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A Parallelism Analyzer for 
Conservative Parallel Simulation 

Yung-Chang Wong, Shu-Yuen Hwang, and Jason Yi-Bing Lin 

Abstract-Most small-scale simulation applications are imple- 
mented by sequential simulation techniques. As the problem size 
increases, however, sequential techniques may be unable to man- 
age the time complexity of the simulation applications adequately. 
It is natural to consider re-implementing the corresponding large- 
scale simulations using parallel techniques, which have been 
reported to be successful in reducing the time complexity for 
several examples. However, parallel simulation may not be effec- 
tive for every application. Since the implementation of parallel 
simulation for an application is usually very expensive, it is 
required to investigate the performance of parallel simulation for 
a particular application before re-implementing the simulation. 
The Chandy-Misra parallel, discrete-event simulation paradigm 
has been utilized in many large-scale simulation experiments, 
and several significant extensions have been based on it. Hence 
the Chandy-Misra protocol is adopted here as a basic model of 
parallel simulation to which our performance prediction tech- 
niques are applied. For an existing sequential simulation program 
based on the process interaction model, this paper proposes 
a technique for evaluating Chandy-Misra parallel simulation 
without actually implementing the parallel program. The idea is 
to insert parallelism analysis code into the sequential simulation 
program. When the modified sequential program is executed, the 
time complexity of the parallel simulation based on the Chandy- 
Misra protocol is computed. 

Our technique has been used to determine whether a giant 
Signaling System 7 simulation (sequential implementation) should 
be re-implemented using the parallel simulation approach. 

Index Terms- Chandy-Misra protocol, critical path analysis, 
Discrete event simulation, parallelism, parallel simulation 

I. INTRODUCTION 

N A PARALLEL SIMULATION, the simulated system is I partitioned into several subsystems, each of which consists 
of a nonoverlay subset of state variables. These subsystems 
are concurrently simulated by a set of processes that com- 
municate by exchanging timestamped messages. The events 
scheduled for a process can modify only the state vari- 
ables of the corresponding subsystem. The processes execute 
concurrently to complete a simulation run. To produce the 
correct simulation results, the executions of the processes must 
follow a set of synchronization rules [l]. The performance of 
parallel simulation depends on two factors: the parallelism 
existing in the system to be simulated and the overhead 
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of the parallel simulation protocol running on a particular 
computer architecture. The inherent parallelism of a simu- 
lation application was first studied by Berry and Jefferson 
[2] and Livny [3]. Algorithms have been proposed to study 
the inherent application parallelism when every process is 
executed by a separate processor. Lin [4] proposed an inherent- 
parallelism analysis algorithm for the case where more than 
one process may be mapped to a processor under different 
process scheduling policies. This paper extends previous re- 
sults by considering both the inherent parallelism and the 
parallel simulation protocol overhead. The paper proposes a 
parallelism analysis algorithm for the Chandy-Misra protocol 
[5], in which more than one process may be mapped to a 
processor. The parallelism analysis algorithm is integrated 
with the sequential simulation program. When this modified 
sequential simulation is executed, the time complexity of the 
parallel simulation based on the Chandy-Misra protocol is also 
computed. Our technique is a powerful tool for determining 
the performance of the Chandy-Misra parallel simulation for 
an existing sequential simulation program. 

This paper is organized as follows. Section I1 introduces 
the concept of event precedence graph. Section I11 describes 
the Chandy-Misra protocol. Section IV proposes a parallelism 
analysis algorithm for Chandy-Misra parallel simulation. 

11. THE EVENT PRECEDENCE GRAPH 

The execution of a discrete event simulation follows causal- 
ity constraints, and the relationships between the events can 
be described by an event precedence graph [21, E63, 171, 141. 
The concept of event precedence graph is illustrated by the 
following example. Consider the simple network in Fig. l(a). 
Fig. l(b) shows the event precedence graph for a simulation 
scenario of the network. 

In this figure, the timestamp of event e; is i. 
In the event precedence graph, a vertex represents the 

occurrence of an event. A dashed arrow from event ei to 
event e j  means that both ei  and e j  are scheduled for the 
same process, and e; occurs earlier than e j  does (cf. events 
e4 and e6 in Fig. l(b)). A solid arrow from ei to e j  means 
that the scheduling of e j  is due to the occurrence of ei 
(cf. events e l  and e2 in Fig. l(b)). To correctly simulate the 
behavior of the network, event ei must be processed before 
e j  if there is an arrow (either dashed or solid) from e; to 
e j  in the event precedence graph. In a sequential simulation 
implementation, all events are processed in nondecreasing 
timestamp order. This sequential execution engine guarantees 
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Fig. 1. Topology, the event precedence graph, and the sequential execution time. 

that the relationship in the event precedence graph is not 
violated. Suppose that the time to process event el, e3, e5 
or e7 is I unit, and the time to process any one of the other 
events is 3 units. The execution order and the elapsed time 
after an event is executed in a sequential simulation are given 
in Fig. l(c). 

In Fig. l(b), an event execution time is associated with each 
vertex (i.e., event). A communication delay is associated with 
each solid arrow (the cost for the dashed arrow is 0). Since 
the graph is acyclic, a maximal weighted path can be found. 
This path is called the critical path and its cost is the minimal 
time required to finish the execution of the parallel simulation. 
The critical path does not consider the overhead for parallel 
simulation protocols. In other words, the cost for the critical 
path is a lower bound for the execution time of any parallel 
simulation approach. To evaluate the time complexity for a 
particular parallel simulation protocol, new techniques (such 

The sequential execution 

(C) 

as the Chandy-Misra parallelism analyzer developed in this 
paper) are required. 

