
628 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

A Parallelism Analyzer for
Conservative Parallel Simulation

Yung-Chang Wong, Shu-Yuen Hwang, and Jason Yi-Bing Lin

Abstract-Most small-scale simulation applications are imple-
mented by sequential simulation techniques. As the problem size
increases, however, sequential techniques may be unable to man-
age the time complexity of the simulation applications adequately.
It is natural to consider re-implementing the corresponding large-
scale simulations using parallel techniques, which have been
reported to be successful in reducing the time complexity for
several examples. However, parallel simulation may not be effec-
tive for every application. Since the implementation of parallel
simulation for an application is usually very expensive, it is
required to investigate the performance of parallel simulation for
a particular application before re-implementing the simulation.
The Chandy-Misra parallel, discrete-event simulation paradigm
has been utilized in many large-scale simulation experiments,
and several significant extensions have been based on it. Hence
the Chandy-Misra protocol is adopted here as a basic model of
parallel simulation to which our performance prediction tech-
niques are applied. For an existing sequential simulation program
based on the process interaction model, this paper proposes
a technique for evaluating Chandy-Misra parallel simulation
without actually implementing the parallel program. The idea is
to insert parallelism analysis code into the sequential simulation
program. When the modified sequential program is executed, the
time complexity of the parallel simulation based on the Chandy-
Misra protocol is computed.

Our technique has been used to determine whether a giant
Signaling System 7 simulation (sequential implementation) should
be re-implemented using the parallel simulation approach.

Index Terms- Chandy-Misra protocol, critical path analysis,
Discrete event simulation, parallelism, parallel simulation

I. INTRODUCTION

N A PARALLEL SIMULATION, the simulated system is I partitioned into several subsystems, each of which consists
of a nonoverlay subset of state variables. These subsystems
are concurrently simulated by a set of processes that com-
municate by exchanging timestamped messages. The events
scheduled for a process can modify only the state vari-
ables of the corresponding subsystem. The processes execute
concurrently to complete a simulation run. To produce the
correct simulation results, the executions of the processes must
follow a set of synchronization rules [l]. The performance of
parallel simulation depends on two factors: the parallelism
existing in the system to be simulated and the overhead

Manuscript received March 18, 1993; revised August 1994. This work was
supported in part by the National Science Council, Republic of China, under
Grants NSC 82-0408-E-009-1 15 and NSC 83-0408-E-009-002.

Y.-C. Wong and S.-Y. Hwang are with the Department of Computer
Science and Information Engineering, National Chiao Tung University,
Hsinchu, Taiwan 300, R.O.C.

J. Y.-B. Lin is with Bellcore, Momstown, NJ 07962 USA
(liny @mookie.bellcore.com).

IEEE Log Number 9412400.

of the parallel simulation protocol running on a particular
computer architecture. The inherent parallelism of a simu-
lation application was first studied by Berry and Jefferson
[2] and Livny [3]. Algorithms have been proposed to study
the inherent application parallelism when every process is
executed by a separate processor. Lin [4] proposed an inherent-
parallelism analysis algorithm for the case where more than
one process may be mapped to a processor under different
process scheduling policies. This paper extends previous re-
sults by considering both the inherent parallelism and the
parallel simulation protocol overhead. The paper proposes a
parallelism analysis algorithm for the Chandy-Misra protocol
[5], in which more than one process may be mapped to a
processor. The parallelism analysis algorithm is integrated
with the sequential simulation program. When this modified
sequential simulation is executed, the time complexity of the
parallel simulation based on the Chandy-Misra protocol is also
computed. Our technique is a powerful tool for determining
the performance of the Chandy-Misra parallel simulation for
an existing sequential simulation program.

This paper is organized as follows. Section I1 introduces
the concept of event precedence graph. Section I11 describes
the Chandy-Misra protocol. Section IV proposes a parallelism
analysis algorithm for Chandy-Misra parallel simulation.

11. THE EVENT PRECEDENCE GRAPH

The execution of a discrete event simulation follows causal-
ity constraints, and the relationships between the events can
be described by an event precedence graph [21, E63, 171, 141.
The concept of event precedence graph is illustrated by the
following example. Consider the simple network in Fig. l(a).
Fig. l(b) shows the event precedence graph for a simulation
scenario of the network.

In this figure, the timestamp of event e; is i.
In the event precedence graph, a vertex represents the

occurrence of an event. A dashed arrow from event ei to
event e j means that both ei and e j are scheduled for the
same process, and e; occurs earlier than e j does (cf. events
e4 and e6 in Fig. l(b)). A solid arrow from ei to e j means
that the scheduling of e j is due to the occurrence of ei
(cf. events e l and e2 in Fig. l(b)). To correctly simulate the
behavior of the network, event ei must be processed before
e j if there is an arrow (either dashed or solid) from e; to
e j in the event precedence graph. In a sequential simulation
implementation, all events are processed in nondecreasing
timestamp order. This sequential execution engine guarantees

1045-9219/95$04.00 0 1995 IEEE

WONG AND HWANG: A PARALLELISM ANALYZER FOR CONSERVATIVE PARALLEL SIMULATION 629

time
stamp

1

2

3
4

5
6
7
8

9

10

11

12

process

System Elements

The simulated system
(a)

0
execution time

4

5

8

9
P1 P4

12

13

16

19

22

25

28
The event precedence graph

(b)
Fig. 1. Topology, the event precedence graph, and the sequential execution time.

that the relationship in the event precedence graph is not
violated. Suppose that the time to process event el, e3, e5
or e7 is I unit, and the time to process any one of the other
events is 3 units. The execution order and the elapsed time
after an event is executed in a sequential simulation are given
in Fig. l(c).

In Fig. l(b), an event execution time is associated with each
vertex (i.e., event). A communication delay is associated with
each solid arrow (the cost for the dashed arrow is 0). Since
the graph is acyclic, a maximal weighted path can be found.
This path is called the critical path and its cost is the minimal
time required to finish the execution of the parallel simulation.
The critical path does not consider the overhead for parallel
simulation protocols. In other words, the cost for the critical
path is a lower bound for the execution time of any parallel
simulation approach. To evaluate the time complexity for a
particular parallel simulation protocol, new techniques (such

The sequential execution

(C)

as the Chandy-Misra parallelism analyzer developed in this
paper) are required.

