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Abstract-Precoding is an effective method to improve the 
transmission quality in multiple-input multiple-output (MIMO) 
systems. In a real-world system, the precoder is selected from 
a codebook, and its index is fed back to the transmitter. For 
a maximum-likelihood (ML) receiver, the criterion for precoder 
selection is equivalent to maximizing the minimum distance of 
the received signal constellation. The derivation of the optimum 
solution, however, may be of high computational complexity 
due to the requirement of the exhaustive search. To reduce 
the computational complexity, a suboptimum solution based 
on singular value decomposition (SVD) has been proposed in 
literature. In this paper, we propose using a QR decomposition 
(QRD) based method for precoder selection. To further improve 
the system performance, we also propose an enhanced QRD­
based selection method. With Givens rotations, the computational 
complexity of the enhanced QRD-based method can be effectively 
reduced. Finally, we combine precoding with receive antenna 
selection, and use the proposed QRD-based methods to solve 
this joint optimization problem. Simulation results show that 
the proposed approaches can significantly improve the system 
performance. 

I. INTRODUCTION 

Spatial multiplexing is a promising method to achieve high 
spectra efficiencies in multiple-input multiple-output (MIMO) 
systems [1]. The drawback of the spatial multiplexing scheme 
is that the error rate performance is greatly affected by channel 
fading [2]. One way to alleviate the performance loss is to 
adopt the precoding technique at the transmitter, where the 
transmit symbol vector is multiplied by a precoding matrix 
before signal transmission. The main problem for precoding 
is that the precoding matrix must be fed back to the transmitter, 
and it is not possible to use infinite precision for the matrix. 
In practice, a finite-set codebook, which is pre-developed and 
available at both the transmitter and the receiver, is used for 
conducting precoding. For one MIMO channel, a precoder is 
selected from the codebook at the receiver, and then the index 
of the selected precoder is fed back to the transmitter. This is 
a simple yet effective approach in real-world precoding [3]. 
Thus, how to choose the precoder from a codebook becomes 
an important issue. 

It is well-known that in precoding, different receiver struc­
tures may require different selection criteria. For linear re­
ceivers, several precoder selection methods have been pro­
posed in [3], including post signal-to-noise ratio (SNR) max­
imization and mean-square-error (MSE) minimization. In this 
paper, we focus on the maximum-likelihood (ML) receiver. 

Note that, under high SNR, the error rate performance of an 
ML receiver strongly depends on the minimum distance of 
the received signal constellation, referred to as free distance. 
Therefore, we can choose the precoder that reshapes the 
MIMO channel to have the largest free distance. However, 
it is difficult to evaluate the free distance of a MIMO channel. 
This is because an exhaustive search is usually required, 
and the computational complexity can be very high. Thus, a 
suboptimum solution based on singular value decomposition 
(SVD) was then proposed in [3]. Instead of maximizing the 
free distance itself, the SVD-based method maximizes the 
lower bound of the free distance. Recently, another lower 
bound for the free distance via QR decomposition (QRD) 
was developed in [4]. It has been theoretically proved [5] that 
the QRD-based lower bound is tighter than the SVD-based 
one. In this paper, we propose using the QRD-based lower 
bound as a precoder selection criterion. To further improve 
the system performance, we also propose a method, referred to 
as enhanced QRD-based method, to tighten the lower bound. 
With Givens rotations, the computational complexity of the 
enhanced QRD-based method can be effectively reduced. 

Except for precoding, antenna selection is also a common 
approach to improving the transmission quality in MIMO 
systems [6], [7]. It is simple to conduct antenna selection, and 
the computational complexity is very low. Antenna selection 
can be combined with precoding. With this scheme, the 
performance can be improved while the additional complexity 
is limited. For ML receivers, the objective in either precoding 
or antenna selection is to maximize the free distance. Thus, we 
can perform these two schemes jointly and optimize the joint 
selection with our proposed QRD-based methods. Note that 
antenna selection can be conducted at either the transmitter or 
the receiver. In this paper, we only consider receive antenna 
selection [8] since the overhead of required feedback bits 
will not be increased, or the system can achieve the target 
performance with less feedback bits. Simulation results show 
that the proposed methods outperform the conventional SVD­
based method and the joint precoder/antenna selection scheme 
improve the system performance even further. 