111. THE CHANDY-MISRA PROTOCOL 
From the definition of the event precedence graph, a parallel 

simulation protocol is correct if all events occurring at a logical 
process are executed in nondecreasing timestamp order. The 
Chandy-Misra protocol follows two waiting rules to satisfy 
the causality constraint. We first describe the assumptions of 
a Chandy-Misra simulation. 
The FIFO message sending assumption: Communication be- 

tween two processors preserves the first-in-first-out (FIFO) 
property (i.e., the messages are received in the order they 
are sent). 

The static topology assumption: The network topology is static 
(i.e., the communication channels between processes do not 



630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995 

change during simulation). If process p;  may send a message 
to process p j ,  then a communication link is directed from p;  
to p j .  The link is called an input channel (output channel) 

The original Chandy-Misra protocol [5] further assumes that 
the buffer capacity of a process to store the incoming messages 
is limited. The purpose of this restriction was to limit the 
memory usage of a Chandy-Misra simulation. However, Lin 
and Preiss [8] and Jefferson [9] showed that in general limiting 
the input buffer capacities of processes does not limit the total 
memory usage for a Chandy-Misra simulation. We assume 
that the input buffer capacity of a process is unlimited. For 
simplicity, we make three assumptions about the simulated 
network. It is easy to see that our results can be generalized. 

There are three types of processes in the simulation. 
A source process does not receive any messages from 
other processes. A server process may send and receive 
messages. A sink process does not send any messages to 
other processes. In Fig. l(a), pl is a source process, p2 

and p3 are server processes, and p4 is a sink process. 
A source process may schedule events to itself. Neither 
server processes nor sink processes may schedule events 
to themselves. 
[The FIFO event generation assumption] A source 
process pi  schedules events in nondecreasing timestamp 
order. That is, if pi  schedules el earlier than e2, then 
e1.h 5 e2.h (where e h  is the timestamp of e). 

The concept lookahead is used in the Chandy-Misra pro- 
tocol. Let e.E be the set of events scheduled due to the 
execution of event e. The lookahead of e is a quantity 
&(e)  such that for every event e’ E e.E, e’.ts 2 e.ts + 
€(e). In a queueing network simulation, lookahead can be 
regarded as the minimum service time of a server. Studies [lo], 
[ 111 have indicated that the larger the lookahead values, the 
better the performance of a Chandy-Misra simulation becomes. 
Several techniques [ 121, [ 131 have been proposed to explore 
lookahead. 

Two waiting rules ensure the correctness of the Chandy- 
Misra protocol. 

The input waiting rule: Before process pi  executes an event e,  
pi  must receive from each of its input channels an event 
(including e),  and e must have the smallest timestamp 
among the events in the input channels. 

The output waiting rule: Consider an event e’ created at 
process p i ,  which is scheduled for process p j .  Event e’ 
is sent to p j  after pi  has started executing event e, where 
e’.ts 5 e.ts + &(e) .  If several events satisfy this inequality, 
then they are sent to p j  in nondecreasing timestamp order. 

The output waiting rule and the FIFO message sending as- 
sumption ensure that a process always receives messages 
from an input channel in nondecreasing timestamp order. This 
property, together with the input waiting rule, guarantees that 
all events occurring at a process are executed in nondecreasing 
timestamp order. Note that the output waiting rule is not 
required for a source process because of the FIFO event 
generation assumption. We define the lookahead of every event 
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Fig. 2. Execution of the Chandy-Misra simulation for the 4-process network. 

e executed at a source process as &(e) = 00. (Note that 
&(e)  = 00 does not imply that the execution of e at a source 
process will schedule an event with timestamp m. The infinite 
lookahead value is used to bypass the output waiting rule for 
the source process.) 

Two types of control messages are introduced in the 
Chandy-Misra protocol: end-of-simulation (eos) messages and 
null messages. The eos messages are used to terminate the 
parallel simulation. After a source process has generated the 
last event, it sends an eos message to each of its output 
channels and enters the termination state. An eos message 
has timestamp 00 and lookahead value 00. When a server 
process p ;  executes an eos message, it generates and sends 
an eos message to each of its output channels. Then pi  
enters the termination state. When a sink process executes 
an eos message, it simply enters the termination state. All 
processes eventually enter the termination state and the parallel 
simulation terminates. Note that after a process enters the 
termination state, it never become active again. 

Fig. 2 illustrates the execution of the Chandy-Misra simu- 
lation for the event precedence graph in Fig. l(b). 

We assume that the message sending delays are 0 in 
the Chandy-Misra simulation. We further assume that the 
lookahead values for e2, e4, e6, e8, eg ,  elo, ell ,  and e12 are 3. 
Note that the lookahead values for e l ,  e3, e5, and e7 are 00 

because they are executed by the source process p l .  After pl 

has executed an event, the newly scheduled events are sent to 
the destinations immediately (cf. e2 and e3). Process p3 @2) 

has only one input channel. According to the input waiting 
rule, an arrival event is executed immediately if p3 is idle (cf. 
e4) or is executed after p3 has executed the previous event 
(cf. e6). According to the output waiting rule, el0 is not sent 
to p4 until time 8; i.e., when p3 starts executing ea. Note that 
e 6 . t ~  + &(eg) = 6 + 3 < e1o.h = 10 < e 8 . t ~  + ~ ( e g )  = 11. 
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Fig. 3. 
messages without any progress. 