111. THE CHANDY-MISRA PROTOCOL
From the definition of the event precedence graph, a parallel

simulation protocol is correct if all events occurring at a logical
process are executed in nondecreasing timestamp order. The
Chandy-Misra protocol follows two waiting rules to satisfy
the causality constraint. We first describe the assumptions of
a Chandy-Misra simulation.
The FIFO message sending assumption: Communication be-

tween two processors preserves the first-in-first-out (FIFO)
property (i.e., the messages are received in the order they
are sent).

The static topology assumption: The network topology is static
(i.e., the communication channels between processes do not

630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

change during simulation). If process p; may send a message
to process p j , then a communication link is directed from p;
to p j . The link is called an input channel (output channel)

The original Chandy-Misra protocol [5] further assumes that
the buffer capacity of a process to store the incoming messages
is limited. The purpose of this restriction was to limit the
memory usage of a Chandy-Misra simulation. However, Lin
and Preiss [8] and Jefferson [9] showed that in general limiting
the input buffer capacities of processes does not limit the total
memory usage for a Chandy-Misra simulation. We assume
that the input buffer capacity of a process is unlimited. For
simplicity, we make three assumptions about the simulated
network. It is easy to see that our results can be generalized.

There are three types of processes in the simulation.
A source process does not receive any messages from
other processes. A server process may send and receive
messages. A sink process does not send any messages to
other processes. In Fig. l(a), pl is a source process, p2

and p3 are server processes, and p4 is a sink process.
A source process may schedule events to itself. Neither
server processes nor sink processes may schedule events
to themselves.
[The FIFO event generation assumption] A source
process pi schedules events in nondecreasing timestamp
order. That is, if pi schedules el earlier than e2, then
e1.h 5 e2.h (where e h is the timestamp of e).

The concept lookahead is used in the Chandy-Misra pro-
tocol. Let e.E be the set of events scheduled due to the
execution of event e. The lookahead of e is a quantity
&(e) such that for every event e’ E e.E, e’.ts 2 e.ts +
€(e). In a queueing network simulation, lookahead can be
regarded as the minimum service time of a server. Studies [lo],
[111 have indicated that the larger the lookahead values, the
better the performance of a Chandy-Misra simulation becomes.
Several techniques [121, [131 have been proposed to explore
lookahead.

Two waiting rules ensure the correctness of the Chandy-
Misra protocol.

The input waiting rule: Before process pi executes an event e,
pi must receive from each of its input channels an event
(including e), and e must have the smallest timestamp
among the events in the input channels.

The output waiting rule: Consider an event e’ created at
process p i , which is scheduled for process p j . Event e’
is sent to p j after pi has started executing event e, where
e’.ts 5 e.ts + &(e) . If several events satisfy this inequality,
then they are sent to p j in nondecreasing timestamp order.

The output waiting rule and the FIFO message sending as-
sumption ensure that a process always receives messages
from an input channel in nondecreasing timestamp order. This
property, together with the input waiting rule, guarantees that
all events occurring at a process are executed in nondecreasing
timestamp order. Note that the output waiting rule is not
required for a source process because of the FIFO event
generation assumption. We define the lookahead of every event

for P j @i>.

\
12
13
14

15
16
17
18
19
20

L

IU

Fig. 2. Execution of the Chandy-Misra simulation for the 4-process network.

e executed at a source process as &(e) = 00. (Note that
&(e) = 00 does not imply that the execution of e at a source
process will schedule an event with timestamp m. The infinite
lookahead value is used to bypass the output waiting rule for
the source process.)

Two types of control messages are introduced in the
Chandy-Misra protocol: end-of-simulation (eos) messages and
null messages. The eos messages are used to terminate the
parallel simulation. After a source process has generated the
last event, it sends an eos message to each of its output
channels and enters the termination state. An eos message
has timestamp 00 and lookahead value 00. When a server
process p ; executes an eos message, it generates and sends
an eos message to each of its output channels. Then pi
enters the termination state. When a sink process executes
an eos message, it simply enters the termination state. All
processes eventually enter the termination state and the parallel
simulation terminates. Note that after a process enters the
termination state, it never become active again.

Fig. 2 illustrates the execution of the Chandy-Misra simu-
lation for the event precedence graph in Fig. l(b).

We assume that the message sending delays are 0 in
the Chandy-Misra simulation. We further assume that the
lookahead values for e2, e4, e6, e8, eg , elo, ell , and e12 are 3.
Note that the lookahead values for e l , e3, e5, and e7 are 00

because they are executed by the source process p l . After pl

has executed an event, the newly scheduled events are sent to
the destinations immediately (cf. e2 and e3). Process p3 @2)

has only one input channel. According to the input waiting
rule, an arrival event is executed immediately if p3 is idle (cf.
e4) or is executed after p3 has executed the previous event
(cf. e6). According to the output waiting rule, el0 is not sent
to p4 until time 8; i.e., when p3 starts executing ea. Note that
e 6 . t ~ + &(eg) = 6 + 3 < e1o.h = 10 < e 8 . t ~ + ~ (e g) = 11.

WONG AND HWANG: A PARALLELISM ANALYZER FOR CONSERVATIVE PARALLEL SIMULATION 63 1

I

Fig. 3.
messages without any progress.

Deadlock situation. Processes p l , p 2 , p 3 , and p4 are waiting for input

Event e9 arrives at p4 at time 4. However, its execution is
delayed until elo arrives (due to the input waiting rule). The
eos messages 21,2 and 21,3 are sent from p l to p2 and p3 ,

respectively. These messages arrive at their destinations at time
4 (the time when the execution of e7 is completed) because
there is no message sending delay. After p3 has processed
21,3 (the execution time for an eos message is 0), a new eos
message 23,4 is sent to p4.