The remainder of this paper is organized as follows. Section 
II outlines the system and signal model we use. Section 
III gives the SVD-based and proposed QRD-based selection 
criteria, and Section IV describes the joint optimization for 
precoder and antenna selection. Section V provides simulation 
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results evaluating the performance of the proposed algorithms. 
Finally, we draw conclusions in Section VI. 

II. SYSTEM AND SIGNAL MODELS 

Consider a wireless MIMO system with Nt transmit anten­
nas and Nr receive antennas, as described in Fig. l. Let H 
denote an Nr x Nt (Nt � Nr) channel matrix. We assume 
that H is available to the receiver, but not to the transmitter. 
For precoder selection, the receiver first chooses a precoder F p 
from the codebook F. Note that the codebook consists of a 
finite set of precoding matrices, i.e., F = {F 1, F 2, ... ,F B}, 
where B is the size of the codebook, and P E {I,··· ,B}. 
Assume this codebook is known at both the transmitter and 
the receiver. Via a feedback channel, the receiver sends this 
index p to the transmitter. Finally, the transmitter uses the 
corresponding precoder F p for precoding. We assume each 
precoding matrix in F has unit-norm columns so that the total 
transmit power is constrained. For spatial multiplexing, the 
input symbols are multiplexed into an M x 1 symbol vector s, 
and then multiplied by an Nt x M (Nt � Nr � M) precoder 
F p before transmission. Thus, the received signal vector can 
be expressed as 

y = HFps+n (1) 

where n is the Nr x 1 Gaussian noise vector with the 
covariance a2IN�. The ML estimate of the transmit vector 
S can be expressed as 

s = min Ily - HF pSi 112 (2) 
"iES 

where S is the set of all possible transmitted symbol vectors. 
Note that when a colored noise is considered in the system 
model, we have to conduct the whitening process at the 
receiver so that the minimum distance criterion in (2) can be 
used for signal detection. 

Tx 

Rx 

Code book 1+----------1 

Fig. 1. System model for a limited-feedback precoding MIMO system. 

III. PRECODER SELECTION CRITERIA 

The free distance, which dominates the error rate perfor­
mance of ML detection for high SNR regimes, is defined as 

dJ2 -min - min (3) 

Let (Si - Sj) denote the difference vector, where i :I j. 
Thus, for a given channel realization H, the optimum precoder 
selection criterion is to choose F p E F such that the free 
distance is maximized. From (3), we observe that the optimum 
solution is found by the exhaustive search over all possible 
difference vectors. Such numerical search, however, may be 
prohibitive when a large number of transmit bit-streams and 
a high-order QAM are adopted. In practice, we consider a 
suboptimum solution in which a lower bound of the free 
distance is maximized. 

A. SVD-based selection criterion 

Assume that HF p is an Nr x M full column rank matrix, 
and its SVD is given as HF p = U A V*, where * represent 
the operation of Hermitian transpose, U is an Nr x Nr 
unitary matrix, V is an M x M unitary matrix, and A = 
[diag(Al, A2, . . .  , AM) OMX(N�-M)r is an Nr x M matrix. 
The non-zero entries of A are the singular values of HF p. 
Based on the Rayleigh-Rits theorem, a lower bound for the 
free distance using SVD was derived in [6]. It is shown that 

(4) 

where AM is the minimum singular value of the matrix HF p, 
and cP.nin is the minimum distance between any two distinct 
transmit symbol vectors. Note that cJ2min is a deterministic 
value for a fixed QAM modulation size. Therefore, the lower 
bound only depends on the minimum singular value of HF p. 
In [3], Heath et al. proposed the use of (4) to solve the precoder 
selection problem. The SVD-based precoder selection method 
can then be described as follows. With a given channel matrix 
H, conduct SVD for each HF p. Choose the precoder F p E 

F whose HF p provides the largest AM. 
With this criterion, only computing the minimum singular 

value AM of each HF p is required, and the computational 
complexity can be reduced dramatically. However, the problem 
for the SVD-based method is that the lower bound (4) may 
not be tight enough for evaluating the free distance. 