Deadlock situation. Processes p l  , p 2 ,  p 3 ,  and p4 are waiting for input 

Event e9 arrives at p4 at time 4. However, its execution is 
delayed until elo arrives (due to the input waiting rule). The 
eos messages 21,2 and 21,3 are sent from p l  to p2 and p3 ,  

respectively. These messages arrive at their destinations at time 
4 (the time when the execution of e7 is completed) because 
there is no message sending delay. After p3 has processed 
21,3 (the execution time for an eos message is 0), a new eos 
message 23,4 is sent to p4.  

A null message provides only timing information. For 
example, after p ;  has executed an event e, it may send a null 
message e’, where e’.ts = e.ts + €(e ) ,  to the output channel 
connected to p j .  When p j  receives e’, it knows that it will 
never receive any message with timestamp less than e‘.ts from 
p;. This information is used to reduce the overhead of the input 
waiting rule as well as to avoid deadlock [ 5 ] .  In a Chandy- 
Misra simulation, deadlock may occur in a feedback loop. 
Consider the feedback network in Fig. 3. The initial events 
are generated by the source process po .  At the beginning, po 
sends an event message e to process pl.  According to the input 
waiting rule, p l  cannot handle e before it receives a message 
from process p4 .  Unfortunately, p4 will not produce any output 
message before p l  produces the first output message. Thus, 
processes p l  , pa,  p3 ,  and p4 fall into a deadlock situation. 

Two approaches have been proposed to resolve the deadlock 
situation. Deadlock avoidance [ 141 uses null messages to avoid 
deadlock. In Fig. 3, suppose that process p i  (for 1 5 i 5 4) 
has a constant lookahead value E;  and its local clock clc; = 
0 initially. At the beginning of execution, pi  sends a null 
message with timestamp ck; + E to the output channel. When 
the destination p j  receives the null message, p j  is essentially 
promised by p ;  that it will not send a message to p j  carrying a 
timestamp smaller than E;, and clcj is incremented from 0 to E ; .  

Then p j  sends a null message with timestamp c lc j+~j  = E ; + E ~  

to its output channel. After the null messages have circulated 
in the loop several times, pl eventually receives a null message 
with timestamp larger than e h .  According to the input waiting 
rule, p l  executes e and the deadlock is avoided. 

In deadlock recovery, no null messages are sent. A separate 
mechanism is used to detect when the simulation is dead- 
locked, and another mechanism is used to break the deadlock. 
Deadlock detection mechanisms are described in [ 151, [ 161, 
[17]. In the deadlock recovery mechanism, all processes co- 
operate to find the events with the smallest timestamp in the 
system. These events can be safely executed, and the deadlock 
situation is thus recovered. 

IV. A PARALLELISM ANALYZER 

We first consider the parallelism analyzer for deadlock 
avoidance simulation. Then we extend the algorithm for dead- 
lock recovery simulation. 

Consider an existing sequential simulation program. We 
investigate the performance of the corresponding Chandy- 
Misra parallel simulation without actually implementing the 
parallel program. The idea is to insert some instructions (to 
be described) into the sequential simulation program. The 
inserted code computes the elapsed time of the corresponding 
Chandy-Misra parallel simulation along with the execution of 
the sequential simulation. 

We assume that the sequential program follows the process 
interaction model [ 181, in which the simulated system is mod- 
eled by a set of objects. These objects can be directly mapped 
to the logical processes in parallel simulation. We assume 
that every process is executed by a dedicated processor (we 
thus use the terms “process” and “processor” interchangeably). 
This restriction is relaxed later in this section. The modified 
sequential simulation that performs parallelism analysis for 
the corresponding Chandy-Misra simulation is referred to as 
the parallelism analyzer. The process-to-processor mapping 
affects the performance of the parallel simulation. To study the 
process assignment problem, one may execute the parallelism 
analyzer with different mappings. 

In the parallelism analyzer the eos messages and the null 
messages are also included to simulate the Chandy-Misra 
protocol. The parallelism analyzer generates an eos event for 
every downstream process of a source process pi  after it 
processes the last event scheduled for p i .  When the parallelism 
analyzer processes an eos event for a server process p j ,  it 
generates new eos events for the downstream processes of p j .  

Suppose that an event e occurs at process p i ,  and its occurrence 
results in the scheduling of another event e’ for process 
p 3 .  When the parallelism analyzer processes e, it generally 
schedules a null message with timestamp e.ts + € ( e )  for every 
downstream process of p i .  (In some implementations, no null 
message is sent to p j .  In other implementations, null messages 
may be sent by demand [17]. Our parallelism analyzer can 
easily be tailored to study implementations with different null 
message sending policies.) 

Several data structures are used in the parallelism analyzer. 

Every event e is associated with a real number e.a which 
represents the (real) time when e arrives at its destination 
(i.e., the process that executes e) in the corresponding 
Chandy-Misra simulation. Initially, e.a = 0 (if e is an 
event pre-scheduled at the beginning of the simulation) 
or e.a = 00 (otherwise; in this case, the arrival time of e 
will be computed and assigned to e.a later). 

