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broadcasting of the first packet in a recursive manner. This is because 
their algorithms have to perform the broadcasting one by one; that is, 
it can not be performed in a pipeline fashion. In total, broadcasting 
the m packets can be completed in O(mn log, n)  time. In contrast, 
because of the message nonredundancy in our algorithm, the source 
node can start to broadcast the next packet while the first two phases 
of our algorithm are completed. Since performing the first two phases 
of our broadcasting algorithm takes O(log, n)  time, the m packets 
can be broadcast in O(m log, n+n log, n)  time in a pipeline fashion. 
Hence our nonredundant broadcasting algorithm takes less time and 
produces less traffic than the redundant ones for broadcasting a stream 
of packets. 

V. CONCLUSIONS 
In this paper, we proposed a distributed broadcasting algorithm 

with time and traffic optimum in star graphs on the one-port commu- 
nication model. By recursively partitioning a star graph into smaller 
disjoint substar graphs, our algorithm can broadcast a message to all 
the other nodes in the given n-star in O(n log, n )  time. We also 
showed the traffic improvement of our algorithm over two other 
algorithms proposed by [3] and [8]. Besides, our algorithm is more 
efficient than the above algorithms while broadcasting a stream of 
packets. 
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Performance Characterization 
of the Tree Quorum Algorithm 

Her-Kun Chang and Shyan-Ming Yuan 

Abstruct- The tree quorum algorithm, which logically organizes the 
sites in a system to a tree structure, is an efficient and fault-tolerant 
solution for distributed mutual exclusion. In this paper, the performance 
characteristics of the tree quorum algorithm is analyzed. A refinement 
algorithm is proposed to refine a logical tree structure by eliminating 
nodes or subtrees which do not improve the performance. Thus the refined 
tree performs better than the original. 

Index Term- Distributed mutual exclusion, tree quorum algorithm, 
availability, communication cost. 

I. INTRODUCTION 

A distributed system consists of a set of sites which are loosely 
coupled by a computer network. One advantage of distributed systems 
is resource sharing. That is the resources in a distributed system 
can be shared among the sites in the system. Examples of sharable 
resources are memory, peripheral, CPU, clock, etc. The sites in 
a distributed system may issue requests to a shared resource at 
arbitrary time. When two or more sites intended to access the same 
resource, a conflict occurs. A mechanism is required to synchronize 
conflicting requests so that at most one site is allowed to access the 
resource at any time instant. This problem is known as distributed 
mutual exclusion [ 11-[ 111. A survey of various algorithms for mutual 
exclusion can be found in [6] and a simple taxonomy for distributed 
mutual exclusion algorithms was reported in 171. 

A central controller can be used to control mutually exclusive 
access to a shared resource. All requests intended to the resource are 
sent to the controller and scheduled by the controller. Using a central 
controller is simple and easy to implement. However, the controller 
is vulnerable to site failure. When the controller fails, no access to 
the resource is allowed, i.e., the entire system is hafted. It is desirable 
to reduce the probability that the system is halted by using more than 
one sites to participate the decision making. For example, majority 
consensus [ 111 can be used to achieve mutual exclusion wherein a 
site is allowed to access the resource if it can get permissions from 
a majority of all participating sites. 

Majority consensus can tolerate at most N / 2  sites failures, where 
N is the number of participating sites. On the other hand, the 
communication overhead is costly, since at least N messages ( N / 2  
for request and N / 2  for reply) are required to be exchanged. Several 
algorithms try to reduce the communication overhead by imposing 
logical structures to the sites [l], [4]. The tree quorum algorithm [l], 
which logically organizes the sites to a tree structure, can reduce the 
number of messages exchanged to O(1og N) in the best case. In this 
paper, the performance characteristics of the tree quorum algorithm 
is analyzed. 

The avaifabilify, which is defined to be the steady-state probability 
that the system is up (not halted), is usually used to evaluate a 
distributed algorithm. Another important performance measure for a 
distributed algorithm is its communication cost. Certainly, the purpose 
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TABLE I 
AVAILABILITIES OF THREE LOGICAL TREES 

I case 11 p ( X )  I AVB(L) I AVB(R) AVB(X) ] 
I 1 I1 0.89 I 0.75 I 0.75 I1 0.8963 I 

2 11 0.90 I 0.75 I 0.75 11 0.9000 
3 11 0.91 I 0.75 I 0.75 11 0.9038 

of using more than one sites to participate the decision making is to 
increase the availability. For a distributed algorithm, however, the 
communication cost will increase as the number of participating sites 
increases. In general, increasing availability and reducing cost are 
two conflicting goals, i.e., a system with higher availability usually 
has higher cost compared to a system with lower availability. 

