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Abstract 

The reliability of a distributed program in a distributed computing system is the probability that a program which runs 
on multiple processing elements and needs to communicate with other processing elements for remote data files will be 
executed successfully. This reliability varies according to ( 1) the topology of the distributed computing system, (2) the 
reliability of the communication links, (3) the data files and program distribution among processing elements, and (4) the 
data files required to execute a program. This paper shows that solving this reliability problem is NP-hard even when the 
distributed computing system is restricted to a series-parallel, a 2-tree, a tree, or a star structure. @ 1997 Elsevier Science 
B.V. 
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1. Introduction 

A typical distributed computing system (DCS) 
consists of processing elements (nodes), communi- 
cation links (edges), memory units, data files, and 
programs [ 561. These resources are interconnected 
via a communication network that dictates how infor- 

mation flows between nodes. Programs residing on 
some nodes can run using data files at other nodes. 

One important issue in the design of a DCS is reli- 
ability. A large amount of work [ 1,8,12,16] has been 
devoted to developing algorithms to compute mea- 
sures of reliability for DCSs. One typical reliability 
measure for DCSs is the K-terminal reliability (KTR) 
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[ 201. KTR is the probability that a specified set of 
nodes K, which is subset of all the nodes in the DCS, 
remains connected in a DCS whose edges may fail 
independently of each other, with a known probabili- 
ties. However, the KTR measure is not applicable to 
practical DCSs since a reliability measure for DCSs 
should capture the effects of redundant distribution of 

programs and data files. 
In [ lo], distributed program reliability (DPR) was 

introduced to accurately model the reliability of DCSs. 
Consider DCS in which the nodes are perfectly reliable 
but the edges can fail, statistically independently of 
each other, with known probabilities. For successful 
execution of a distributed program, it is essential that 
the node containing the program, other nodes that have 
required data files, and the edges between them be 
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fig. 1. A simple DCS. Program fl needs data files f2, f3, and 
f4 to complete execution. 

operational. DPR is thus defined as the probability that 

a program with distributed files can run successfully in 
spite of some faults occurring in the edges. To illustrate 
the definition of DPR, consider the DCS shown in 
Fig. 1. There are four nodes (~1, 2~2. us, ~4) and five 
edges (et, e2, es, e4, es). Program fr requires data 
files f2, f3, and f4 to complete execution, and it is 

running at node VI, which holds data files f2 and f3. 

Hence, it must access data file f4, which is resident at 

both node v2 and node ~4. Therefore, the reliability of 
distributed program fl can be formulated as follows: 

DPR(program f 1) 

= Prob( (ur and u2 are connected) 

or (VI and v4 are connected) ) . 

Several algorithms have been proposed for evalu- 
ation DPR [3,4,9,11]. However, we have seen that 
none meets our desire for efficient algorithms. At this 
point, one must conclude that either the approaches 
examined are just not sufficiently clever, or that no 
efficient algorithms exist for our reliability problems. 
Nevertheless, tools in complexity theory do provide a 
vehicle for giving strong evidence that no polynomial 
time algorithm exists for certain problems. A gener- 
ally accepted method for providing evidence of in- 
tractability is to prove NP-complete or NP-hard. We 
refer the reader to [ 71 for an excellent exposition of 
the theory of NP-complete, and for proofs of stan- 
dard NP-complete results. NP-hard is not a proof of 
intractability, but is convincing evidence. An efficient 
solution for any NP-hard problem provides efficient 
methods for every problem in NP, which contains a 
formidable list of apparently difficult problems. 

The purpose of this paper is to show that the DPR 
problem, in general, is NP-hard even on a DCS with 

a series-parallel, a 2-tree, a tree, or a star struc- 

ture. 
In this paper we will make use of the following 

notation: 
D = (YE, F) : an undirected DCS graph with vertex 
(nodes) set V, edge set E, and file set F which is 
distributed in D, 

V: the set of nodes that are all perfectly reliable, 
E: the set of edges that can fail, statistically inde- 
pendently of each other, with known probability, 
F: the set of files (including data files and pro- 
grams) distributed in D, 

H C F: the specified set of files that must commu- 
nicate with each other through the edges, 
FAi 2 F: the set of files available at node i, 
pi: the reliability of edge i, 
qi E 1 - pi, 
R( DH) : the DPR of D with H specified E the prob- 

ability that all files in H can communicate with each 
other through the edges in D. 