B. QRD-based selection criterion 

With QRD, we can factorize the matrix HF p in the form of 
HF p = QR, where Q is an Nr x M column-wise orthonormal 
matrix and R is an M x M upper triangular matrix with 
positive real-valued diagonal entries as ( R�,l 

R= . 

o o ) 
Via this decomposition, we can have another lower bound for 
the free distance as 

(5) 

where [R]min is the minimum diagonal value of R. Thus, 
we can have the QRD-based selection criterion described as 
follows. With a given channel matrix H, conduct QRD for 
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each HF p. Choose the precoder F p E :F whose HF p provides 
the largest [R]min. 

With the Cholesky factorization, it has been shown [5] that 
the lower bound achieved with QRD is tighter than that with 
SVD; that is 

[R]min 2:: AM. (6) 

In other words, (5) will be more accurate when evaluating 
the free distance. We hereby provide another proof for (6). 
The main idea is treating the QRD as a special case of the 
generalized triangular decomposition (GID) [9] and use the 
corresponding properties. 

Definition 1: Let g = (a1, a2, . . .  , am) and Q = 
(b1, b2, • • •  , bm) be two positive, real-valued sequences satis­
fying 

and 

b1 2:: b2 2:: . . .  2:: bm· 

We say that g majorizes Q in the product sense [10], [11] if 

I I 

II ak 2:: II bk 
k=l k=l 

for all l = 1,2, ... , m, and with equality when l = m. 

Proposition 1: The inequality in (6) holds for any M x M 
full rank matrix HF p. 

Proof. With QRD HF p = QR, we can express R as 

R = Q*HFp. (7) 

Since the singular values � = ( A1, A2, . . .  , AM) of HF p are 
invariant under the unitary transformation, it follows that HF p 
and R provide the same singular values. Note that R is an 
upper triangular matrix, which means its diagonal elements 
r. = (r1, r2, . . .  , r M ) are exactly the eigenvalues of R. Arrange 
both sequences � and r. in a decreasing order. By a theorem 
in [12], we can have that � majorizes r., which is equivalent 
to the following inequality 

I I 

II Ak 2:: II rk 
k=l k=l 

(8) 

for alll = 1,2, . . .  , M, and with equality when l = M. Thus, 
we can conclude that [R]min 2:: AM, which completes the 
proof. 

C. Enhanced QRD-based selection criterion 

The tightness of the QRD-based lower bound in (5) may 
degrade for large M even though (6) still holds. In this 
subsection, we propose a simple method to enlarge [R]min 
for each HF p so that the bound provided by QRD is even 
tighter. Assume that the same QAM modulation is adopted 

for each transmit bit-stream. Under this assumption, the ML 
detection criterion in (2) can be written as 

s = min Ily -HF pPP*Si 112 
8iES 

= min Ily - H/S� 112 
(9) 

8�ES 

where P is a permutation matrix, H' = HF pP, and si = 
P*Si. The key observation that leads to the enhanced QRD­
based method is that the solution of the ML detection in 
(9) remains the same since si is a vector obtained with an 
element ordering of Si. Note that H' is a matrix obtained 
with a column ordering of HF p, and the QRD of H' will 
give a different [R]min. This fact motivates us to adopt the 
permutation method to further tighten the QRD-based lower 
bound. Also note that the permutation method proposed here 
cannot be adopted in the SVD-based scheme since the singular 
values of HF p are independent of columns permutation. The 
details for the enhanced-QRD method can be summarized 
as follows. For a given HF p, we can obtain M! matrices 
with column permutations denoted as H1 = HFpP1,H2 = 
HF pP 2, . . .  , HM! = HF pP M!, where P n is a permutation 
matrix corresponding to a specific permutation pattern n. Let 
their QRDs be expressed as 

(10) 

where n = 1, . . .  , M!. From the above permutation method, 
M! different minimum diagonal entries for a given HF p 
can be obtained, and we can choose the maximum one, 
denoted by [R]min,maz, as the minimum diagonal entry of 
HF p. Therefore, the enhanced QRD-based method is given as 
follows. With a given channel matrix H, use the permutation 
method to compute the [R]min,maz for each HF p. Then, 
choose the precoder F p E :F whose HF p provides the largest 
[R]min,maz. 