Can we reduce the communication cost while the availability dose 
not decrease? This paper shows that the answer is positive for the 
tree quorum algorithm. We find out that increasing the number of 
participating sites dose not necessarily increase the availability for the 
tree quorum algorithm. Giving a logical tree, we can refine the tree 
structure to improve its performance by eliminating nodes or subtrees 
that do not increase the availability. An algorithm is proposed to do 
such refinement. The refinement algorithm can reduce the number of 
nodes of the tree while the availability of the refined tree is not less 
than the original. 

The remainder of this paper is organized as follows. The tree 
quorum algorithm is reviewed in the next section. In Section 111, 
a refinement algorithm for binary tree is proposed. Numerical results 
of the refinement algorithm are shown in Section IV. We extend 
the algorithm to arbitrary tree structures in Section V and some 
concluding remarks are given in the final section. 

11. TREE QUORUM ALGORITHM 
The tree quorum algorithm logically organizes the sites in a system 

as a tree structure. For a binary tree, a tree quorum (recursively) 
consists of 

1) the root and a tree quorum of the left subtree, or 
2) the root and a tree quorum of the right subtree, or 
3) a tree quorum of the left subtree and a tree quorum of the right 

It was shown that any pair of tree quorums intersect with each other 
[l]. Thus mutual exclusion is ensured by requiring that an access 
request to get permissions from nodes which form a tree quorum. 

The availability of a node is the probability that the node is 
operational at any time instant. For the tree quorum algorithm, the 
availability of a (logical) tree is the probability that at least one tree 
quorum can be formed from the tree. Thus the availability of a binary 
tree is the probability that 

1) the root is operational and a tree quorum can be formed from 
the left subtree, or 

2) the root is operational and a tree quorum can be formed from 
the right subtree, or 

3) a tree quorum can be formed from the left subtree and a tree 
quorum can be formed from the right subtree. 

subtree. 

Every node X in a binary tree contains the following four fields: 
p ( X ) :  the availability of the node X, 
A V B ( X ) :  the availability of the subtree rooted at X, 
LEFT(X) :  the root of the left subtree of X ( L E F T ( X )  = 

RIGHT(X):  the root of the right subtree of 

If a tree consists of only one node, it degenerates to a central 
controller and the availability of the tree is the availability of itself, 

nil if X has no left subtree), 

X ( R I G H T ( X )  = nil if X has no right subtree). 

i.e., AVB(X)  = p ( X ) .  For a node X having both left and right 
subtrees, 

AVB(X)  =p(X)AVB(LEFT(X))AVB(RIGHT(X)) 
+ p ( X ) A V B ( L E F T ( X ) )  
. (1 - AVB( R I G H T ( X ) ) )  
+p(X) (1 -  A V B ( L E F T ( X ) ) )  
. A V B ( R I G H T ( X ) )  
+ (1  - p ( X ) ) A V B ( L E F T ( X ) )  
. A V B ( R I G H T ( X ) ) .  (1) 

Let AVB(ni1) = 0, (1) is valid for any nonleaf node X. 

(1) can be written as following formulas: 
Let Ai = A V B ( L E F T ( X ) )  and A, = AVB(RIGHT(X)) ,  

A V B ( X )  = p ( X ) ( l -  (1 - Ai)(1  - A , ) )  

+ (1 - p(X))ArAr 
= A i ( l  - (1 - p ( X ) ) ( l - A r ) )  

+ (1 - Ai )p(X)Ar 

+ (1 - AT)p(X)Ai .  (2) 

= A T ( l  - ( 1  - p ( X ) ) ( l - A i ) )  

111. REFINEMENT ALGORITHM FOR BINARY TREES 

Let X be the root of a binary tree attached with left and right 
subtrees rooted L and R, respectively. We can compute AC'B(X) 
from p ( X ) , A V B ( L ) , A V B ( R )  by (1). 

