
Information Processing Letters 64 (1997) 143-147

Informqtion
~~;cesng

The computational complexity of the reliability problem
on distributed systems

Min-Sheng Lin a**, Deng-Jyi Chen by1
’ Department of Information Management, Tamsui Oxford University College. Tamsui, Taipei, 25103, Taiwan, ROC

b Institute of Computer Science and Information Engineering, National Chiao-Tung Universify, Hsin Chu, 30050, Taiwan, ROC

Received 31 January 1997; revised 16 July 1997
Communicated by T. Asano

Abstract

The reliability of a distributed program in a distributed computing system is the probability that a program which runs
on multiple processing elements and needs to communicate with other processing elements for remote data files will be
executed successfully. This reliability varies according to (1) the topology of the distributed computing system, (2) the
reliability of the communication links, (3) the data files and program distribution among processing elements, and (4) the
data files required to execute a program. This paper shows that solving this reliability problem is NP-hard even when the
distributed computing system is restricted to a series-parallel, a 2-tree, a tree, or a star structure. @ 1997 Elsevier Science
B.V.

Keywords: Distributed systems; Distributed program reliability; Computational complexity; Graph theory

1. Introduction

A typical distributed computing system (DCS)
consists of processing elements (nodes), communi-
cation links (edges), memory units, data files, and
programs [561. These resources are interconnected
via a communication network that dictates how infor-

mation flows between nodes. Programs residing on
some nodes can run using data files at other nodes.

One important issue in the design of a DCS is reli-
ability. A large amount of work [1,8,12,16] has been
devoted to developing algorithms to compute mea-
sures of reliability for DCSs. One typical reliability
measure for DCSs is the K-terminal reliability (KTR)

+ Corresponding author. Email: mlin@jupiter.touc.edu.tw.
’ Email: djchen@csie.nctu.edu.tw.

[201. KTR is the probability that a specified set of
nodes K, which is subset of all the nodes in the DCS,
remains connected in a DCS whose edges may fail
independently of each other, with a known probabili-
ties. However, the KTR measure is not applicable to
practical DCSs since a reliability measure for DCSs
should capture the effects of redundant distribution of

programs and data files.
In [lo], distributed program reliability (DPR) was

introduced to accurately model the reliability of DCSs.
Consider DCS in which the nodes are perfectly reliable
but the edges can fail, statistically independently of
each other, with known probabilities. For successful
execution of a distributed program, it is essential that
the node containing the program, other nodes that have
required data files, and the edges between them be

0020-0190/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PII SOOZO-0190(97)00150-6

144 M.-S. Lin, D.-J. Chedlnformation Processing Letters 64 (1997) 143-147

v3
fig. 1. A simple DCS. Program fl needs data files f2, f3, and
f4 to complete execution.

operational. DPR is thus defined as the probability that

a program with distributed files can run successfully in
spite of some faults occurring in the edges. To illustrate
the definition of DPR, consider the DCS shown in
Fig. 1. There are four nodes (~1, 2~2. us, ~4) and five
edges (et, e2, es, e4, es). Program fr requires data
files f2, f3, and f4 to complete execution, and it is

running at node VI, which holds data files f2 and f3.

Hence, it must access data file f4, which is resident at

both node v2 and node ~4. Therefore, the reliability of
distributed program fl can be formulated as follows:

DPR(program f 1)

= Prob((ur and u2 are connected)

or (VI and v4 are connected)) .

Several algorithms have been proposed for evalu-
ation DPR [3,4,9,11]. However, we have seen that
none meets our desire for efficient algorithms. At this
point, one must conclude that either the approaches
examined are just not sufficiently clever, or that no
efficient algorithms exist for our reliability problems.
Nevertheless, tools in complexity theory do provide a
vehicle for giving strong evidence that no polynomial
time algorithm exists for certain problems. A gener-
ally accepted method for providing evidence of in-
tractability is to prove NP-complete or NP-hard. We
refer the reader to [71 for an excellent exposition of
the theory of NP-complete, and for proofs of stan-
dard NP-complete results. NP-hard is not a proof of
intractability, but is convincing evidence. An efficient
solution for any NP-hard problem provides efficient
methods for every problem in NP, which contains a
formidable list of apparently difficult problems.