The permutation method we propose can tighten the lower 
bound in (5), but the computational complexity will be 
increased due to the extra (M - 1) QRD operations. To 
reduce the complexity, we can use Givens rotations [10], 
[13] for computing the QRD of each Hn. First, we assume 
that H1 = Q1R1 is available via a complete QRD, and 
H2 is another matrix different from H1 by exchanging two 
neighbor columns. We then seek to obtain R2 of H2 without 
another complete QRD. Denote P as a permutation matrix that 
exchanges two specific neighbor columns of H1. We then have 

(11) 

where R1 is a near upper triangular matrix. Now, all we have 
to do is to transfer R1 into an upper triangular matrix. Since P 
only exchanges two neighbor columns of Rl. we can upper­
trianglize R1 by applying a simple Givens rotation matrix G1, 
that is, G1R1 = T, where T is an upper triangular matrix. 
Thus we can rewrite (11) as 

(12) 
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where Q2 = QI Gi is a unitary matrix. Since the QRD 
of a full column rank matrix is unique [10], we know that 
Q2T in (12) is the QRD of H2, and T is equal to R2. 
In other words, we obtain R2 by simply left-multiplying a 
Givens rotation matrix on RI rather than by performing a 
complete QRD on H2. Therefore, we can dramatically reduce 
the computational complexity of the enhanced QRD-based 
scheme. Fig. 2 illustrates (for M = 3) how each Rn can 
be derived with Givens rotations. 

82 =[h2 hi h31 83 =[hl h3 h21 

1 1 
84 =[h2 h3 hl1 85 = [h3 hi h21 

1 
86 =[h3 h2 hl1 

Fig. 2. The ordering of computing each Rn of HF p. M = 3 

D. Capacity-based selection criterion 
The criterion of capacity maximization is also widely con­

sidered in the precoding problem [31. With a given equivalent 
channel matrix HF p, the capacity can be expressed as 

C = log2 det(IM + � F;H*HF p) (13) 

where p is the average SNR per receive antenna, detO denotes 
the determinant, and 1M is an M x M identity matrix. 
Therefore, the capacity-based method can be given as follows. 
Compute channel capacity using (13) for each HF p. Choose 
the precoder F p E :F whose HF p provides the largest C. 

The capacity-based selection criterion is derived from a 
general capacity formula, which is independent of the receiver 
structure. Thus, it may not provide the guaranteed performance 
improvement for some channel realizations. Also, the permu­
tation method in our enhanced QRD-based scheme cannot 
be adopted in the capacity-based method since the channel 
capacity C is invariant under the column permutation of the 
matrix HFp. 

E. Complexity comparisons 
One way to quantify the complexity of the matrix compu­

tation is to count the number of floating operations (FLOPS). 
Several efficient algorithms for conducting QRD and SVD are 
given in [131. In general, SVD requires more FLOPS than 
QRD does. As a result, the QRD-based selection scheme not 
only has better performance, but also requires lower compu­
tational complexity. For the enhanced QRD-based scheme, 
the computational complexity of performing QRD on all 
Hn (for a given HF p) is 0(M!M3). As mentioned, we 
can reduce the complexity via Givens rotations, in which 
only one complete QRD and (M! - 1) upper-triangulization 

operations are required. Each upper-triangulization operation 
only needs 0(3 x 42) FLOPS. Thus, the overall computational 
complexity is reduced from 0(M!M3) to 0(M3 + 48(M! -

1)) � 0(M3 + M!) . As for the capacity-based method, 
the computational complexity is 0(M3), which mainly arises 
from computing the determinant and the matrix multiplication 
F;H*HF p in (13). Note that there is an additional overhead 
for the capacity-based method since the variance of the chan­
nel noise is required. 

