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Laboratory cranking wave functions and ground-state moments of inertia
of heavy deformed nuclei
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Nuclear ground-state moments of inertia for heavy deformed nuclei are calculated using a rotating
intrinsic wave function in the laboratory system. Numerical calculations are reported for rare-earth
nuclei. The results show that the agreements between the theoretical values and the experimental
observations have been improved.
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I. INTR.ODUCTIQN

Consider the motion of nuclear rotation as a many-
body problem, nearly all of the fully microscopic theories
are based on or related to some version of the cranking
model of Inglis [1]. A very large amount of progress has
been made along the way, see, for instance, [2—9]. Denote
the Hamiltonian in the lab system by Ho, the semiclassi-
cal equation of motion for the nuclear intrinsic state ~n)
in the rotating kame is given as

(Ho —~j )Cr„= E„4„.
The same form of Eq. (1) can also be obtained by a con-
straint variational method where Ho —~j is the auxiliary
constrained Hamiltonian. 4'„ is then a solution of Eq. (1)
with the condition (C' ~j ]4 ) =const.

Usually, when a Hartree-Bogoliubov method without
any special technique is applied to solve the equation

H04„= ~„C„, (2)

we obtain a set of independent particle wave functions
localized in the lab system. In order to study the rota-
tional efFects of the system on the individual particles,
the cranking idea can be used, and the problem is re-
duced to solve Eq. (1) in the rotating frame. However,
the physical experiments can only be performed in the
lab system. Furthermore, when we are observing the nu-
clear intrinsic system which is rotating in the lab system,
there is no Coriolois force acting on the particles in the
nucleus. Therefore, it should be more appropriate if we
could describe the nuclear intrinsic system in our lab sys-
tem. In a recent paper, the author [10] has suggested a
method of finding a simplified Hartree-Bogoliubov type
of wave function for Eq. (2) to represent a rotating nu-
clear intrinsic state in the lab system where experiments
are performed. The purpose of this work is to apply this
wave function to calculate the nuclear ground-state mo-
ments of inertia for rare-earth nuclei.

With self-consistent Hartree-Fock wave functions, the
cranking model gives results in a rigid-body value for
the nuclear moments of inertia which is two to three
times larger than that of the experimental observation.
It was pointed out by Bohr and Mottelson [11]that resid-
ual two-body forces, not included in the one-body self-

consistent field, would lower the moment, and that cor-
relations due to pairing would be the most important.
Subsequently, Belyaev [12] showed that residual inter-
actions of the pairing type indeed lower the moment of
inertia &om the rigid-body value through an increased
energy denominator and a reduction of the j matrix el-
ement in the numerator by a factor (uv' —vu'), where u
and v are coefBcients of the Bogoliubov transformation
[13]. Numerical calculations were performed by Griffin
and Rich [14] and by Nilsson and Prior [15]. With the
"best" choice of parameter values, they obtained remark-
able agreements with experiments for both the rare-earth
and the actinide nuclei. However, the theoretical val-
ues for the moments of inertia were systematically still
about 20—30% too small on the average. Corrections due
to residual interactions were derived by Migdal [16] and
Belyaev [17]. Numerical calculations by Mayer et al. [18]
showed that the efFects of the residual particle-hole and
particle-particle interactions on the moments of inertia
of all rare-earth nuclei nearly cancelled each other and
left the simple cranking value approximately unchanged.
Calculations by Birbrair and Nikolaev [19] and by Kam-
muri and Kusuno [20] on the same subject did not take
into account the eKects of rotation.

Mottelson and Valatin [21] observed that, in a rotat-
ing reference system, the Coriolis forces act in opposite
directions on particles forming a time-reversed pair and
tend to decouple the pairing correlations. The authors
showed that, in the second-order approximation, the re-
duction of the pairing interaction energy is proportional
to the square of the rotational frequency u. This is re-
Qected in a decrease in the pairing-gap parameter L and,
consequently, an increase in the moment of inertia of the
nucleus. As we shall see below, this Mottelson-Valatin
type of Coriolis antipairing efFect is indeed included in
the rotating solution of Eq. (2), which represents the
intrinsic state of the nucleus observed in the lab system.
For the completeness of this present work, we shall give a
brief derivation of the relevant formalism in the following.