Table I shows threes examples, which give us the motivation 
of refinement. In all cases, A V B ( L )  = AVB(R)  = 0.75 (the 
subtrees rooted at L and R consist of one or more nodes). In cases 
1, 2 and 3, p ( X )  = 0.89, 0.90 and 0.91, respectively. By ( l ) ,  
AVB(X) = 0.8963, 0.9000 and 0.9038, respectively. In case 1, 
A V B ( X )  is higher than p ( X ) ,  A V B ( L )  and AVB(R).  That is, the 
availability of the whole tree is higher than any of the three parts: root, 
left subtree and right subtree. In case 2, A V B ( X )  = p ( X ) ,  i.e., the 
availability of the whole tree is equivalent to a single node (the root). 
The availability of the tree dose not increase but the cost increases. 
It is worse in case 3 that AVB(X) < p ( X ) .  The availability of the 
whole tree is even lower than a single node (the root). In cases 2 
and 3, a larger tree structure does not increase the availability but 
increase the cost. It is better to eliminate the subtrees to reduce the 
communication cost since the availabilities are not greater than the 
original. 

Let { a l ,  a2, a3} = { p ( X ) ,  A V B ( L E F T ( X ) ) ,  AVB(RIGHT 
(X))} such that a l  2 a2 2 a3, by (2), 

A V B ( X )  = a l ( l  - (1  - ~ 2 ) ( 1  - a 3 ) )  + (1 - a 1 ) ~ 2 a g .  (3) 

From (3), A V B ( X )  > al if and only if the following condition is 
satisfied 

(1  - al)a2a3 > al(1 - a2)(1 - a3)  (4) 

Condition (4) recommends that if (l-al)a2a3 5 a ~ ( l - a 2 ) ( l - a 3 ) ,  
it is better to eliminate the nodes or subtrees corresponding to a2 and 
a3, and replace the tree with the node or subtree corresponding to a l .  
The idea can be used to refine a tree to improve its performance. For 
example, if a2 = a3 = 0.75, as the cases in Table I, A V B ( X )  5 a1 

when a1 2 0.9. 
Fig. 1 is an example of refinement. The original tree and final 

refined tree are shown in Fig. l(a) and (c), respectively. Fig. l(b) 
shows a partial refinement of the original tree (partially refined tree). 

The original tree rooted at A is attached with left and subtrees 
rooted at B and C, respectively. Node B has children D , E  and 
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Fig. 1. Refinement example 1 .  

node C has children F, G. In the original tree, A V B ( B )  is higher 
than p ( B ) , A V B ( D )  and A V B ( E ) .  On the other hand, A V B ( C )  
is lower than p ( C ) .  Thus it is better to eliminate nodes F and G 
so that A V B ( C )  = p(C) .  This (partial) refinement is shown in 
Fig. l(b). 

In the partially refined tree, A V B ( A )  < A V B ( B ) .  Thus it is better 
to replace the tree with the subtree rooted at B ,  i.e., the subtree tree 
rooted at B becomes the refined tree. 

The number of nodes of the trees in Fig. l(a)-(c) are 7, 5 and 
3, respectively. The availability of the trees in Fig. I(a)-(c) are 
0.9629, 0.9666 and 0.972, respectively. The refined tree has higher 
availability, less number of nodes and thus lower communication 
cost than the original. 

Fig. 2 is another example of refinement. The tree in Fig. 2(b) 
is refined (partially) from the tree in Fig. 2(a) and the tree in Fig. 
2(c) is refined from the tree in Fig. 2(b). As the example in Fig. 
1, the refined tree has higher availability and less number of nodes 
compared to the original. 

The refinement examples in Figs. 1 and 2 recommends that it is 
not necessary to construct the logical tree using all the sites in the 
system. 

The refinement algorithm for a given binary tree rooted at X is 
presented in Fig. 3. Giving a logical tree, the refinement algorithm 
visits the nodes of the tree (recursively) from left to right subtrees 
and then the root (that is in postordering) and reconstructs it, if 
necessary, by eliminating the nodes or subtrees that do not increase 
the availability of the tree. 

Fig. 2. Refinement example 2. 