For a channel directed from pi to p j ,  a set Qi, j  is used in 
the parallelism analyzer to hold all “floating” events sent 
from p;  to p j .  The time when a “floating” event is to be 
executed in the Chandy-Misra simulation has not yet been 
determined. When an event is processed in the sequential 
simulation, the parallelism analyzer inserts the event into 
the corresponding Qi,j .  This event is removed from Qi,j 
after its execution time in the Chandy-Misra simulation 
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/* Initialization */ 
for dl i , j  do  1; c O,Q.,, - 0, and 0. + 8 
for all e E L do  e.a c 0 ;  /’ e is a preieheduled event */ 
/’ The main Imp * I  
while L # 0 d o  

execute the next event e in L. and L - L - {e}; 

for all e‘ E c.E do  d.0 - m and L - L U (e’); 

Q,,, - Q,,, U (e); /* e is created at p, and is scheduled for p, */ 
while there exists n such that R, # 0 do  /* suppose that R, E Qm,* */ 

1, - m=Il.,dh)l; 

1” - 1, t ? ( E “ ) ;  

fordle’€O.iuchthate’.fs 5 R,.ts+c(En)doe’.a - fn+6(e’)and0, -O.-(e’}; 

if E ( & )  = m then for dl e‘ E &.E do e’.a t 1. + 6(e‘); 

else for all e’ E E,.E do  0, - 0, U (e’}; 

Q”.“ - Q.,.,,, -(en}; 
end while 

end while 

T = m u  f.; 
I<.<N 

Fig. 4. The parallelism analyzer (assumes every process is executed by a 
dedicated processor). 

is determined. Note that Qi,i exists if and only if pi is 
a source process. 
For every server process p i ,  the parallelism analyzer 
maintains a set 0; which holds the events generated at pi 
for which the departure time of the events (from p i )  in 
the Chandy-Misra simulation has not yet been decided. 
An event e is removed from 0; after the parallelism 
analyzer has determined its departure time (and thus its 
arrival time; in other words, e.a is assigned a finite 
value) It is clear that a sink process does not need this 
data structure. According to the FIFO event generation 
assumption, 0; = 0 for a source process pi. 
For every process p i ,  the parallelism analyzer maintains a 
variable ti. When an event (occurring in p i )  is processed 
by the parallelism analyzer, ti represents the elapsed time 
of the Chandy-Misra simulation after the event is exe- 
cuted. At the end of the modified sequential simulation, 
ti represents the time after p;  finishes the last event in 
the Chandy-Misra simulation, and the execution time of 
the Chandy-Misra simulation is T = max ti, where N 
is the process number. 

l<i<N 

The parallelism analyzer is described formally in Fig. 4. 
In this figure, L represents the event list in the sequential 

simulation. The initialization phase resets the data structures 
ti, Q;,j,  and Oi (Line Oa). At the beginning of the sequential 
simulation, several pre-scheduled events are in the event list 
L. These events are also pre-scheduled in the correspond- 
ing Chandy-Misra simulation, and their arrival times in the 
Chandy-Misra simulation are 0 (Lin Ob). The main loop (Lines 
0-10) performs the sequential simulation (Lines 1 and 2) and 
determines the progress of a process in the corresponding 
Chandy-Misra simulation by modifying Q;,j, ti, and 0i (Lines 
3-10). It is clear that the sequential simulation terminates when 
L = 8 at Line 0. Line 1 removes the event e with the smallest 
timestamp from the event list L and executes the event. At 
Line 2, e.E represents the set of events scheduled due to the 
execution of e. Every event e’ E e.E is inserted in L in the 
timestamp order. The time when e‘ arrives at its destination 
in the Chandy-Misra simulation is not determined, and e’.a 

is assigned the value ca. At Line 3, e is inserted in Qj,;. 
In other words, e is sent from p j  to pi  in the Chandy-Misra 
simulation (however, its arrival time may not be determined at 
this moment). In the loop Lines 4-10, the parallelism analyzer 
tests whether the time when an event e E Q,,, (for some 
m, n) available for execution in the Chandy-Misra simulation 
(i.e., the time when e satisfies the input waiting rule) is known. 
If so, the time when the execution of e is completed in the 
Chandy-Misra simulation is computed and assigned to t,. The 
parallelism analyzer also tests whether any event e’ E 0, 
satisfies the output waiting rule . If so, the time when e’ arrives 
at its destination is computed and assigned to e’.a. 

At Line 4, the event 8, is defined as follows: Let I ,  be the 
set of processes that may schedule events (i.e., send messages) 
to p,. Suppose that the following two conditions are satisfied 
in the parallelism analyzer: 

For every p ,  E I,, Q,,, # 0. 
For every p ,  E I,, let e,,, be the event with the 
smallest timestamp in Q,,,. Then e,,,.a < CO (i.e., 
the arrival time of e,,, in the Chandy-Misra simulation 
is determined). 

Then 8, is the event with the smallest timestamp among 
e,,, for all m , p ,  E I,. The time when 0, is available for 
execution in the Chandy-Misra simulation is defined as 

In Appendix A (Lemma l), we prove that at Line 4 of the 
parallelism analyzer, all events sent from p ,  to p ,  with 
timestamps less than e,,,.ts are processed before t ,  in 
the Chandy-Misra simulation. Lemma 1 together with the 
definition of 8, implies that after t,, 8, is the next event 
to be executed at p ,  in the Chandy-Misra simulation. Lemma 
2 (a) in Appendix A ensures that if e.a < ca, then this finite 
value is the time when the event arrives at its destination 
in the Chandy-Misra simulation. Thus, by the input waiting 
rule, ~ ( 0 , )  is the time when 8, can be executed. This event 
is executed at time max[t,,p(O,)]. Thus, after Line 5 ,  t ,  
represents the time when 0,’s execution starts. At Line 6, 
0, represents the set of events scheduled by p ,  that have not 
been sent to the destinations before time t,, i.e., before 8, is 
selected for execution (cf. Lemma 6 (c) in Appendix 6). By 
the output waiting rule, these events e’ are sent at time t ,  if 

e’.ts 5 8,.ts +&(On). 