A null message provides only timing information. For
example, after p ; has executed an event e, it may send a null
message e’, where e’.ts = e.ts + €(e) , to the output channel
connected to p j . When p j receives e’, it knows that it will
never receive any message with timestamp less than e‘.ts from
p;. This information is used to reduce the overhead of the input
waiting rule as well as to avoid deadlock [5] . In a Chandy-
Misra simulation, deadlock may occur in a feedback loop.
Consider the feedback network in Fig. 3. The initial events
are generated by the source process po . At the beginning, po
sends an event message e to process pl. According to the input
waiting rule, p l cannot handle e before it receives a message
from process p4 . Unfortunately, p4 will not produce any output
message before p l produces the first output message. Thus,
processes p l , pa, p3 , and p4 fall into a deadlock situation.

Two approaches have been proposed to resolve the deadlock
situation. Deadlock avoidance [141 uses null messages to avoid
deadlock. In Fig. 3, suppose that process p i (for 1 5 i 5 4)
has a constant lookahead value E; and its local clock clc; =
0 initially. At the beginning of execution, pi sends a null
message with timestamp ck; + E to the output channel. When
the destination p j receives the null message, p j is essentially
promised by p ; that it will not send a message to p j carrying a
timestamp smaller than E;, and clcj is incremented from 0 to E ; .

Then p j sends a null message with timestamp c lc j+~j = E ; + E ~

to its output channel. After the null messages have circulated
in the loop several times, pl eventually receives a null message
with timestamp larger than e h . According to the input waiting
rule, p l executes e and the deadlock is avoided.

In deadlock recovery, no null messages are sent. A separate
mechanism is used to detect when the simulation is dead-
locked, and another mechanism is used to break the deadlock.
Deadlock detection mechanisms are described in [151, [161,
[17]. In the deadlock recovery mechanism, all processes co-
operate to find the events with the smallest timestamp in the
system. These events can be safely executed, and the deadlock
situation is thus recovered.

IV. A PARALLELISM ANALYZER

We first consider the parallelism analyzer for deadlock
avoidance simulation. Then we extend the algorithm for dead-
lock recovery simulation.

Consider an existing sequential simulation program. We
investigate the performance of the corresponding Chandy-
Misra parallel simulation without actually implementing the
parallel program. The idea is to insert some instructions (to
be described) into the sequential simulation program. The
inserted code computes the elapsed time of the corresponding
Chandy-Misra parallel simulation along with the execution of
the sequential simulation.

We assume that the sequential program follows the process
interaction model [181, in which the simulated system is mod-
eled by a set of objects. These objects can be directly mapped
to the logical processes in parallel simulation. We assume
that every process is executed by a dedicated processor (we
thus use the terms “process” and “processor” interchangeably).
This restriction is relaxed later in this section. The modified
sequential simulation that performs parallelism analysis for
the corresponding Chandy-Misra simulation is referred to as
the parallelism analyzer. The process-to-processor mapping
affects the performance of the parallel simulation. To study the
process assignment problem, one may execute the parallelism
analyzer with different mappings.

In the parallelism analyzer the eos messages and the null
messages are also included to simulate the Chandy-Misra
protocol. The parallelism analyzer generates an eos event for
every downstream process of a source process pi after it
processes the last event scheduled for p i . When the parallelism
analyzer processes an eos event for a server process p j , it
generates new eos events for the downstream processes of p j .

Suppose that an event e occurs at process p i , and its occurrence
results in the scheduling of another event e’ for process
p 3 . When the parallelism analyzer processes e, it generally
schedules a null message with timestamp e.ts + € (e) for every
downstream process of p i . (In some implementations, no null
message is sent to p j . In other implementations, null messages
may be sent by demand [17]. Our parallelism analyzer can
easily be tailored to study implementations with different null
message sending policies.)

Several data structures are used in the parallelism analyzer.

Every event e is associated with a real number e.a which
represents the (real) time when e arrives at its destination
(i.e., the process that executes e) in the corresponding
Chandy-Misra simulation. Initially, e.a = 0 (if e is an
event pre-scheduled at the beginning of the simulation)
or e.a = 00 (otherwise; in this case, the arrival time of e
will be computed and assigned to e.a later).

For a channel directed from pi to p j , a set Qi, j is used in
the parallelism analyzer to hold all “floating” events sent
from p; to p j . The time when a “floating” event is to be
executed in the Chandy-Misra simulation has not yet been
determined. When an event is processed in the sequential
simulation, the parallelism analyzer inserts the event into
the corresponding Qi,j . This event is removed from Qi,j
after its execution time in the Chandy-Misra simulation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995 632

09

Ob

0

1

2

3

4

5

6

7

8

9

LO

11

/* Initialization */
for dl i , j do 1; c O,Q.,, - 0, and 0. + 8
for all e E L do e.a c 0 ; /’ e is a preieheduled event */
/’ The main Imp * I
while L # 0 d o

execute the next event e in L. and L - L - {e};

for all e‘ E c.E do d.0 - m and L - L U (e’);

Q,,, - Q,,, U (e); /* e is created at p, and is scheduled for p, */
while there exists n such that R, # 0 do /* suppose that R, E Qm,* */

1, - m=Il.,dh)l;

1” - 1, t ? (E “) ;

fordle’€O.iuchthate’.fs 5 R,.ts+c(En)doe’.a - fn+6(e’)and0, -O.-(e’};

if E (&) = m then for dl e‘ E &.E do e’.a t 1. + 6(e‘);

else for all e’ E E,.E do 0, - 0, U (e’};

Q”.“ - Q.,.,,, -(en};
end while

end while

T = m u f.;
I<.<N

Fig. 4. The parallelism analyzer (assumes every process is executed by a
dedicated processor).

is determined. Note that Qi,i exists if and only if pi is
a source process.
For every server process p i , the parallelism analyzer
maintains a set 0; which holds the events generated at pi
for which the departure time of the events (from p i) in
the Chandy-Misra simulation has not yet been decided.
An event e is removed from 0; after the parallelism
analyzer has determined its departure time (and thus its
arrival time; in other words, e.a is assigned a finite
value) It is clear that a sink process does not need this
data structure. According to the FIFO event generation
assumption, 0; = 0 for a source process pi.
For every process p i , the parallelism analyzer maintains a
variable ti. When an event (occurring in p i) is processed
by the parallelism analyzer, ti represents the elapsed time
of the Chandy-Misra simulation after the event is exe-
cuted. At the end of the modified sequential simulation,
ti represents the time after p; finishes the last event in
the Chandy-Misra simulation, and the execution time of
the Chandy-Misra simulation is T = max ti, where N
is the process number.