The purpose of this paper is to show that the DPR
problem, in general, is NP-hard even on a DCS with

a series-parallel, a 2-tree, a tree, or a star struc-

ture.
In this paper we will make use of the following

notation:
D = (YE, F) : an undirected DCS graph with vertex
(nodes) set V, edge set E, and file set F which is
distributed in D,

V: the set of nodes that are all perfectly reliable,
E: the set of edges that can fail, statistically inde-
pendently of each other, with known probability,
F: the set of files (including data files and pro-
grams) distributed in D,

H C F: the specified set of files that must commu-
nicate with each other through the edges,
FAi 2 F: the set of files available at node i,
pi: the reliability of edge i,
qi E 1 - pi,
R(DH) : the DPR of D with H specified E the prob-

ability that all files in H can communicate with each
other through the edges in D.

Using the above notation, we can describe the ex-
ample in Fig. 1 as follows:

V={ul,U2rU3rU4},

E= {el,e29e39e4,e5},

F = {flrf2,f3,f4,fSrf6}v

H={flTf2.f3?f4}9

//Program f 1 needs data files f2, f3, and f4 to com-
plete execution. I I

mu1 = {flv f2. f3), Mu2 = (f2, f4)r

mu3 = (f2, fs), and mu4 = (f4, f6).

2. The computational complexity of the DPR
problem

Complexity results are obtained by transforming
known NP-hard problems into our reliability prob-
lems. For this reason, we first state some known NP-
hard problems:
(1) K-Terminal Reliability (KTR) [15,181.

Input: an undirected graph G = (YE), where
V is the set of nodes and E is the set of edges
that fail statistically independently of each other

M.-S. Lin, D.-J. Chedlnformation Processing Letters 64 (1997) 143-147 145

with known probabilities. A set K c V is distin-

guished with]lyl 2 2.
Output: R(GK) , the probability that the set K of
nodes of G is connected in G.

(2) Number of Edge Covers (#EC) [21.
Input: an undirected graph G = (V E) .
Output: the number of edge covers for G z / {L 2
E : each node of G is an end of some edge in

L]I.
(3) Number of Vertex Covers (#VC) [141.

Input: an undirected graph G = (YE) .

Output: the number of vertex covers for G z
I{K C V : every edge of G has at least one end

in K}I.

Theorem 1. Computing DPR for a general DCS is
NP-hard.

Proof. We reduce the well-known KTR problem to
our DPR problem. For a given network G = (V E)
and a specified set K L V, we can define an instance
of the DPR problem. Construct a DCS graph D =
(v E, F) in which the topology and the reliability of
each edge are the same as G. Let F = Unode ,,{fi}
and FA, = {fi} if node i E K, else FAi = 8 for each

node i E V. If we set H = F = Unode i,K{fi}, then we
have R(DH) = R(GK). 0

Corollary 2. Computing DPR for a planar DCS is
NP-hard.

Proof. From the proof of Theorem 1, it is clear that the
KTR problem is just a special case of the DPR prob-
lem. It has been shown that computing KTR over pla-

nar networks is NP-hard [131. This also immediately
implies that computing DPR over planar networks is

NP-hard. 0

The result of Theorem 1 implies that it is unlikely
that polynomial-time algorithms exist for solving
the DPR problem. One possible means of avoid-
ing this complexity is to consider only a restricted
class of structures. Classes of interest here include
linear systems, which are widely used in bus lo-
cal networks, ring systems, which are widely used
in token ring local networks, stars, which are used
in one-node circuit-switched networks, trees, which
are used in hierarchical local access networks, and

series-parallel system which arise in wide-area net-

works.
For the KTR problem polynomial-time (or linear-

time) algorithms have been developed for other re-
stricted networks, such as linear systems, ring sys-
tems, stars, trees, and series-parallel graphs [171. Ob-
viously, if there are no replicated files, i.e., if there is
only one copy of each file in the DCS, then the DPR
problem can be transformed into a KTR equivalent
problem in which the K set is the set of nodes that

contain the data files needed for the program under
consideration. However, data files are usually repli-
cated and distributed in DCS, so these two problems

are different. In the remainder of this section, we will
show that computing DPR over stars, trees, or series-

parallel networks in general is still NP-hard.

Theorem 3. Computing DPR for a DCS with a star
topology is NP-hard even when each 1 FAi I = 2.