II. MOTTELSON-VALATIN EFFECT

To study the Mottelson-Valatin Coriolis antipairing ef-
fect, we shall follow an approach derived by Lin and
Faessler [22] for studying strongly deformed nuclei in
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which state-dependent antipairing forces were treated.
In the constrained system, we take a Hamiltonian con-
sisting of an axially symmetric Nilsson potential plus a
pairing force, and a constraint Coriolis term, neglecting
terms connecting m = +2 states in the matrix elements
of j . Numerical calculations show that the contribu-
tion of these terms to the moments of inertia should be
no more than 5%. This would not change the final re-
sults significantly. This approximation reduces the sizes
of matrices to be diagonalized by a factor of 2. Further-
more, it introduces a twofold degeneracy which allows a
separation of the single-particle space into a space ln),
with positive projection m & 0, and a space la. & with
m- ( 0. In this approximation, the constrained Hamil-
tonian is given as

H = ) (..—A)(ctc. ~c.'c.-) ——) ctctc'c~
cx&0 cx,P

-~ ) . (~l~*I&)(c.''c~ —c.'-cp) (3
cx,P &0

Here o; and o. are the Nilsson state and its time-reversal
conjugate, e the single-particle energy, A the Fermi en-
ergy, G the pairing strength, and w the angular frequency.
We use Greek subscripts for states in the Nilsson repre-
sentation.

In order to take into account the Coriolis force directly,
we first diagonalize the Nilsson part and the Coriolis force
of the Hamiltonian. Let the transformation be

C =) B;b, , C =) B ,b-- (4)

B k ——B-k forn=k,
B I, = B I-, fornax—k, -

&'k = &'-k .

This greatly simplifies the formalism and the numerical
calculation. It enables us to write the Hamiltonian in the
b-representation as

H = ) (eI, —A)(bt„bi, +btb„)-
k&0

—G ) R; RI-,ib, bt. bI-, bi, —.

ijkl&0
(6)

where

R-i.

) B,B
a&0

) B ;B, . -
a&0

The R;~'s have been computed as a function of w. The
result indicates that R,~ is strongly state dependent, and
that R.—. )) R.—. by an order of magnitude for rotational

We designate states in the b representation by Roman
subscripts. It can be shown by simple matrix algebra
that the eigenvalues e; and ei are equal and

= 1 —2) B'„.
agk

Therefore, as long as ~ remains suKciently small, all the
Rk's are positive.

From the above consideration, we can neglect all small
terms in the Hamiltonian (6) so that it can be reduced
to a standard form in the constrained system as

H = ) (el, —A)(btqbi, + btbq)
k&0

—G ) R,R ibtb-, b i' .
i,k&0

(9)

The neglected terms can be included in the residual in-
teraction which can be taken into account when we are
improving the Hamiltonian. For small u, the transfor-
mation coefficients B; of Eq. (4) can be expanded in
terms of ~ by perturbation method as

(ilj lk)urik— )

(~I~*1k)~
ik

~i —~k

Using Eq. (8), we have

(10)

)- ('l~-lk)~

igk

With Eq. (11), take the average over states for R;RI„and
sum up terms to the second order in u, the Hamiltonian
(9) is then given as

H = ) (ei, —A)(btqbl, + btbq) —G ) btbtbi, bI, ,

i,k&0
(12)

where

24~2
E e' eA: ) a~

This is the well-known Mottelson-Valatin Coriolis an-
tipairing efFect for a rotating system.

It is standard procedure to diagonalize the Hamilto-
nian (12) by the quasiparticle approximation. The re-
sults are the following:

&equency up to the backbending region corresponding to
hen 0.3 MeV. There is no guarantee that Rkk's are all
positive definite, but this can be simply accomplished by
redefining the phase of the single-particle states in the b
representation.