At Line 6, for every e’ E 0, that satisfies the above inequality, 
e’ arrives at its destination at time e’.a = t ,  + S(e’), where 
S(e’) is the message sending delay for e’. Also, after t,, e’ is 
removed from 0,. At Line 7, the execution of 8, is completed 
at time t ,  + ~ ( 8 , ) ,  where ~ ( 8 , )  is the execution time of 8,. 
Lines 8 and 9 handle the events scheduled due to the execution 
of 8,. If ~ ( 0 , )  = cc then either p ,  is a source process or 0, is 
an eos event. In either case, all events e’ scheduled due to the 
execution of 8, are sent to the destinations at 0,’s completion 
time. Thus, e’.a = t ,  + 6(e’) at Line 8. If € ( e )  < 00, then 
by the output waiting rule, all events e’ E e.E are stored in 
0, at Line 9. Since 8,’s execution is completed at t,, 8, is 
removed from Q,,, at Line 10. After the modified sequential 
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J* Initialization */ 
for aJ i, j do Q.> - 0, and 0, - S; 

for 111 e E L do e.a + 0; I* e is a pre-scheduled event ‘1 
fork = 1 to K dotk =O; 
1’ The main loop * J  

while L # 0 do 

execute the next event e in L. and L + L - (e}; 

for all e‘ E r.E d o  e’.o c m and L - L U {e‘); 

Q,,, - Q,,, U {e); /*  e is created at p, and is scheduled for p, */ 
while there exists n such that B. # # d o  I* suppose that 8. E Qm.%, and pn E Pk $1 

t k  - m a x [ t k . d W  

foralle‘E O,suchthate’.la <Bn. t s+~(Bn)doe ’ .a  +tk+6(c’)andO. -On-(.?); 

t k  e l k  t ?(en); 
if <(e,,) = m then for all e’ E #..E d o  d.0 - 1k t 6(e’); 

else for all e’ E &.E d o  0. - 0. U {e’); 

4 m . o  - Qm.n - (On); 
end while 

end while 

T = max fk; 
1sksK 

The parallelism analyzer (more than one process may be mapped to 
a processor). 

simulation has been completed (i.e., L = 0), ti represents 
the completion time of the last event executed at process p i ,  
and the execution time T of the Chandy-Misra simulation is 
computed as 

T =  max ti 

at Line 11 (cf. Theorem 1 in Appendix A). The execution 
of the parallelism analyzer in Fig. 4 for the event precedence 
graph in Fig. l(b) is described in Appendix B. 

The parallelism analyzer in Fig. 4 can easily be generalized 
to the case when more than one process is executed by a 
processor. Suppose there are K processors available for the 
parallel simulation, where K 5 N .  Let Pk be the set of 
processes mapped to processor k .  The modified parallelism 
analyzer is shown in Fig. 5. In this algorithm, variable ti 
represents the progress of the processor i (where 1 5 i 5 K )  
and in Lines 5-8, t ,  (in Fig. 4) is replaced by t k ,  where 
p ,  E 4. Fig. 5 is exactly the same as Fig. 4 except that 
the elapsed times considered in the Chandy-Misra simulation 
are for processors. 

Our algorithm can also be extended to study the Chandy- 
Misra deadlock recovery protocol. To compute the execution 
time of a deadlock recovery simulation, the algorithm in Fig. 5 
is modified as follows: 

No null messages are created in the parallelism analyzer. 
In an iteration of the loop in Lines 0-10, if 0, = 0 
(for all n) the first time Line 4 is executed, then a 
deadlock occurs. Basically, the condition 0, = 0 for all 
n implies that no process satisfies the input waiting rule 
in the Chandy-Misra simulation. The condition L # 0 
implies that the Chandy-Misra simulation has not yet 
been completed (cf., Lemma 3 in Appendix A). When 
the above two conditions are satisfied, a deadlock occurs. 
Let e be the event with the smallest timestamp in 
Uv;,jQ;,j. Then for 1 5 i 5 N ,  ti = A + maxllj<N t j ,  
where A is the elapsed time to detect and break the 
deadlock (i.e., to find the event e). If e is sent from 
process i to process j, and process j is mapped to 
processor k ,  then Qi , j  + Q i , j  - {e} ,  and t k  = t k  +q(e ) .  

l < i < N  

From the above discussion, the number of deadlocks occurring 
in the simulation can also be computed. 

V. SUMMARY 

This paper proposed a technique to evaluate the time com- 
plexity of the Chandy-Misra parallel simulation protocol for an 
existing sequential simulation program. The idea is to insert 
parallelism analysis code into the sequential simulation pro- 
gram. When the modified sequential program is executed, the 
time complexity of the corresponding Chandy-Misra parallel 
simulation is also computed. 

We described the parallelism analysis algorithm, and proved 
that the algorithm is correct. The algorithm assumes that the 
sequential simulation follows the process interaction model. 
This assumption does not restrict the applicability of our 
technique, because most modem simulation programs are 
implemented by object-oriented languages or environments 
that follow the process interaction model. 

Our technique has been proven to be useful in several 
large-scale industrial applications. For example, a Signaling 
System 7 (SS7) network simulation was implemented by a 
sequential simulation technique that is adequate for small-scale 
networks. Because the number of new customers and services 
grows rapidly in a telephone network, it is important to study 
the performance of a scaled-up SS7 network. Since the SS7 
network is very complex, it is difficult to execute a sequential 
simulation within a reasonable elapsed time when the network 
size is increased. A natural altemative for speeding up the 
simulation process is to use parallel simulation techniques. 
However, re-implementation of an SS7 simulation on a parallel 
platform is very expensive. It is necessary to investigate the 
performance of parallel simulation to determine whether it is 
cost effective. With our technique, the performance of Chandy- 
Misra parallel simulation can be determined without actually 
implementing the parallel program. 
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APPENDIX 

A. Proof of the Parallelism Analysis Algorithm 

The correctness of the parallelism analyzer is proved by 
means of three lemmas and one theorem. 

