate them 
separately, so that the present procedure can be applied. 

APPENDIX + (j+:Rkj+l) x (fly) j+is(j)) 

Proof of (29)-(31): It is easy to show that - Ajtlj+fs(j) x (a?)d(j) ) 
d(d x (ay) j+fs(j) 

3 + 1  

mj+l 3+i  3 )  
a x (w x (U x b)) + b x (w x (w x a)) - 

= -w x (a x (b x w) + b x (a x U ) )  (Al) + &.  d(j) 3+1 j+l x   fly)^$?^)]} 
Expanding the left-hand side of (29) and applying (Al) and 
the equivalence property of (20) and (28), we then obtain (29). 

Equation (30) is due to the assignment of the normal 
by using (3% (321, (361, (37) and 

driving-axis coordinate system. Substituting (16) and (17) ay;l = ay) + ay) j+ls(j)  - K .  I t 1  (U(!) 3+lij+l 

into (30) and expanding both sides while noting that uji) = 
[O,O, 1IT, we find that (30) is true. 

It is easy to show that for any constant matrix A E R3x3, Note that q f )  is defined in (48). By (29) and 
;- fR(Aa + w x (Aw)) 

= ( i - : ~ ~ i - : ~ T ) i - : ~ ~  [j+js(A x ]  [j+Jf,(j) XI 
+ (i-IR[wx]i_fRT)(;_IRA;-jRT)i-fRw (A2) 

Since diag[a,a,O] E R3x3 and ;-IR[wxli-fRT = 
[(,_fRw)x], the second equality in (31) is true. Substituting 
(16) and (17) into (28) and replacing A with diag[a,a,O], 
we have the first equality of (31). 

formulation (16)-(23), we have 

= [b:?, x ] [b$ x ] + [b:$ x ] [dy;, x ] 
+ [df?, x ]  [bf?, x ]  + [d$ x ] [dF$ x ]  (A8) 

(A6) turns out to be (46) with 

Proof of (46): According to the recursive Newton-Euler 3 3 3 [ C j  X I  
A(!) = I(!) - m. (j) x ] 

X I  

+ [j+fsW x ] [("iRkj+i) x ] It follows from (27)-(29) that 

t$ + cy) x (fg) + mjg(j)) + [ (j+:Rkj+l) x ] [j+fs(j) 3 
X I }  

= -*(GY),wP))$(JF)) - m.c(!) x (a(j) -g(j)) (A4) 
3 3  which is identical to (47) according to (12) and (14). 

where Jy' = I:!' - mj[cY)x] [cy)x] .  It is easy to show that 
n ACKNOWLEDGMENT 

C i ~ [ : s ( j )  x ( - f&. - mjg(j))] - rs ( i )  x fz) 
j = z  
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n-1 

= C{R('+is(j) x f,'sl) (A5) 
j=i 
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