When the rotation &equency u is zero, the transfor-
mation (4) is a unity transformation with B I, = b I,
for all a. For small ~, the R k's are likewise small for
n g k. From the orthonormalization conditions for the
transformation (4) and the relation (5), we have
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H = Up + ) Eg(aqai, + aqaq),
k&0

(14) Note that the states ]i) and ]k) are single-particle states
in the constrained kame and, to 6rst order in u, we have

(i~j ~k) = (i~j ~k) for i = k,
Up ——) [(gg+ 2p)vk —2ugvt, A], EI = Qgg+ A

k&0 (ilj Ik) = —(~lj*lk) «» P k. (23)

bk ——u ak + vga„-, bk
——ukak —vkak,t

gl,
——(Eg —p —A) = (u2 —v„')EA,

In the constrained frame, j has nonvanishing diagonal
matrix elements.

To diagonalize the Hamilton (17), we shall follow a
method used by [23] and write the equations of motion for

a; and a-. (i = 1, 2, , . . . , N, where N is the dimensionality
of the single-particle space ~i)),

A=G) =2 „E
k&0 (15) [a;, Hp] = E;a; + u) (R,yaA, +T;~a~&),

k&0
(24a)

@=C) v„', A'=) 2v„',
k&0 k&0 [at, Hp] = E,at +—w ) (TI„ag —S,ga&) .

k&0
(24b)

1 'gk 2 1 g+ ~ k2 Ek
'

2 Ek

where N is the total number of particles. The ground-
state wave function is given as

When we use a real representation for j, Eq. (24)
is a symmetrical matrix equation for the vector
(az, . . . , a~, az, . . . , a~). It can thus be diagonalized by
an orthonormal transformation. Let the normal modes
be written as

4((u) = (up+ vt, bt„bt)~0),
k&0

where ~0) is the particle ground state.

p; = ) (f,A, aA, + g, A, a„-),
k&0

(25a)

III. ROTATING INTRINSIC STATES
IN THE LAB SYSTEM

In Sec. II, we have obtained a complete set of rotational
single-particle wave functions. This set of functions can
be used as a set of basis vectors to express the wave
function of any single particle in a rotating nucleus. In
this representation, the Hamiltonian H0 in the lab system
is given as

Hp ——Up+. (u J + ) Eg(aqaj, + a„-aq)
k&0

+~ ) [R;i,afar
i,k&0

+S;I,atar, + T;g(a, a& —a;ar)],

P, = ).(f;— -'„-+ g;—t

k&0
(25b)

The coefficients, f 's and g's, can be determined by a sim-
ple diagonalization program for a real symmetric matrix.
The Hamiltonian Hp can be written in the P representa-
tion as

Hp ——Wp+ ) Wa(PqPI + P„-P„-),
k&0

(26)

Wp = Up+~ J +~ ). E'( ga +go +ga)
i,k&0

where TVk is the eigenvalue of the kth normal mode of
the matrix in Eq. (24), and Wp is a constant of the new
ground-state energy in the laboratory system which is

with

j;I, = ('~j ~k), 1 = ). I, (iIa+jrr)
k&0

+T;I ):(g;;f,r. —6'g. ~)
~&0

(27)

The ground state ~%'p) of Hp (for an even-mass system)
is de6ned as

uiuk jik —vivk jik P„~4'p) = 0 for any k, (28)

~ik = uiuk j-ik —v, vk jik

T k
——u;vk jik + v;uk

(20)

(21)

and accordingly, we have

]@p) = & (P~P~)10) (29)
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where A is the normalization constant. When u = 0,
l@p) is reduced to the Nilsson-BCS ground state (without
rotation), and Wp = Up(~ = 0), the Nilsson-BCS ground-
state energy. I@p) can be expressed in terms of the basis
states of the constrained system as

I4'p) = IOp) +&a (2 qp states) + w (4 qp states) +

P &] = [IIp &] = o- (32)

(b) P is the conjugate variable to the collective angular
momentum R in the sense that

(a) The angle P describes a collective orientation of the
nucleus in the sense that it commutes with all intrinsic
coordinates

IV. NUCLEAR GROUND-STATE CRANKING
MOMENT OF INERTIA

(c)

[»f(&)] = —'f'(&) .