For the ith event em,,(i) sent from process p ,  to p , ,  
the parallelism analyzer computes a value t,,,(i). Lemma 
1 shows that tm,n(i) < t,,,(j) if e,,,(i).ts < e,,,(j).ts. 
Lemma 1 is used in Lemma 2. Lemma 2 consists of three 
parts. Part (a) proves that the value e.cy computed in the 
parallelism analyzer is the time when event e arrives at 
its destination. Part (b) shows that tm,n(i) in Lemma 1 is 
the completion time of em,,(i - 1) in the Chandy-Misra 
simulation. Part (c) is a hypothesis used to prove parts (a) 
and (b) by induction. Lemma 2 proves that the analyzer 
correctly computes the completion time of every event in the 
Chandy-Misra simulation. Lemma 3 shows that the parallelism 
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analyzer appropriately terminates. Drawing on Lemmas 2 
and 3, Theorem 1 proves the correctness of the parallelism 
analyzer. 

Lemma 1: Let e,,,(i) be the ith message sent from p ,  to 
p, .  Suppose that 6,  = e,,,(i) at Line 4 in Fig. 4. Then the 
parallelism analyzer assumes that all events sent from p ,  to 
p ,  with timestamps less than e,,,(i).ts are processed before 
t,,,(i) in the Chandy-Misra simulation, where t,,,(i) is the 
value of t ,  at Line 4. 

Proof: We prove the following hypothesis by induction 
on i :  for all i’ < i ,  e,,,(i’) are processed before t,,,(i) in 
the Chandy-Misra simulation. 

Basis ( i  = 1): Trivial. 
Inductive step ( i  > 1): Assume that the hypothesis holds for 

em,,(i - 1). We show that the hypothesis also holds for 

From the induction hypothesis, the parallelism analyzer 
assumes that e,,,(i’) is processed before tm,,(i - 1) in 
the Chandy-Misra simulation, for all i’ < i - 1. Suppose 
that 8, = e,,,(i) at Line 4 in Fig. 4. Then this implies 
that e,,,(i - 1) has been deleted from Q,,, (cf. definition 
of 0,). Since an event can be removed from Qm,, only 
at Line 10 in Fig. 4, the parallelism analyzer assumes that 
e,,, ( i  - 1) is processed before t,,, ( i )  in the Chandy-Misra 

Lemma 2: Consider the ith iteration when Loop Lines 4-10 
in Fig. 4 are executed. Let t ; ( i )  be the value of t ,  at Line 
4; i.e., the value before Line 5 is executed but after Line 4 
has been executed (note that t ; ( i )  in this lemma is t,,,(i) in 
Lemma 1). Let t,(i) be the value oft, after Line 5 but before 
Line 7 is executed. Let t f ( i )  be the value of t ,  after Line 7 
is executed. Let 0, ( i )  # 4 be the event selected at Line 4 and 
O,(i) be the value of 0, at Line 10. 

(a) If e.a: < 00, then e.a is the time when e arrives at its 
destination in the Chandy-Misra simulation. 

(b) After Line 7 is executed, t ,  = t , f ( i )  is the time when 
8, (2)’s execution is completed in the Chandy-Misra 
simulation. 

(c) At Line 10, O,(i) represents the set of events that have 
not been sent to their destinations at time tL( i )  in the 
Chandy-Misra simulation. 

Proof: We prove by induction on i that hypotheses (a), 
(b), and (c) hold. 
Basis (i = 1): Since the value e.a for each event e can 

be modified only in Line 6 or Line 8 in Fig. 4, we have 
0,(l).a = 0 and p(O,(l)) = 0 (cf. definition of 0, and 
p). That is, O,(l) is a pre-scheduled event for a source 
process p,, and 0,(l).a = 0 is the time when O,(l) 
arrives at p ,  in the Chandy-Misra simulation. Therefore, 
after Line 5 is executed, t ,  = tn( i )  is the time when the 
execution of 0,(l)  starts. After Line 7 is executed, t ,  is the 
time when e,( 1)’s execution is completed (cf. definition 
of 7). Hypothesis (b) holds. It is clear that 0,(1) = 0 at 
t ; ( i )  in the Chandy-Misra simulation (cf. Line Oa). Since 
&(0,(l))  = 00 (because p ,  is a source process), every event 
e in 0,(1).E can be sent from p ,  as soon as the execution 

.m,n(i). 

simulation, and the hypothesis holds. 

1 

1 

1 

I 

of 0,(l)  is completed, and the value e.a assigned at Line 8 
is the time when e arrives at its destination in the Chandy- 
Misra simulation (cf. definition of 6). Thus hypothesis (a) 
holds. Also, at Line 10, O,(i) = 0. Since 0, is always 
empty for a source process p, ,  hypothesis (c) holds. 

nductive step (i > 1): Assume that hypotheses (a), (b), and 
(c) hold for the first i - 1 iterations of the loop Lines 4- 
10. We show that these hypotheses also hold for the ith 
iteration. From Lemma 1 and the definition of the input 
waiting rule, B,(i) is the next event to be executed at p ,  
after time t ;( i ) .  At that time, we have em,,.a < 00 (cf. 
definition of e,), for all p ,  in I,. According to hypothesis 
(a), e,,,.a is the arrival time of e,,, in the Chandy-Misra 
simulation, and from hypothesis (b) t;(i) is the time when 
the execution of the last event processed at p ,  is completed. 
Therefore, 8,(i) is available for execution at time p(8,(i)) 
in the Chandy-Misra simulation, and the value of t ,  after 
Line 5 is the time when 8,(i)’s execution starts. Since it 
takes time q(O,( i ) )  to execute event 0 , ( i ) ,  t,+(i) is the time 
when the execution of 0,( i )  is completed in the Chandy- 
Misra simulation. Hypothesis (b) holds. From hypothesis 
(c), O,(i - 1) is the set of events that have not been 
sent to their destinations at time t f ( i  - 1) = t ; ( i )  in the 
Chandy-Misra simulation. By the output waiting rule, we 
have 

Fact 1. An event e’ E O,(i - 1) is sent from p ,  at time 
t,(i) (i.e., before event 8,(i) is executed) if and only 
if e’.ts 5 8,(i).ts + ~ ( 0 , ( i ) ) .  