l<i<N

The parallelism analyzer is described formally in Fig. 4.
In this figure, L represents the event list in the sequential

simulation. The initialization phase resets the data structures
ti, Q;,j, and Oi (Line Oa). At the beginning of the sequential
simulation, several pre-scheduled events are in the event list
L. These events are also pre-scheduled in the correspond-
ing Chandy-Misra simulation, and their arrival times in the
Chandy-Misra simulation are 0 (Lin Ob). The main loop (Lines
0-10) performs the sequential simulation (Lines 1 and 2) and
determines the progress of a process in the corresponding
Chandy-Misra simulation by modifying Q;,j, ti, and 0i (Lines
3-10). It is clear that the sequential simulation terminates when
L = 8 at Line 0. Line 1 removes the event e with the smallest
timestamp from the event list L and executes the event. At
Line 2, e.E represents the set of events scheduled due to the
execution of e. Every event e’ E e.E is inserted in L in the
timestamp order. The time when e‘ arrives at its destination
in the Chandy-Misra simulation is not determined, and e’.a

is assigned the value ca. At Line 3, e is inserted in Qj,;.
In other words, e is sent from p j to pi in the Chandy-Misra
simulation (however, its arrival time may not be determined at
this moment). In the loop Lines 4-10, the parallelism analyzer
tests whether the time when an event e E Q,,, (for some
m, n) available for execution in the Chandy-Misra simulation
(i.e., the time when e satisfies the input waiting rule) is known.
If so, the time when the execution of e is completed in the
Chandy-Misra simulation is computed and assigned to t,. The
parallelism analyzer also tests whether any event e’ E 0,
satisfies the output waiting rule . If so, the time when e’ arrives
at its destination is computed and assigned to e’.a.

At Line 4, the event 8, is defined as follows: Let I , be the
set of processes that may schedule events (i.e., send messages)
to p,. Suppose that the following two conditions are satisfied
in the parallelism analyzer:

For every p , E I,, Q,,, # 0.
For every p , E I,, let e,,, be the event with the
smallest timestamp in Q,,,. Then e,,,.a < CO (i.e.,
the arrival time of e,,, in the Chandy-Misra simulation
is determined).

Then 8, is the event with the smallest timestamp among
e,,, for all m , p , E I,. The time when 0, is available for
execution in the Chandy-Misra simulation is defined as

In Appendix A (Lemma l), we prove that at Line 4 of the
parallelism analyzer, all events sent from p , to p , with
timestamps less than e,,,.ts are processed before t , in
the Chandy-Misra simulation. Lemma 1 together with the
definition of 8, implies that after t,, 8, is the next event
to be executed at p , in the Chandy-Misra simulation. Lemma
2 (a) in Appendix A ensures that if e.a < ca, then this finite
value is the time when the event arrives at its destination
in the Chandy-Misra simulation. Thus, by the input waiting
rule, ~ (0 ,) is the time when 8, can be executed. This event
is executed at time max[t,,p(O,)]. Thus, after Line 5 , t ,
represents the time when 0,’s execution starts. At Line 6,
0, represents the set of events scheduled by p , that have not
been sent to the destinations before time t,, i.e., before 8, is
selected for execution (cf. Lemma 6 (c) in Appendix 6). By
the output waiting rule, these events e’ are sent at time t , if

e’.ts 5 8,.ts +&(On).

At Line 6, for every e’ E 0, that satisfies the above inequality,
e’ arrives at its destination at time e’.a = t , + S(e’), where
S(e’) is the message sending delay for e’. Also, after t,, e’ is
removed from 0,. At Line 7, the execution of 8, is completed
at time t , + ~ (8 ,) , where ~ (8 ,) is the execution time of 8,.
Lines 8 and 9 handle the events scheduled due to the execution
of 8,. If ~ (0 ,) = cc then either p , is a source process or 0, is
an eos event. In either case, all events e’ scheduled due to the
execution of 8, are sent to the destinations at 0,’s completion
time. Thus, e’.a = t , + 6(e’) at Line 8. If € (e) < 00, then
by the output waiting rule, all events e’ E e.E are stored in
0, at Line 9. Since 8,’s execution is completed at t,, 8, is
removed from Q,,, at Line 10. After the modified sequential

AND HWANG: A PARALLELISM ANALYZER FOR CONSERVATIVE PARALLEL SIMULATION 633 WONG

Oa

Ob

oc

0

1

2

3

4

5

6

7

8

9

IO

11

Fig. 5.

J* Initialization */
for aJ i, j do Q.> - 0, and 0, - S;

for 111 e E L do e.a + 0; I* e is a pre-scheduled event ‘1
fork = 1 to K dotk =O;
1’ The main loop * J

while L # 0 do

execute the next event e in L. and L + L - (e};

for all e‘ E r.E d o e’.o c m and L - L U {e‘);

Q,,, - Q,,, U {e); /* e is created at p, and is scheduled for p, */
while there exists n such that B. # # d o I* suppose that 8. E Qm.%, and pn E Pk $1

t k - m a x [t k . d W

foralle‘E O,suchthate’.la <Bn. t s+~(Bn)doe ’ .a +tk+6(c’)andO. -On-(.?);

t k e l k t ?(en);
if <(e,,) = m then for all e’ E #..E d o d.0 - 1k t 6(e’);

else for all e’ E &.E d o 0. - 0. U {e’);

4 m . o - Qm.n - (On);
end while

end while

T = max fk;
1sksK

The parallelism analyzer (more than one process may be mapped to
a processor).

simulation has been completed (i.e., L = 0), ti represents
the completion time of the last event executed at process p i ,
and the execution time T of the Chandy-Misra simulation is
computed as

T = max ti

at Line 11 (cf. Theorem 1 in Appendix A). The execution
of the parallelism analyzer in Fig. 4 for the event precedence
graph in Fig. l(b) is described in Appendix B.