[B,x] = o, [II„x]= o .

Suppose the nuclear Hamiltonian Q can be trans-
formed into an intrinsic part Hp, a rotational part H„,
and coupling term H

With these assumptions, de Shalit and Feshback [24] have
shown that the moment of inertia of the ground state

I @p)
is given as

B'
+Hp+H2T

)- I(@pl&l@-)I'
F„—Fpw two

(35)

where T is an operator involving the intrinsic coordi-
nates of the various particles and Hp depends only on
the intrinsic particles. We are now considering the nu-
clear structure near the ground state, the coupling term
H can be neglected. To 6nd the connection between the
intrinsic wave functions 4 and the moment. of inertia,
we follow a derivation of de Shalit and Feshback [24],
introduce an angle variable P depending on the coordi-
nates of all the particles and let P satisfy the following
assumptions.

where B is j because it is a rotation around the direction
perpendicular to the nuclear symmetry axis. Substitute
Eq. (29) and I@ ) = P,+P& I@p) into (35) we have

(36)

For small u, all the quantities can be expressed in terms

TABLE I. Theoretical and experimental values of the ground-state moments of inertia for rare-earth nuclei.

Sm

Dy

Er

Nuclide
A

152
154

Gd 154
156
158
160
160
162
164
164
166
168
170

Yb 170
172
174
176
176
178
180

W 182
184
186

2 Q~exp
(MeV)

49.2
73.2
48.8
67.4
75.5
79.7
69.0
74.4
81.8
66.7
74.5
75.2
75.6
71.2
76.2
78.5
73.1
67.9
64.4
64.3
60.0
54.1
49.0

G„x A
(MeV)
16.24
16.22
16.46
16.45
16.43
16.42
16.65
16.64
16.63
16.86
16.84
16.83
16.82
17.05
17.03
17.02
17.01
17.23
17.22
17.21
17.42
17.41
17.40.

G„x A
(MeV)
19.63
19.83
19.59
19.79
19.98
20.18
19.94
20.14
20.33
20.10
20.29
20.48
20.67
20.44
20.63
20.82
21.00
20.78
20.97
21.15
21.12
21.30
21.48

(MeV)
1.108
1.019
1.131
1.051
0.978
0.903
1.011
0.922
0.839
0.954
0.870
0.847
0.844
0.892
0.870
0.860
0.898
0.910
0.927
0.967
1.010
1.041
1.059

m=0

(MeV)
1.083
1.D15
1.082
O.D21
1.004
1.009
1.029
1.024
1.027
1.046
1.050
1.062
1.079
1.111
1.121
1.130
1.139
1.156
1.155
1.158
1.130
1.126
1.129

2

(MeV)
40.3
53.0
37.0
49.4
55.3
58.7
47.7
54.2
59.2
50.9
56.8
56.9
56.6
52.6
54.4
54.5
50.8
48.2
44.5
40.5
36.5
32.4
28.8

hm

(MeV)
0.026
0.034
0.026
0.031
0.034
0.039
0.031
0.035
0.042
0.034
0.042
0.044
0.044
0.037
0.041
0.043
0.039
0.038
0.038
0.044
0.041
0.036
0.035

(MeV)
0.982
0.929
0.983
0.941
0.883
0.787
0.772
0.764
0.652
0.726
0.632
0.605
0.625
0.715
0.656
0.641
0.725
0.710
0.682
0.536
0.602
0.776
0.806