Using the above notation, we can describe the ex- 
ample in Fig. 1 as follows: 

V={ul,U2rU3rU4}, 

E= {el,e29e39e4,e5}, 

F = {flrf2,f3,f4,fSrf6}v 

H={flTf2.f3?f4}9 

//Program f 1 needs data files f2, f3, and f4 to com- 
plete execution. I I 

mu1 = {flv f2. f3), Mu2 = (f2, f4)r 

mu3 = (f2, fs), and mu4 = (f4, f6). 

2. The computational complexity of the DPR 
problem 

Complexity results are obtained by transforming 
known NP-hard problems into our reliability prob- 
lems. For this reason, we first state some known NP- 
hard problems: 
( 1) K-Terminal Reliability (KTR) [ 15,181. 

Input: an undirected graph G = (YE), where 
V is the set of nodes and E is the set of edges 
that fail statistically independently of each other 



M.-S. Lin, D.-J. Chedlnformation Processing Letters 64 (1997) 143-147 145 

with known probabilities. A set K c V is distin- 

guished with ]lyl 2 2. 
Output: R( GK) , the probability that the set K of 
nodes of G is connected in G. 

(2) Number of Edge Covers (#EC) [ 21. 
Input: an undirected graph G = ( V E) . 
Output: the number of edge covers for G z / {L 2 
E : each node of G is an end of some edge in 

L]I. 
(3) Number of Vertex Covers (#VC) [ 141. 

Input: an undirected graph G = ( YE) . 

Output: the number of vertex covers for G z 
I{K C V : every edge of G has at least one end 

in K}I. 

Theorem 1. Computing DPR for a general DCS is 
NP-hard. 

Proof. We reduce the well-known KTR problem to 
our DPR problem. For a given network G = (V E) 
and a specified set K L V, we can define an instance 
of the DPR problem. Construct a DCS graph D = 
(v E, F) in which the topology and the reliability of 
each edge are the same as G. Let F = Unode ,,{fi} 
and FA, = {fi} if node i E K, else FAi = 8 for each 

node i E V. If we set H = F = Unode i,K{fi}, then we 
have R(DH) = R(GK). 0 

Corollary 2. Computing DPR for a planar DCS is 
NP-hard. 

Proof. From the proof of Theorem 1, it is clear that the 
KTR problem is just a special case of the DPR prob- 
lem. It has been shown that computing KTR over pla- 

nar networks is NP-hard [ 131. This also immediately 
implies that computing DPR over planar networks is 

NP-hard. 0 

The result of Theorem 1 implies that it is unlikely 
that polynomial-time algorithms exist for solving 
the DPR problem. One possible means of avoid- 
ing this complexity is to consider only a restricted 
class of structures. Classes of interest here include 
linear systems, which are widely used in bus lo- 
cal networks, ring systems, which are widely used 
in token ring local networks, stars, which are used 
in one-node circuit-switched networks, trees, which 
are used in hierarchical local access networks, and 

series-parallel system which arise in wide-area net- 

works. 
For the KTR problem polynomial-time (or linear- 

time) algorithms have been developed for other re- 
stricted networks, such as linear systems, ring sys- 
tems, stars, trees, and series-parallel graphs [ 171. Ob- 
viously, if there are no replicated files, i.e., if there is 
only one copy of each file in the DCS, then the DPR 
problem can be transformed into a KTR equivalent 
problem in which the K set is the set of nodes that 

contain the data files needed for the program under 
consideration. However, data files are usually repli- 
cated and distributed in DCS, so these two problems 

are different. In the remainder of this section, we will 
show that computing DPR over stars, trees, or series- 

parallel networks in general is still NP-hard. 

Theorem 3. Computing DPR for a DCS with a star 
topology is NP-hard even when each 1 FAi I = 2. 

Proof. We reduce the #EC problem to our prob- 
lem. For a given network G = (VI, El >, where El = 

{el,e2,... ,e,},weconstructaDCSD=(V2,E2,F) 
with a star topology, where V2 = {s, ~1, 4, . . , on}, 
E2 = {(s, Ui) / 1 6 i 6 n}, and F = {fi I for each 

node i E G}. Let FAUi = {fi,, fi, I if ei = (u, U) E G} 
for 1 < i < n, FA, = 0 and H = F. In the DCS 
we now define a file spanning tree (FST), which 

is a tree whose nodes hold all files E H, i.e., H C 

Uvi~Ffl{FAil- F rom the construction of D, it is easy 
to show that there is a one-to-one correspondence 
between one of the sets of edge covers and one FST. 
The DPR of D, R( DH), can be expressed as 

R(DH) = c { rI pi 
for all FST IED for each edge iet 

X 
rI (1 -Pi)}. 

for each edge $0 

If we set each pi = $ for all 1 < i < n, then we have 

R(DH) = c ($ 
for all FST ED 

R( DH)2* = c ’ 
for all FST ED 

=# of FSTs in D 

=# of edge covers in G. 0 
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Theorem 4. Computing DPR for a DCS with a star 

topology is NP-hard even when there are only two 

copies of each file. 