Fact 2. O,(i) = {e’ E O,(i - 1) U O,(i).Ele’.ts > 

From Fact 2 and the execution of Lines 6-9, 0, ( i )  is the set of 
events that have not been sent to their destinations at time 
t f ( i ) ,  and hypothesis (c) holds. 

From Fact 1 and the execution of Line 6 and Line 8 (if p ,  is 
a source process), the value e’.a assigned either at Line 6 
or at Line 8 is the time when e’ arrives at its destination. 

Lemma 3: If L = 0 at Line 0 in Fig. 4, then Qm,, either is 
in empty set or contains only the eos message z,,,. In other 
words, all non-eos events in the Chandy-Misra simulation have 
3een processed when L = 0 at Line 0. 

Proof: We prove the lemma by contradiction. Suppose 
$at there exists Q,,, which contains non-eos events when 
L = 0 at Line 0. This implies that 8, does not exist after 
the ith time when Loop Lines 4-10 are executed, for some 
integer i .  Therefore, one of the following two cases must be 
true according to the definition of 0,: 
Case 1: There exists p,, E I,, ml # m, such that Q,,,, = 0. 

Note that for all IC, I, the eos message z k , l  should have been 
inserted into Q k , l  before L = 0 at Line 0. (Otherwise, there 
is an un-executed event in the sequential simulation and L 
cannot be empty.) Since Qm, ,, = 0, event z,, ,, must have 
been processed at p ,  and then been deleted from Q,,,,. 
Note that 0, = z,, ,, if and only if emz ,, is an eos message 
for all m2 E I ,  (from the definition of 0, and the fact that 
e.ts < 00 for every noneos event). In other words, there are 
no noneos events in Q,,,, a contradiction. 

8,(i).ts + €(B, ( i ) ) }  

Thus hypothesis (a) holds. 
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Fig. 

(0.0) 

Iteration el ,  Line 4 
(a) 

Iteration el,  Line 10 
(b) 

Iteration e2, Line 10 
(d) 

Iteration e3, Line 4 
(e) 

Iteration e2, Line 4 
(C) 

Iteration e3, Line 10 
(0 

Iteration e4, Line 4 
(€9 

(594) 
Iteration e5, Line 10 

(i) 

6. The Chandy-Misra protocol simulated 

Iteration e4, Line 10 
(h) 

Iteration e6, Line 4 

(k) 
by the parallelism analyzer. 

Case 2: There exists p,, E I, such that eml,,.Q: = 03. Let 
ge  be an event such that e is created by the execution of g e .  
There are two possibilities: 

Case 2a: p,, is a source process. Since = 
00, eml,,.a is assigned a finite value at Line 8 
when Oml = gem,,,, a contradiction. 

Case 2b: p,, is not a source process. This implies 
that gem, ,n does not satisfy the output waiting rule 
at p,, . In other words, there exists m2 E Im, such 
that Qm,,,, contains non-eos events when L = 0 
at Line 0. Thus, we should backtrack the topology 
hierarchy of the simulation processes for one level 
and repeat the argument stated above. Since the 

Iteration e5, Line 4 
(i) 

number of processes in the network is limited, we 
will trace back to either a source process or p,, 
itself (if there is a feedback loop). The former is the 
same as Case 2a. For the latter, there is a cycle of 
blocked nonsource processes p ,  = p,, + p,, + 
p,, t ... + p,, where p,, waits to receive an 
event from p m ( l + l ) ( n o d k + l ) ,  1 5 1 5 I C .  In other 
words, a deadlock occurs. This contradicts the 
fact that the Chandy-Misra protocol (with deadlock 
avoidance) is deadlock-free. 

Theorem 1: If L = 8 at Line 0 in Fig. 4, then ti represents 
the completion time of the last event processed at p i  in the 
Chandy-Misra simulation. 
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Iteration e 7 ,  Line 4 
(m) 

P4 
(4, e10 

21,3 + el l ,  e12) 

( l L 4  ( 1 1 , 4  
Iteration 22,4, Line 4 Iteration 22.4, Line 10 

( 1 1 , 4  

Iteration 22,4, Line 10 (cont.) 
(VI 

Fig. 7. The Chandy-Misra protocol simulated by the parallelism analyzer. 

Proof: Since every non-eos event in the Chandy-Misra 
simulation has been processed when L = 0 at Line 0 (cf. 
Lemma 3) and every event is processed in nondecreasing 
timestamp order, ti is the completion time of the last event 
processed at pi (cf. Lemma 2) in the Chandy-Misra simulation. 

w 

B. An Example of Parallelism Analysis 

This appendix illustrates the execution of the parallelism 
analyzer in Fig. 4 for the event precedence graph in Fig. l(b). 
We note that V(e1) = V(e3) = V(eg) = V(e7) = 1, and 

V(e1l) = ~ ( e 4  = 3, and the message sending delay times for 
V(e2) = V(e4) = V(e6) = V(e8) = v(e9) = V ( e l O )  = 

(4.00) 

(&& P4 

23,4 

all events are 0. and the message sending delay for all events 
are 0. Initially, L = {el}, Q I , ~  = Q1,2 = Q I , ~  = Q2,4 = 
Q3,4 = 0 ,02  = 0 3  = 8, e1.a = 0 and t l  = t2 = t 3  = t4 = 0. 