Lemma 1: AV B ( X )  is an increasing function of al , a2, a3. 
Pro08 Let { i l , G , i ~ }  = {1,2,3}, from (I), 

A V B ( X )  =aZl(a , ,a , ,  + a t z ( l  - a z 3 )  + ( 1  - a z 2 ) a z 3 )  

= a , , ( a , , ( l  - at,)  + ( 1  - a z 2 ) a t 3 )  +a2,aZ3 

+ ( 1  - a11)a12a13 

which is an increasing function of a z l .  Since i l  can be any- 
one in {1,2,3} ,  thus A V B ( X )  is an increasing function of 
al ,az ,a3.  Q.E.D. 

Theorem 1: The availability of a binary tree after refinement by 
algorithm REFINE is not less than the original. 

Pro08 For any node X in the binary tree, let X’ = 
R E F I N E ( X ) .  We show, by induction, that A V B ( X ’ )  2 
A V B ( X ) ,  

1) Induction Basis: If X is a leaf node, A V B ( X ’ )  = A V B ( X )  = 

2) Induction Hypothesis: If X is a nonleaf node attached with left 
and right subtrees rooted at L and R ,  respectively. Let L’ = 
R E F I N E ( L )  and R‘ = R E F I N E ( R ) .  The hypothesis of 
the induction is that AVB(L‘ )  2 AVB(L) and A V B ( R ’ )  2 
A V B ( R ) .  

3 )  Induction Step: Note a node will not be refined till its both 
subtrees have been refined. Let A V B ( X )  be the availability 
of the subtree rooted at X attached with, and R (i.e. before 
L and R have been refined). Let A V B ( X )  be the availability 
of the subtree rooted at X attached with L‘ and R‘ (i.e., after 
L and R have been refined). According to Lemma 1 and the 
hypothesis of the induction, A V B ( X )  2 A V B ( X ) .  

Let a1 ~ be the maximum in { p ( X ) , A V B ( L ’ ) , A V B ( R ’ ) } .  If 
A V B ( X )  > a l ,  X is returned with L’ and R‘ still attached to 
X ;  otherwise, the node or subtree corresponding to al  is returned 

P ( X > .  



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995 66 1 

TABLE 111 
COMPARISON FOR THE ORIGINAL AND REFINED TREES 

Algorithm REFIN E( X) 
begin 

if X = nil then return(X) 
L = REFINE(LEFT(X)) 
R = REFINE(RIGXT(X)) 
ma+ = X 
AVE(X) = p(X) 
if L # nil 

AI = AVE(L) 
if AI > AVB(maz) then maz = L 

else 
AI = 0 

endif 
if R # nil 

A, = AVE(R) 
if A, > AVE(maz) then maz = R 

A, = 0 
else 

endif 
au = p(X)(1- (1 - Ai)@ -A,)) + (1 -P(X))AIAR 
if au > AVE(maz) 

AVE(X) = au 
return(X) 

LEFT(X) = nil 
RIGHT(X) = nil 
return(maz) 

else 

endif 
end (REFINE) 

Fig. 3. Refinement algorithm. 

and the others are deleted. Let X ’  = R E F I N E ( X ) .  then 
A V B ( X ’ )  2 AF’B(2) 2 A V B ( X ) .  Q.E.D. 

IV. NUMERICAL RESULTS 
In this section, we show several numerical results of the refinement 

algorithm. The comparison is based on full binary trees of depth 4. We 

choose full binary trees since the definition is well known. Otherwise, 
n - 1 links or an n x n matrix is required to describe an arbitrary 
tree of n nodes. We choose depth 4 because depth 3 is too small and 
depth 5 is too large for demonstration. 

The availabilities of nodes, shown in Table 11, are generated 
randomly. The values are sequentially assigned to the nodes, starting 
with the root (level I ) ,  then nodes on level 2 and so on. Nodes on 
any level are assigned from left to right. 

We compare the refined tree with the original tree for the avail- 
ability and the number of nodes of the trees. The results are shown 
in Table 111. In each case, ‘node saving’ shows the cost saved 
compared to the original. Note that, in cases I and J ,  there are nodes 
having availabilities <0.5 and the availability improvements are more 
significant than the other cases. The reason is that if a3 5 0.5, 
condition (4) is always not satisfied. It is shown that the refinement 
algorithm can significantly reduce the cost as well as increase the 
availability. Thus the refined tree performs better than the original. 