Proof. We reduce the #EC problem to our prob-
lem. For a given network G = (VI, El >, where El =

{el,e2,... ,e,},weconstructaDCSD=(V2,E2,F)
with a star topology, where V2 = {s, ~1, 4, . . , on},
E2 = {(s, Ui) / 1 6 i 6 n}, and F = {fi I for each

node i E G}. Let FAUi = {fi,, fi, I if ei = (u, U) E G}
for 1 < i < n, FA, = 0 and H = F. In the DCS
we now define a file spanning tree (FST), which

is a tree whose nodes hold all files E H, i.e., H C

Uvi~Ffl{FAil- F rom the construction of D, it is easy
to show that there is a one-to-one correspondence
between one of the sets of edge covers and one FST.
The DPR of D, R(DH), can be expressed as

R(DH) = c { rI pi
for all FST IED for each edge iet

X
rI (1 -Pi)}.

for each edge $0

If we set each pi = $ for all 1 < i < n, then we have

R(DH) = c ($
for all FST ED

R(DH)2* = c ’
for all FST ED

=# of FSTs in D

=# of edge covers in G. 0

146 M.-S. Lin, D.-J. Chetdlnformation Processing Letters 64 (1997) 143-147

Theorem 4. Computing DPR for a DCS with a star

topology is NP-hard even when there are only two

copies of each file.

Proof. We employ the reduce from #VC problem to

our problem. For a given G = (Vi, El), where [Et 1 = n
and V, = {uI,u~,... , unt}, we construct a DCS D =

(&, E2, F) with a star topology, where v2 = 6 U {s},
E2 = {ei = (s,q) 1 1 < i < m}, and F = {fi 1
for all edges i E G}. Let E4i = {fj 1 for all edges
j that are incident on Ui E G} and H = F. From the
construction of D, it is easy to show that there are
only two copies of each file in D and there is a one-to-
one correspondence between one of the sets of vertex
covers and one FST of D. The DPR of D, R(Dn),

can be expressed as

R(DH) = c { II pi
for all FST GD for each edge iEt

x n (I-Pi)}.
for each edge i$t

If we set each pi = i for all 1 < i < n, then we have

NDH) = c ($3
for all FST tED

R(DH)~” = c 1
for all FST tED

=#ofFSTs in D

= # of vertex covers in G. Cl

Corollary 5. Computing DPR for a DC’S with a tree

topology is NP-hard.

Proof. By Theorems 3 and 4, we see that the DPR
problem for a DCS with a star topology in general
is NP-hard. This implies that the DPR problem for a
DCS with a tree topology in general is also NP-hard,
since a DCS with a star topology is just a DCS with
a tree topology which has one level branch. 0

For KTR, it is obviously true that polynomial-time The reliability of a distributed program in a dis-

algorithms exist over DCSs with a star or a tree topol- tributed computing system is the probability that a
ogy. In addition, polynomial-time algorithms do exist
for computing KTR over series-parallel graphs [141

program which runs on multiple processing elements
and needs to communicate with other processing ele-

and 2-trees [131. A 2-tree is defined recursively as ments for remote data files will be executed success-

follows: fully. This reliability varies according to (1) the topol-

(1) The complete graph K2 (a single edge) is a 2-
tree.

(2) Given any 2-tree G on n > 2 nodes, let (u, U)
be an edge of G. Adding a new node w and two

edges (w, U) and (w, o) produces a 2-tree on
n + 1 nodes.

We now show that the DPR problem for a DCS with
a 2-tree structure in general is NP-hard.

Theorem 6. Computing DPR for a DCS with a 2-tree

topology in general is NP-hard.

Proof. We reduce an arbitrary instance of a star topol-

ogy to a 2-tree topology. Assume we have a DCS graph
D=(VE,F) whereV={s,vi,U2 ,..., u,}andE=
{(s, Ui) 1 1 < i < n} with a star topology. We con-
struct from D a DCS graph D’ = (YE’, H), where
E’=EU{(Ui,Ui+l) 1 l<i<n-l}.Itiseasytosee
that D’ is a 2-tree on n + 1 nodes. If we stipulate that
all added edges (Ui, Ui+l), 1 6 i < n - 1, of D’ have
a reliability of 0, then we have R(Dn) = R(Dh) for

any given H C F. 0

Corollary 7. Computing DPR over a series-parallel

DCS is NP-hard.