The parallelism analyzer in Fig. 4 can easily be generalized
to the case when more than one process is executed by a
processor. Suppose there are K processors available for the
parallel simulation, where K 5 N . Let Pk be the set of
processes mapped to processor k . The modified parallelism
analyzer is shown in Fig. 5. In this algorithm, variable ti
represents the progress of the processor i (where 1 5 i 5 K)
and in Lines 5-8, t , (in Fig. 4) is replaced by t k , where
p , E 4. Fig. 5 is exactly the same as Fig. 4 except that
the elapsed times considered in the Chandy-Misra simulation
are for processors.

Our algorithm can also be extended to study the Chandy-
Misra deadlock recovery protocol. To compute the execution
time of a deadlock recovery simulation, the algorithm in Fig. 5
is modified as follows:

No null messages are created in the parallelism analyzer.
In an iteration of the loop in Lines 0-10, if 0, = 0
(for all n) the first time Line 4 is executed, then a
deadlock occurs. Basically, the condition 0, = 0 for all
n implies that no process satisfies the input waiting rule
in the Chandy-Misra simulation. The condition L # 0
implies that the Chandy-Misra simulation has not yet
been completed (cf., Lemma 3 in Appendix A). When
the above two conditions are satisfied, a deadlock occurs.
Let e be the event with the smallest timestamp in
Uv;,jQ;,j. Then for 1 5 i 5 N , ti = A + maxllj<N t j ,
where A is the elapsed time to detect and break the
deadlock (i.e., to find the event e). If e is sent from
process i to process j, and process j is mapped to
processor k , then Qi , j + Q i , j - {e} , and t k = t k +q(e) .

l < i < N

From the above discussion, the number of deadlocks occurring
in the simulation can also be computed.

V. SUMMARY

This paper proposed a technique to evaluate the time com-
plexity of the Chandy-Misra parallel simulation protocol for an
existing sequential simulation program. The idea is to insert
parallelism analysis code into the sequential simulation pro-
gram. When the modified sequential program is executed, the
time complexity of the corresponding Chandy-Misra parallel
simulation is also computed.

We described the parallelism analysis algorithm, and proved
that the algorithm is correct. The algorithm assumes that the
sequential simulation follows the process interaction model.
This assumption does not restrict the applicability of our
technique, because most modem simulation programs are
implemented by object-oriented languages or environments
that follow the process interaction model.

Our technique has been proven to be useful in several
large-scale industrial applications. For example, a Signaling
System 7 (SS7) network simulation was implemented by a
sequential simulation technique that is adequate for small-scale
networks. Because the number of new customers and services
grows rapidly in a telephone network, it is important to study
the performance of a scaled-up SS7 network. Since the SS7
network is very complex, it is difficult to execute a sequential
simulation within a reasonable elapsed time when the network
size is increased. A natural altemative for speeding up the
simulation process is to use parallel simulation techniques.
However, re-implementation of an SS7 simulation on a parallel
platform is very expensive. It is necessary to investigate the
performance of parallel simulation to determine whether it is
cost effective. With our technique, the performance of Chandy-
Misra parallel simulation can be determined without actually
implementing the parallel program.

ACKNOWLEDGMENT

The authors would like to thank D. DeGroot and the three
reviewers for their comments.

APPENDIX

A. Proof of the Parallelism Analysis Algorithm

The correctness of the parallelism analyzer is proved by
means of three lemmas and one theorem.

For the ith event em,,(i) sent from process p , to p , ,
the parallelism analyzer computes a value t,,,(i). Lemma
1 shows that tm,n(i) < t,,,(j) if e,,,(i).ts < e,,,(j).ts.
Lemma 1 is used in Lemma 2. Lemma 2 consists of three
parts. Part (a) proves that the value e.cy computed in the
parallelism analyzer is the time when event e arrives at
its destination. Part (b) shows that tm,n(i) in Lemma 1 is
the completion time of em,,(i - 1) in the Chandy-Misra
simulation. Part (c) is a hypothesis used to prove parts (a)
and (b) by induction. Lemma 2 proves that the analyzer
correctly computes the completion time of every event in the
Chandy-Misra simulation. Lemma 3 shows that the parallelism

634 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

analyzer appropriately terminates. Drawing on Lemmas 2
and 3, Theorem 1 proves the correctness of the parallelism
analyzer.

Lemma 1: Let e,,,(i) be the ith message sent from p , to
p, . Suppose that 6, = e,,,(i) at Line 4 in Fig. 4. Then the
parallelism analyzer assumes that all events sent from p , to
p , with timestamps less than e,,,(i).ts are processed before
t,,,(i) in the Chandy-Misra simulation, where t,,,(i) is the
value of t , at Line 4.

Proof: We prove the following hypothesis by induction
on i : for all i’ < i , e,,,(i’) are processed before t,,,(i) in
the Chandy-Misra simulation.

Basis (i = 1): Trivial.
Inductive step (i > 1): Assume that the hypothesis holds for

em,,(i - 1). We show that the hypothesis also holds for

From the induction hypothesis, the parallelism analyzer
assumes that e,,,(i’) is processed before tm,,(i - 1) in
the Chandy-Misra simulation, for all i’ < i - 1. Suppose
that 8, = e,,,(i) at Line 4 in Fig. 4. Then this implies
that e,,,(i - 1) has been deleted from Q,,, (cf. definition
of 0,). Since an event can be removed from Qm,, only
at Line 10 in Fig. 4, the parallelism analyzer assumes that
e,,, (i - 1) is processed before t,,, (i) in the Chandy-Misra

Lemma 2: Consider the ith iteration when Loop Lines 4-10
in Fig. 4 are executed. Let t ; (i) be the value of t , at Line
4; i.e., the value before Line 5 is executed but after Line 4
has been executed (note that t ; (i) in this lemma is t,,,(i) in
Lemma 1). Let t,(i) be the value oft, after Line 5 but before
Line 7 is executed. Let t f (i) be the value of t , after Line 7
is executed. Let 0, (i) # 4 be the event selected at Line 4 and
O,(i) be the value of 0, at Line 10.