IV. JOINT PRECODER AND ANTENNA SELECTION 

Antenna selection is a simple yet effective method to 
enhance the diversity gain in a wireless MIMO system. It 
has been shown that with ML detection, the optimum antenna 
subset is the one giving the largest free distance. We hereby 
propose a scheme that combines transmit precoding with an­
tenna selection. Note that antenna selection can be conducted 
at either the transmitter or the receiver side. In this paper, we 
only consider the receive antenna selection. The advantage of 
receive antenna selection is that the feedback overhead will 
not be increased. The system model for joint precoder and 
receive antenna selection is shown in Fig. 3. 

Tx 

MIMO 

Channel 

Rx 

Codebook 1+------------1 

Fig. 3. System model for joint precoder and receive antenna selection in a 
MIMO system. 

Assume that Nt � Nr > M. It means we have (�) receive 
antenna subsets to choose. According to some criterion, the 
receiver jointly determines the optimum precoder F p E :F , 
and the receive antenna subset indicated by the index q. Note 
that, via the feedback channel, only the index p will be sent 
back to the transmitter since the antenna selection is performed 
at the receiver side. The received signal in (1) can be rewritten 
as 

(14) 

where Hq is the channel matrix corresponding to the selected 
receive antenna subset. The ML detection can then be rewritten 
as 

min (15) 

Thus, among B (�) possible combinations, we choose a pair 
of HqF p that can give the largest free distance. The joint 
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precoder and receive antenna selection problem can be viewed 
as a two-dimensional optimization problem as shown in Fig. 
4. As mentioned, the optimum solution needs an exhaustive 
search over all possible difference vectors in (IS), which 
requires high computational complexity. Thus, we can use the 
suboptimum solution described in Section III for this joint 
optimization problem. The inequalities (4) and (5) can be 
rewritten as 

(16) 

and 

(17) 

respectively. Since [R]min � AM, we expect that (17) will be 
a better criterion for the optimization problem. Furthermore, 
the enhanced QRD-based method can also be used for further 
performance improvement. Similarly, the computational 
complexity of the enhanced QRD-based method can be 
reduced by applying Givens rotations. 

F 2 

F I 

Free Distance #2 

Free Distance # I 

s bs u et#1 

Free Distance #(8+2) 

Free Distance #(8+ I) 

subset #2 

· . .  

· . .  

· . .  

� ______________ �y� ______________ J 
Antenna Selection 

, 

Fig. 4. Two-dimensional search for the optimum Hq F p in joint optimization 
problems. 

V. SIMULATION RESULTS 

In this section, we report simulation results demonstrating 
the effectiveness of the proposed algorithms. In simulations, 
we consider a flat-fading MIMO channel, of which the entries 
are assumed to be Li.d complex Gaussian random variables 
with zero mean and unit variance. The QPSK modulation is 
assumed at the transmitter while the ML detection is conducted 
at the receiver. The codebooks we use in the simulations are 
obtained from [14]. 

Fig. 5 shows the bit error rate (BER) performance of 
precoding. Here, Nt = 6, Nr = M = 3, and B = 64. As 
we can see, the scheme without precoding (3 x 3) suffers 
from the performance loss in channel fading. For precoding, 
the QRD-based method indeed outperforms the SVD-based 
method, and the enhanced QRD-based method achieves the 
best performance, about 2 dB better than the SVD-based 
method. Besides, the performance of capacity-based method 
is slightly better the SVD-based method but worse than the 
proposed methods. Note that the computational complexity of 
the capacity-based method is higher since the receiver needs 
to estimate the variance of channel noise. 

-+- No Precoding (3x3 ML) . 
10

-
' -+- SVD-based 

__ Capacity-based 
--e- ORO-based 

- Enhanced ORO-based 
.......... ..... .. 

10
-6�==::;:::::==:::I::="------'-______ L-____ --'-____ �� 

4 6 8 10 12 
Average SNR(d8) 

14 16 

Fig. 5. BER performance comparison for precoder selection with Nt = 

6, Nr = 3, M = 3, and B = 64. 

-+- No Preceding (2x2 ML) . 
-+- SVD-based 
__ Capacity-based 
--e- ORO-based 
- Enhanced ORO-based .