Proof. From [191, a 2-tree is a maximal series-
parallel graph. A maximal series-parallel graph is a
series-parallel graph with neither loops nor parallel
edges. Since computing DPR over a DCS with a

2-tree topology is NP-hard, computing DPR over a
series-parallel DCS is also NP-hard. It is easy to see
that the DCS graph D’ constructed in Theorem 6 is
also a series-parallel DCS. The theorem follows. q

In this section, we have shown that computing DPR

over a DCS with a star, a tree, a 2-tree, a series-parallel,
a planar, or a general topology in general is NP-hard.

3. Conclusions

M.-S. Lin, D.-J. Chen/lnfortmtion Processing Letters 64 (1997) 143-147 147

ogy of the distributed computing system, (2) the reli-

ability of the communication links, (3) the data files
and program distribution among processing elements,
and (4) the data files required to execute a program.
This paper shows that solving this reliability problem
is NP-hard even when the distributed computing sys-
tem is restricted to a series-parallel, a 2-tree, a tree, or

a star structure.

References

[I] K.K. Aggrawal, S. Rai, Reliability evaluation in computer-

communication networks, IEEE Trans. Reliability 30 (198 1)
32-35.

[21 M.O. Ball, J.S. Provan, D.R. Shier, Reliability covering
problems, Networks 21 (1991) 345-357.

[31 D.J. Chen, T.H. Huang, Reliability analysis of distributed

systems based on a fast reliability algorithm, IEEE Trans.

Parallel Distributed Systems 3 (2) (1992) 139-153.

[4 1 D.J. Chen, M.S. Lin, On distributed computing systems
reliability analysis under program execution constraints,

IEEE Trans. Comput. 15 (12) (1993).

15 1 I? Enslow, What is a distributed data processing system,

Computer I1 (1978).

161 J. Garcia-Molina, Reliability issues for fully replicated

distributed database, IEEE Comput. 16 (1982) 34-42.

17 I M.R. Carey, D.S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-completeness, Freeman, San

Francisco, CA, 1979.

[8 1 A.F! Gmarov, M. Gerla, Multi-terminal reliability analysis of
distributed processing system, in: Proc. 1981 Intemat. Conf.

Parallel Processing (198 1) 79-86.

[9] A. Kumar, S. Rai, D.P. Agrawal, On computer

communication network reliability under program execution

constraints, IEEE JSAC 6 (1988) 1393-1399.

[IO] V.K. Prasanna Kumar, S. Hariri, C.S. Raghavendra,

Distributed program reliability analysis, IEEE Trans.

Software Engineering 12 (1986) 42-50.

[111 M.S. Lin, D.J. Chen, General reduction methods for
the reliability analysis of distributed computing systems,

Comput. J. 36 (7) (1993) 631-644.

[121 R.E. Merwin, M. Mirhakak, Derivation and use of a

survivability criterion for DDP systems, in: Proc. 1980 Nat.

Comput. Conf. (1980) 1399146.

[131 J.S. Provan, The complexity of reliability computations in
planar and acyclic graphs, SIAM J. Comput. 15 (1986)

694-702.

[141 J.S. Provan, M.O. Ball, The complexity of counting cuts

and of computing the probability that a graph is connected,

SIAM J. Comput. 12 (4) (1983) 777-788.

[151 A. Rosenthal, A computer scientist looks at reliability
computations, in: Reliability and Fault tree Analysis SLAM

(1975) 133-152.

[161 A. Satyanarayana, J.N. Hagstrom, A new algorithm for the

reliability analysis of multi-terminal networks, IEEE Trans.

Reliability 30 (1981) 325-334.

[171 A. Satyanarayana, R.K. Wood, A linear-time algorithm for
computing K-terminal reliability in series-parallel networks,

SIAM J. Comput. 14 (4) (1985) 818-832.

[181 L.G. Valiant, The complexity of enumeration and reliability

problems, SIAM J. Comput. 8 (1979) 410-421.

[191 P Winter, Steiner problem in networks: A survey, Networks

17 (1987) 129-167.

[201 R.K. Wood, Factoring algorithms for computing K-terminal

network reliability, IEEE Trans. Reliability 35 (1986) 269-

278.