(a) If e.a: < 00, then e.a is the time when e arrives at its
destination in the Chandy-Misra simulation.

(b) After Line 7 is executed, t , = t , f (i) is the time when
8, (2)’s execution is completed in the Chandy-Misra
simulation.

(c) At Line 10, O,(i) represents the set of events that have
not been sent to their destinations at time tL(i) in the
Chandy-Misra simulation.

Proof: We prove by induction on i that hypotheses (a),
(b), and (c) hold.
Basis (i = 1): Since the value e.a for each event e can

be modified only in Line 6 or Line 8 in Fig. 4, we have
0,(l).a = 0 and p(O,(l)) = 0 (cf. definition of 0, and
p). That is, O,(l) is a pre-scheduled event for a source
process p,, and 0,(l).a = 0 is the time when O,(l)
arrives at p , in the Chandy-Misra simulation. Therefore,
after Line 5 is executed, t , = tn(i) is the time when the
execution of 0,(l) starts. After Line 7 is executed, t , is the
time when e,(1)’s execution is completed (cf. definition
of 7). Hypothesis (b) holds. It is clear that 0,(1) = 0 at
t ; (i) in the Chandy-Misra simulation (cf. Line Oa). Since
&(0,(l)) = 00 (because p , is a source process), every event
e in 0,(1).E can be sent from p , as soon as the execution

.m,n(i).

simulation, and the hypothesis holds.

1

1

1

I

of 0,(l) is completed, and the value e.a assigned at Line 8
is the time when e arrives at its destination in the Chandy-
Misra simulation (cf. definition of 6). Thus hypothesis (a)
holds. Also, at Line 10, O,(i) = 0. Since 0, is always
empty for a source process p, , hypothesis (c) holds.

nductive step (i > 1): Assume that hypotheses (a), (b), and
(c) hold for the first i - 1 iterations of the loop Lines 4-
10. We show that these hypotheses also hold for the ith
iteration. From Lemma 1 and the definition of the input
waiting rule, B,(i) is the next event to be executed at p ,
after time t ;(i) . At that time, we have em,,.a < 00 (cf.
definition of e,), for all p , in I,. According to hypothesis
(a), e,,,.a is the arrival time of e,,, in the Chandy-Misra
simulation, and from hypothesis (b) t;(i) is the time when
the execution of the last event processed at p , is completed.
Therefore, 8,(i) is available for execution at time p(8,(i))
in the Chandy-Misra simulation, and the value of t , after
Line 5 is the time when 8,(i)’s execution starts. Since it
takes time q(O,(i)) to execute event 0 , (i) , t,+(i) is the time
when the execution of 0,(i) is completed in the Chandy-
Misra simulation. Hypothesis (b) holds. From hypothesis
(c), O,(i - 1) is the set of events that have not been
sent to their destinations at time t f (i - 1) = t ; (i) in the
Chandy-Misra simulation. By the output waiting rule, we
have

Fact 1. An event e’ E O,(i - 1) is sent from p , at time
t,(i) (i.e., before event 8,(i) is executed) if and only
if e’.ts 5 8,(i).ts + ~ (0 , (i)) .

Fact 2. O,(i) = {e’ E O,(i - 1) U O,(i).Ele’.ts >

From Fact 2 and the execution of Lines 6-9, 0, (i) is the set of
events that have not been sent to their destinations at time
t f (i) , and hypothesis (c) holds.

From Fact 1 and the execution of Line 6 and Line 8 (if p , is
a source process), the value e’.a assigned either at Line 6
or at Line 8 is the time when e’ arrives at its destination.

Lemma 3: If L = 0 at Line 0 in Fig. 4, then Qm,, either is
in empty set or contains only the eos message z,,,. In other
words, all non-eos events in the Chandy-Misra simulation have
3een processed when L = 0 at Line 0.

Proof: We prove the lemma by contradiction. Suppose
$at there exists Q,,, which contains non-eos events when
L = 0 at Line 0. This implies that 8, does not exist after
the ith time when Loop Lines 4-10 are executed, for some
integer i . Therefore, one of the following two cases must be
true according to the definition of 0,:
Case 1: There exists p,, E I,, ml # m, such that Q,,,, = 0.

Note that for all IC, I, the eos message z k , l should have been
inserted into Q k , l before L = 0 at Line 0. (Otherwise, there
is an un-executed event in the sequential simulation and L
cannot be empty.) Since Qm, ,, = 0, event z,, ,, must have
been processed at p , and then been deleted from Q,,,,.
Note that 0, = z,, ,, if and only if emz ,, is an eos message
for all m2 E I , (from the definition of 0, and the fact that
e.ts < 00 for every noneos event). In other words, there are
no noneos events in Q,,,, a contradiction.

8,(i).ts + €(B, (i)) }

Thus hypothesis (a) holds.

WONG AND HWANG A PARALLELISM ANALYZER FOR CONSERVATIVE PARALLEL SIMULATION 635

Fig.

(0.0)

Iteration el , Line 4
(a)

Iteration el, Line 10
(b)

Iteration e2, Line 10
(d)

Iteration e3, Line 4
(e)

Iteration e2, Line 4
(C)

Iteration e3, Line 10
(0

Iteration e4, Line 4
(€9

(594)
Iteration e5, Line 10

(i)

6. The Chandy-Misra protocol simulated

Iteration e4, Line 10
(h)

Iteration e6, Line 4

(k)
by the parallelism analyzer.

Case 2: There exists p,, E I, such that eml,,.Q: = 03. Let
ge be an event such that e is created by the execution of g e .
There are two possibilities:

Case 2a: p,, is a source process. Since =
00, eml,,.a is assigned a finite value at Line 8
when Oml = gem,,,, a contradiction.