Proof. We employ the reduce from #VC problem to 

our problem. For a given G = (Vi, El ), where [Et 1 = n 
and V, = {uI,u~,... , unt}, we construct a DCS D = 

( &, E2, F) with a star topology, where v2 = 6 U {s}, 
E2 = {ei = (s,q) 1 1 < i < m}, and F = {fi 1 
for all edges i E G}. Let E4i = {fj 1 for all edges 
j that are incident on Ui E G} and H = F. From the 
construction of D, it is easy to show that there are 
only two copies of each file in D and there is a one-to- 
one correspondence between one of the sets of vertex 
covers and one FST of D. The DPR of D, R(Dn), 

can be expressed as 

R(DH) = c { II pi 
for all FST GD for each edge iEt 

x n (I-Pi)}. 
for each edge i$t 

If we set each pi = i for all 1 < i < n, then we have 

NDH) = c ($3 
for all FST tED 

R( DH)~” = c 1 
for all FST tED 

=#ofFSTs in D 

= # of vertex covers in G. Cl 

Corollary 5. Computing DPR for a DC’S with a tree 

topology is NP-hard. 

Proof. By Theorems 3 and 4, we see that the DPR 
problem for a DCS with a star topology in general 
is NP-hard. This implies that the DPR problem for a 
DCS with a tree topology in general is also NP-hard, 
since a DCS with a star topology is just a DCS with 
a tree topology which has one level branch. 0 

For KTR, it is obviously true that polynomial-time The reliability of a distributed program in a dis- 

algorithms exist over DCSs with a star or a tree topol- tributed computing system is the probability that a 
ogy. In addition, polynomial-time algorithms do exist 
for computing KTR over series-parallel graphs [ 141 

program which runs on multiple processing elements 
and needs to communicate with other processing ele- 

and 2-trees [ 131. A 2-tree is defined recursively as ments for remote data files will be executed success- 

follows: fully. This reliability varies according to ( 1) the topol- 

( 1) The complete graph K2 (a single edge) is a 2- 
tree. 

(2) Given any 2-tree G on n > 2 nodes, let (u, U) 
be an edge of G. Adding a new node w and two 

edges (w, U) and (w, o) produces a 2-tree on 
n + 1 nodes. 

We now show that the DPR problem for a DCS with 
a 2-tree structure in general is NP-hard. 

Theorem 6. Computing DPR for a DCS with a 2-tree 

topology in general is NP-hard. 

Proof. We reduce an arbitrary instance of a star topol- 

ogy to a 2-tree topology. Assume we have a DCS graph 
D=(VE,F) whereV={s,vi,U2 ,..., u,}andE= 
{(s, Ui) 1 1 < i < n} with a star topology. We con- 
struct from D a DCS graph D’ = (YE’, H), where 
E’=EU{(Ui,Ui+l) 1 l<i<n-l}.Itiseasytosee 
that D’ is a 2-tree on n + 1 nodes. If we stipulate that 
all added edges (Ui, Ui+l), 1 6 i < n - 1, of D’ have 
a reliability of 0, then we have R( Dn) = R( Dh) for 

any given H C F. 0 

Corollary 7. Computing DPR over a series-parallel 

DCS is NP-hard. 

Proof. From [ 191, a 2-tree is a maximal series- 
parallel graph. A maximal series-parallel graph is a 
series-parallel graph with neither loops nor parallel 
edges. Since computing DPR over a DCS with a 

2-tree topology is NP-hard, computing DPR over a 
series-parallel DCS is also NP-hard. It is easy to see 
that the DCS graph D’ constructed in Theorem 6 is 
also a series-parallel DCS. The theorem follows. q 

In this section, we have shown that computing DPR 

over a DCS with a star, a tree, a 2-tree, a series-parallel, 
a planar, or a general topology in general is NP-hard. 

3. Conclusions 
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ogy of the distributed computing system, (2) the reli- 

ability of the communication links, (3) the data files 
and program distribution among processing elements, 
and (4) the data files required to execute a program. 
This paper shows that solving this reliability problem 
is NP-hard even when the distributed computing sys- 
tem is restricted to a series-parallel, a 2-tree, a tree, or 

a star structure. 
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