V. A N  EXTENSION FOR ARBITRARY TREES 
In this section, an extended refinement algorithm is briefly de- 

scribed for arbitrary trees. For an arbitrary tree, a tree quorum 
(recursively) consists of 

1) the root and a tree quorum of any subtree, or 
2) tree quorums of all subtrees. 
For a nonleaf node X having subtrees rooted at c1, CZ, . . . , C, , 

the availability of the subtree rooted at X can be computed by the 
following formula: 
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Let a1 be the maximum in { p ( X ) , A V B ( C l ) , A V B ( C 2 ) , . . .  , 
AVB(C,)}, the refinement algorithm can be extended in such 
a way that if A V B ( X )  5 a1 then the node or subtree corresponding 
to a1 is returned (and the others are deleted); otherwise X is returned 
with all subtrees still attached to X. An extended version of Theorem 
1 for arbitrary trees can be proved in a similar way. 

VI. CONCLUSIONS 
A central controller can be used to solve distributed mutual 

exclusion. The drawback is that it is vulnerable to site failure. When 
the controller fails, the entire system halts. Using more than one 
sites to participate the decision making may reduce the probability 
that the system is halted. However, the communication cost usually 
increases as the number of participating sites increases. In general, 
increasing availability and reducing cost are two conflicting goals, i.e., 
a system with higher availability usually has higher communication 
cost compared to a system with lower availability. Can we reduce 
the communication cost while the availability dose not decrease? We 
find out that the answer is positive for the tree quorum algorithm. 

In this paper, a refinement algorithm is proposed to refine a logical 
tree structure by eliminating the nodes or subtrees that do not increase 
the availability. Giving a tree, the refinement algorithm can reduce 
the number of nodes of the tree while the availability of the refined 
tree is not less than the original. Reducing the number of nodes can 
reduce the communication cost and the cost of maintaining the tree. 
Thus, the refined tree is preferred because it can significantly save 
the cost of communication and maintenance. 
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Integer Programming for Array Subscript Analysis 

Jaspal Subhlok and Ken Kennedy 

Abstract-We present a new method to determine whether a convex 
region contains any integer points. The method is designed for array 
subscript analysis in parallel programs. The general problem is whether 
a system of linear qualities and inequalities has an integer solution. A set 
of known techniques is used to transform the problem to that of finding 
whether a convex region contains any integer points. The main result 
of the paper is a set of new search procedures that identify an integer 
solution in a convex region, or prove that no integer solutions exist. They 
are based on the geometrid properties of convex regions that are not 
empty, but also do not contain any integer points. The results contribute 
to exact and efficient dependence and synchronization analysis of parallel 
programs. 

Index TermSubscript analysis, dependence testing, integer program- 
ming, parallelizing compilers, parallel program analysis, synchronization 
analysis. 

I. INTRODUCTION 
Several mathematical problems that arise in the development of 

parallelizing compilers can be transformed to integer programming 
problems. Determining whether a data dependence exists between two 
array references can be transformed to the problem of determining 
whether an integer solution to a set of linear equalities and inequalities 
exists [I], [ 131. Similarly, jn an event variable synchronization model, 
determining whether the synchronization present in a program is 
sufficient to protect a dependence can be transformed to the problem 
of determining whether a system of linear equations has a non- 
negative integer solution [3]. Both these problems are instances of 
integer programming, which is known to be NP-complete. 

Solving Diophantine equations and Fourier-Motzkin elimination 
are well known techniques that have been used by researchers to 
solve integer programming problems in parallelizing compilers. But 
they are not sufficient to solve the problem exactly; in the worst case 
it is necessary to search a convex region for integer points, which is 
the subject of this paper. We also illustrate how the various methods 
are combined to form an efficient solution procedure. For details 
on the context in which the results of this paper are applicable, the 
reader is referred to [9], [IO]. 

Our approach is oriented towards integer programming problems 
that are solved in a parallelizing compiler, where the number of 
equations and variables is tied to the loop nesting depth and the 
number of subscripts in array references, both of them typically 
small integers. The small size of problem instances makes it possible 
to develop an efficient solution procedure even though the general 
problem is NP-complete. The main results in the paper are for 
problems in two dimensions. Since a two dimensional problem is 
obtained from the simplest problem that is not directly solved by 
other methods, it is likely to occur most often, and we believe 
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