Event el is executed in the first iteration. Since el is a pre- 
scheduled event, e1.a = 0. At the end of Line 3, Q1,1 = {el} 
and L = {e2, es}. At this point, we know the arrival time of 
el in the Chandy-Misra simulation, as illustrated in Fig. 6(a). 
In this figure, a pair (ti, t s i )  is associated with every process 
p i ,  where ti represents the (real) time of pi  in the Chandy- 
Misra simulation and tsi represents the local clock of pi (i.e., 
the timestamp of the event being executed by p i )  at time 
ti. In the figures, a link directed from pi to p j  is labeled 
by an event e if and only if e.a < DC) and e E Qi,j. 
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TABLE I 
EXECUTION OF e2, e3 , e4, AND e5 

This implies that the parallelism analyzer “simulates” the 
arrival of e at p j  in the Chandy-Misra simulation. At Line 4, 
61 = el # 4. Since &(el)  = 00, q(e1) = 1, e1.E = {ez,e3}, 

and S(e2) = 6(e3) = 0, at the end of Line 10, we have t l  = 1, 
t s l  = 1, e2.a = e3.a = 1, and Q1,1 = 0 (cf. Fig. 6(b)). 

Table I illustrates the execution of events e2, e3, e4, and e5. 

The column for Line 4 of iteration e2 illustrates the related 
variable values after Line 4 is executed at ea’s iteration. The 
last item “Figure” points to the figure illustrating the execution. 
Note that in Fig. 6(d), the notation (eg)  under pa means that 
e9 is an event scheduled by pa,  which has not been sent to the 
destination in the Chandy-Misra simulation. 

Table I1 illustrates the execution of e6, e7, eg, and e12. The 
presentations for iterations eg,elo, and e l l  are similar and 
hence are omitted. 

Table I11 illustrates the executions of 21,2, Z1,3, 22,4, and 
23.4. 

In iteration 21,2, the while loop in Lines 4-10 is executed 
twice. In the first iteration, 6 2  = 21,2, and in the second 
iteration, 64 = eg. Line 10 of iteration 2 1 , ~  in Table I11 shows 
the variable values at the end of the second iteration. 

In iteration 22,4, the while loop in Lines 4-10 is executed 
three times. The first iteration handles elo, and at the end of 
Line 10, (t4, is4) = (14, lo), as shown in Fig. 7 (U). Line 10 
of iteration 22,4 in Table 111 shows the results at the end of 
the third iteration. 

At the end of Line 10 at Iteration 23,4, no 6 k  exists, and 
the while loop in Line9 4-10 is skipped. Since L = 0, the 
while loop in Lines 0-10 is skipped and the elapsed time for 
the Chandy-Misra simulation is executed at Line 11: T = 20, 
and the program exits. 

C. Notation 

This section summarizes the notation used in this paper. 
The message transmission delay of event e in the 
Chandy-Misra simulation. 
The lookahead value of e. 
An event. 
The event with the smallest timestamp in Qj,i. 

The ith message sent from p ,  to p n .  
The time when e arrives at its destination process 
in the Chandy-Misra simulation (if the value is 
finite). 
The timestamp of event e. 
The set of events scheduled due to the execution 
of e. 
The execution time of event e. 
The event with the smallest timestamp among 
em,n, for all p ,  E In such that the following two 
conditions are satisfied: 

a. 
b. 

For every p ,  E In ,  Qm,n # 8. 
For every p ,  E I n ,  em,n.a < 00 (i.e., the 
arrival time of em,n in the Chandy-Misra 
simulation is determined). 

The value of en at the ith time when Loop Lines 
4-10 in Fig. 4 is executed. 
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S e  

Ii 

K 

L 

Oi 

Pi 
pk 
Q j , i  

tsi 

T 

zj,i 

An event such that its execution schedules event 
e(i.e., e E ge.E). 
The set of processes that may schedule events to 
Pi. 
The number of processors available in the parallel 
simulation ( K  5 N ) .  
The event list for the sequential simulation. 
The number of processes. 
(The set of) the events generated at pi such that 
their departure times in the Chandy-Misra simu- 
lation have not been decided in the parallelism 
analyzer. 
The value of 0, for the ith time when Line 10 in 
Fig. 4 is executed. 
A process. 
The set of processes mapped to processor I C .  
(The set of) the events sent from pj to pi such 
that the start execution times of these events 
in the Chandy-Misra simulation have not been 
determined by the parallelism analyzer. 
The time when event 0, is available for execution 
in the Chandy-Misra simulation. 
The progress (i.e., real time) of process pi. 
The value of t ,  when 0, = em,,(i) at Line 4 in 
Fig. 4. 
The value of t ,  at the ith time after Line 4 (in 
Fig. 4) but before Line 5 is executed. 
The value of t ,  at the ith time when Line 6 in 
Fig. 4 is executed. 
The value of t ,  at the ith time when Line 7 in 
Fig. 4 is executed. 
The local clock of pi at (real) time ti in the 
Chandy-Misra simulation. 
The execution time of the Chandy-Misra simula- 
tion. 
The end-ofsimulation (eos) message sent from p j  

to pi in the Chandy-Misra simulation. 
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