Case 2b: p,, is not a source process. This implies
that gem, ,n does not satisfy the output waiting rule
at p,, . In other words, there exists m2 E Im, such
that Qm,,,, contains non-eos events when L = 0
at Line 0. Thus, we should backtrack the topology
hierarchy of the simulation processes for one level
and repeat the argument stated above. Since the

Iteration e5, Line 4
(i)

number of processes in the network is limited, we
will trace back to either a source process or p,,
itself (if there is a feedback loop). The former is the
same as Case 2a. For the latter, there is a cycle of
blocked nonsource processes p , = p,, + p,, +
p,, t ... + p,, where p,, waits to receive an
event from p m (l + l) (n o d k + l) , 1 5 1 5 I C . In other
words, a deadlock occurs. This contradicts the
fact that the Chandy-Misra protocol (with deadlock
avoidance) is deadlock-free.

Theorem 1: If L = 8 at Line 0 in Fig. 4, then ti represents
the completion time of the last event processed at p i in the
Chandy-Misra simulation.

636 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

Iteration e 7 , Line 4
(m)

P4
(4, e10

21,3 + el l , e12)

(l L 4 (1 1 , 4
Iteration 22,4, Line 4 Iteration 22.4, Line 10

(1 1 , 4

Iteration 22,4, Line 10 (cont.)
(VI

Fig. 7. The Chandy-Misra protocol simulated by the parallelism analyzer.

Proof: Since every non-eos event in the Chandy-Misra
simulation has been processed when L = 0 at Line 0 (cf.
Lemma 3) and every event is processed in nondecreasing
timestamp order, ti is the completion time of the last event
processed at pi (cf. Lemma 2) in the Chandy-Misra simulation.

w

B. An Example of Parallelism Analysis

This appendix illustrates the execution of the parallelism
analyzer in Fig. 4 for the event precedence graph in Fig. l(b).
We note that V(e1) = V(e3) = V(eg) = V(e7) = 1, and

V(e1l) = ~ (e 4 = 3, and the message sending delay times for
V(e2) = V(e4) = V(e6) = V(e8) = v(e9) = V (e l O) =

(4.00)

(&& P4

23,4

all events are 0. and the message sending delay for all events
are 0. Initially, L = {el}, Q I , ~ = Q1,2 = Q I , ~ = Q2,4 =
Q3,4 = 0 ,02 = 0 3 = 8, e1.a = 0 and t l = t2 = t 3 = t4 = 0.

Event el is executed in the first iteration. Since el is a pre-
scheduled event, e1.a = 0. At the end of Line 3, Q1,1 = {el}
and L = {e2, es}. At this point, we know the arrival time of
el in the Chandy-Misra simulation, as illustrated in Fig. 6(a).
In this figure, a pair (ti, t s i) is associated with every process
p i , where ti represents the (real) time of pi in the Chandy-
Misra simulation and tsi represents the local clock of pi (i.e.,
the timestamp of the event being executed by p i) at time
ti. In the figures, a link directed from pi to p j is labeled
by an event e if and only if e.a < DC) and e E Qi,j.

WONG AND HWANG: A PARALLELISM ANALYZER FOR CONSERVATIVE PARALLEL SIMULATION

~

631

TABLE I
EXECUTION OF e2, e3 , e4, AND e5

This implies that the parallelism analyzer “simulates” the
arrival of e at p j in the Chandy-Misra simulation. At Line 4,
61 = el # 4. Since &(el) = 00, q(e1) = 1, e1.E = {ez,e3},

and S(e2) = 6(e3) = 0, at the end of Line 10, we have t l = 1,
t s l = 1, e2.a = e3.a = 1, and Q1,1 = 0 (cf. Fig. 6(b)).

Table I illustrates the execution of events e2, e3, e4, and e5.

The column for Line 4 of iteration e2 illustrates the related
variable values after Line 4 is executed at ea’s iteration. The
last item “Figure” points to the figure illustrating the execution.
Note that in Fig. 6(d), the notation (eg) under pa means that
e9 is an event scheduled by pa, which has not been sent to the
destination in the Chandy-Misra simulation.

Table I1 illustrates the execution of e6, e7, eg, and e12. The
presentations for iterations eg,elo, and e l l are similar and
hence are omitted.

Table I11 illustrates the executions of 21,2, Z1,3, 22,4, and
23.4.

In iteration 21,2, the while loop in Lines 4-10 is executed
twice. In the first iteration, 6 2 = 21,2, and in the second
iteration, 64 = eg. Line 10 of iteration 2 1 , ~ in Table I11 shows
the variable values at the end of the second iteration.

In iteration 22,4, the while loop in Lines 4-10 is executed
three times. The first iteration handles elo, and at the end of
Line 10, (t4, is4) = (14, lo), as shown in Fig. 7 (U). Line 10
of iteration 22,4 in Table 111 shows the results at the end of
the third iteration.

At the end of Line 10 at Iteration 23,4, no 6 k exists, and
the while loop in Line9 4-10 is skipped. Since L = 0, the
while loop in Lines 0-10 is skipped and the elapsed time for
the Chandy-Misra simulation is executed at Line 11: T = 20,
and the program exits.

C. Notation

This section summarizes the notation used in this paper.
The message transmission delay of event e in the
Chandy-Misra simulation.
The lookahead value of e.
An event.
The event with the smallest timestamp in Qj,i.

The ith message sent from p , to p n .
The time when e arrives at its destination process
in the Chandy-Misra simulation (if the value is
finite).
The timestamp of event e.
The set of events scheduled due to the execution
of e.
The execution time of event e.
The event with the smallest timestamp among
em,n, for all p , E In such that the following two
conditions are satisfied:

a.
b.

For every p , E In , Qm,n # 8.
For every p , E I n , em,n.a < 00 (i.e., the
arrival time of em,n in the Chandy-Misra
simulation is determined).

The value of en at the ith time when Loop Lines
4-10 in Fig. 4 is executed.