. 

1O-6�==C==C:::==C"--__ ,--__ -,-__ ---,,--__ -,-__ �L..J 
2 4 6 8 10 12 

Average SNR(d8) 
14 16 18 

Fig. 6. BER performance comparison for precoder selection with Nt = 

4, Nr = 2, M = 2, and B = 64. 

Fig. 6 compares the BER performance of precoding for the 
case with Nt = 4, Nr = M = 2, and B = 64. Similarly, the 
proposed selection methods outperform the SVD-based and 
capacity-based methods in high SNR regimes. In this set of 
simulations, the gap between the QRD-based and the enhanced 
QRD-based method is not obvious since we only have two 
permutation patterns for M = 2. 

Fig. 7 shows the performance improvement for joint pre­
coding and receive antenna selection. In this case, we let 
Nt = 4, Nr = 3, M = 2, and B = 16, which means we 
have 3 receive antenna subsets to choose. As we can see, the 
method is very effective for performance improvement. The 
proposed joint selection methods outperform other selection 
methods. Compared to the result in Fig. 6, the capacity-based 
method exhibits some performance loss for high SNR. This 
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.••. . '" . 

--+- No Joint Selection (2x2 ML) . 
-+- SVO-based 
__ Capacity-based 
-e- ORO-based 
-- Enhanced ORO-based 

1O-6L::::====:I::::====:::::!.. __ '--__ --'-__ ----L��___.J 
4 6 8 10 

Average SNR(dB) 
12 14 16 

Fig. 7. BER perfonnance comparison for joint precoder and receive antenna 
selection with Nt = 4, Nr = 3, M = 2, and B = 16. 

0: LU '" 

--+- Precoder Selection, 8=4 
-+- Precoder Selection, 8=8 
__ Precoder Selection, 8=16 
-e- Precoder Selection, 8=64 
-- Joint Selection , 8=4 

1O-6l':===:::i::::==S===�_'____ __ ___'__ ___ '__ __ ___'___� 
4 6 8 10 12 

Average SNR(dB) 
14 16 

Fig. 8. BER perfonnance comparison between joint selection (Nt = 
4, Nr = 3, and M = 2) and precoder selection (Nt = 4, Nr = 2, and 
M= 2). 

can be explained by the fact that it maximizes the channel 
capacity, not the free distance. Thus, its performance may 
degrade for some channel conditions, Besides, we observe that 
the gap between the QRD-based and SVO-based method is 
reduced somewhat since we only have (�) 24 

= 48 candidate 
matrices in this case. Fig. 8 shows the reduction of the required 
feedback bits when the joint selection scheme is considered, 
Here, all results are obtained with the enhanced QRD-based 
method, We observe that at least log�4 - log� = 4 bits can be 
saved when an extra antenna is used at the receiver. Note that 
increasing the receive antenna may not be always possible for 
some applications due to the size constraint at the receiver. 
Thus, the joint selection method can be viewed as a tradeoff 
between the feedback bits and the number of receive antennas. 

VI. CONCLUSIONS 

In this paper, we propose a QRD-based precoder selection 
method for ML receivers. Theoretical and simulation results 
indicate that the QRD-based method is not only better than the 
conventional SVO-based method, but also has lower computa­
tional complexity. To further improve the performance, we also 
propose the enhanced QRD-based method that can provide 
a more accurate estimate of the free distance. Using Givens 
rotations, the computational complexity of the enhanced QRD­
based method can be reduced effectively. Besides, we combine 
the precoding with receive antenna selection, and solve the 
selection problem using the proposed methods. Simulations 
show that the proposed approaches can provide the significant 
performance improvement. Moreover, the proposed QRD­
based approaches will exhibit a significant advantage when 
sphere-decoding (SO) [15], an efficient algorithm for the ML 
detection, is used at the receiver. Note that the QRD is also 
required in the SO algorithm, which implies that the same 
QRD unit can be shared by proposed selection methods and 
the SO algorithm. Based on the above reasons, we conclude 
that the QRD-based selection algorithms will be much more 
efficient in real-world applications. 
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