638 IEEE TRANSACTIONS ON PARALLEL AND DISTIUBUTED SYSTEMS, VOL. 6, NO. 6, JUNE! 1995

S e

Ii

K

L

Oi

Pi
pk
Q j , i

tsi

T

zj,i

An event such that its execution schedules event
e(i.e., e E ge.E).
The set of processes that may schedule events to
Pi.
The number of processors available in the parallel
simulation (K 5 N) .
The event list for the sequential simulation.
The number of processes.
(The set of) the events generated at pi such that
their departure times in the Chandy-Misra simu-
lation have not been decided in the parallelism
analyzer.
The value of 0, for the ith time when Line 10 in
Fig. 4 is executed.
A process.
The set of processes mapped to processor I C .
(The set of) the events sent from pj to pi such
that the start execution times of these events
in the Chandy-Misra simulation have not been
determined by the parallelism analyzer.
The time when event 0, is available for execution
in the Chandy-Misra simulation.
The progress (i.e., real time) of process pi.
The value of t , when 0, = em,,(i) at Line 4 in
Fig. 4.
The value of t , at the ith time after Line 4 (in
Fig. 4) but before Line 5 is executed.
The value of t , at the ith time when Line 6 in
Fig. 4 is executed.
The value of t , at the ith time when Line 7 in
Fig. 4 is executed.
The local clock of pi at (real) time ti in the
Chandy-Misra simulation.
The execution time of the Chandy-Misra simula-
tion.
The end-ofsimulation (eos) message sent from p j

to pi in the Chandy-Misra simulation.

REFERENCES

[l] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, pp. 31-53, Oct. 1990.

[2] 0. Berry and D. Jefferson, “Critical path analysis of distributed simu-
lation,” in Proc. I985 SCS Multiconf: Distribut. Simulation, Jan. 1985,
pp. 57-60.

[3] M. Livny, “A study of parallelism in distributed simulation,” in Proc.
I985 SCS Multiconf: Distrib. Simulation, Jan. 1985, pp. 94-98.

[4] Y.-B. Lin, “Parallelism analyzers for parallel discrete event simulation,”
ACM Trans. Model. Comput. Simulation, vol. 2, no. 3, 1993.

[5] K. M. Chandy and J. Misra, “Distributed simulation: A case study in
design and verification of distributed programs,” IEEE Trans. Sofhvare
Eng., vol. SE-5, pp. 440-452, Sept. 1979.

[6] R. M. Fujimoto, “Optimistic approaches to parallel discrete event
simulation,” Trans. Soc. Comput. Simulation, vol. 7 , pp. 153-191, June
1990.

[7] -, “Performance of time warp under synthetic workloads,” in Proc.
I990 SCS Multiconf: Distrib. Simulation, Jan. 1990, pp. 23-28.

[8] Y.-B. Lin and B. R. Preiss, “Optimal memory management for time
warp parallel simulation,” ACM Trans. Model. Comput. Simulation, vol.
1, pp. 283-307, Oct. 1991.

[9] D. Jefferson, “Virtual time 11: The cancelback protocol for storage
management in time warp,” in Proc. 9th Annu. ACM Symp. Princip.
Distrib. Comput., Aug. 1990, pp. 75-90.

[lo] R. M. Fujimoto, “Lookahead in parallel discrete event simulation,” in
Proc. Int. Con& Parallel Process., vol. 111, 1988, pp. 34-41.

[l l] B. R. Preiss and W. M. Loucks, “Impact of lookahead on the per-
formance of conservative distributed simulation,” in Proc. SCS Europ.
Multiconf: Simulation Method., Lang., Architect., 1990, pp. 204-209.

[12] D. M. Nicol, “Parallel discrete-event simulation of FCFS stochastic
queueing networks,” in Proc. ACM SIGPLAN Symp. Parallel Pro-
gramm.: Experience Applicat., Lang., Syst., 1988, pp. 124-137.

[13] Y.-B. Lin and E. D. Lazowska, “Exploiting lookahead in parallel
simulation,” IEEE Trans. Parallel Distrib. Syst., vol. 1, pp. 457469,
Oct. 1990.

[14] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via
a sequence of parallel computations,” Commun. ACM, vol. 24, pp.
198-206, Apr. 1981.

[15] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing
computations,” Inform. Process. Lett., vol. 11, no. 3, pp. 1 4 , 1980.

[16] L. Liu and C. Tropper, “Local deadlock detection in distributed simu-
lations,’’ in Proc. I990 SCS Multiconf: Distrib. Simulation, Jan. 1990,

[171 J. Misra, “Distributed discrete-event simulation,” Comput. Surveys, vol.

[18] J. A. Payne, Introduction to Simulation. New York McGraw-Hill,

pp. 64-69.

18, pp. 39-65, Mar. 1986.

1982.

Yung-Chang Wong received the B.S. degree in
applied mathematics from National Chiao Tung
Unifersity, Taiwan, R.O.C. in 1989, and the M.S.
degree in computer science and information engi-
neering from National Chiao Tung University in
1991.

He has been a Graduate Student in the depart-
ment of computer science and information engineer-
ing at National Chiao Tung University since 1991.
His research interests include distributed simulation,
parallel processing, and artificial intelligence.

Shu-Yuen Hwang received the B.S. and M.S. de-
grees in electrical engineering from National Taiwan
University in 1981 and 1983, respectively, and the
M.S. and Ph.D. degrees in computer science from
the University of Washington in 1987 and 1989,
respectively.

He is currently Associate Professor and Head of
the Institute of Computer Science and Information
Engineering, National Chiao-Tung University. His
research interests include computer vision, artificial
intelligence and computer simulation.

Dr. Hwang is a member of the ACM.

Jason Yi-Bing Lin received the BSEE degree
from National Cheng Kung University in 1983,
and the Ph.D. degree in computer science from the
University of Washington in 1990.

Since then, he has been with the Applied
Research Area at Bell Communications Research
(Bellcore), Momstown, NJ. His current research
interests include design and analysis of telecom-
munication networks, distributed simulation, and
performance modeling. He is the Guest Editor of
the Special Issue on Simulation of Communication

Systems for the Intemational Joumal of Computer Simulation, the Guest
Editor of the Special Issue on Parallel and Distributed Simulation for the
Joumal of Parallel and Distributed Computing, the editor of a book Advanced
Topics in Distributed Simulation, an Associate Editor of the lntemational
Joumal of Computer Simulation, and Program Chair for the 8th Workshop on
Distributed and Parallel Simulation. He is an Adjunct Research Fellow at the
Center for Telecommunications Research, National Chiao-Tung University,
Taiwan, R.O.C.