(ugO
Ap

(MeV)
1.017
0.921
0.986
0.924
0.902
0.882
0.914
0.893
0.856
0.918
0.879
0.869
0.872
0.965
0.948
0.945
0.973
0.981
0.954
0.873
0.834
0.855
0.844

2 6th
(MeV)

48.9
60.5
45.5
56.6
63.2
68.9
62.9
66.9
75.3
67.0
76.7
76.6
76.5
66.8
72.0
73.6
64.6
64.9
62.2
70.3
62.4
49.7
44.6



51 LABORATORY CRANKING WAVE FUNCTIONS AND GROUND-. . . 3021

of functions of ur [23]. It can be shown in a straightfor-
ward manner that by taking only the lowest-order terms
of (36) we have

(0 iXiC ) = 2h' ) E. +E
i,k&o

(37)

V. NUMERICAL CALCULATIONS, RESULTS,
AND DISCUSSION

In performing numerical calculations, we take an axi-
ally symmetric Nilsson model &om [25] and neglect the
P4 force. The major shells included are N = 3, 4, 5,
and 6 for protons and N = 4, 5, 6, and 7 for neutrons.
This larger dimensionality is important for the calcula-
tion since otherwise the single-particle basis states may
not be complete enough. Especially for rare-earth nu-
clei with higher mass number, the occupation of single-
particle orbitals may easily go up to j&5~&. For the defor-
mation parameter h we take Rom [15]. For the pairing
strength parameter G we use the prescription of [25] as

N —ZGx A=go+gy (38)

where the plus sign holds for protons and the minus sign
for neutrons. In [25] the authors also emphasize the sur-
face dependence of the pairing strength G as the follow-
ing. In order to reproduce the indicated large energy gap
at the fission saddle point [26] one must assume [27] an
increase of G with surface area. For a small deviation in
G &om a "normal" value Go, they put

bS
Go+ ~G = Go+ Go S (39)

where S is the surface area of the nucleus. If the nature
of Eq. (39) exists for the G in a nucleus, there is no
reason that it would not exist for nuclei with different

mass number A, even the effect is small. We shaB suggest
that this small variation of G should be included in Eq.
(38) with S A~~ .

The general form of this dependence of G on S may
be complicated which may depend on the shell structure.
However, we are not only interested in making an esti-
mated correction of this dependence within a region of
nuclei which the shell structure of those nuclei are sim-
ilar. The simplest way is to directly take Eq. (39) and
obtain

~ —z
G x A= go+gg 1+g2 . (o)

0

It was found that, with our single-particle basis space,
we could reproduce reasonably well the empirical odd-
even mass difFerences by using Eq. (40) from A = 152
to 189. The values of G x A, L~ and 4„ for rare-earth
nuclei when ~ = 0 are given in Table I, using go = 18.7
MeV, gg ——9.6 MeV, and. g2 ——0.6.

The experimental values of nuclear moments of inertia
0 are extracted according to

&[J(J+ 1)]
b,E(J) (41)

Since only integral values of J can exist and 4J = 2, Eq.
(41) for ground-state moments of inertia becomes

2(2 + 1)
E(J = 2) —E(J = 0)

(42)

For theoretical calculation, we cannot solve the complete
Hamiltonian 'R of Eq. (31) to calculate the moment of
inertia for Eq. (42). We have to use Eq. (37) through
the use of the intrinsic wave function 4o. For u = 0, we
have (j ) = 0, there is no rotation and it is meaningless
to talk about moment of inertia. Therefore we calculate
(37) by using the ground state with the lowest J, which
is J = 2, to find the corresponding 0 for Eq. (42). That
is, we have to find the value of u such that we have the

100-

ee[w
40 w

B~Sm

~

Experimental
Nilsspn QCS 00 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Mottelson - Valatin effect
I

$
f

$
I

$
0

$
0 I w

$
I I F I l

$
~

$
0 j 1 f I

$
~

/
~ f ~ I 0 l

1SO 152 1S4 IS6 1S8 160 162 164 166 168 170 172 174 176 178 180 )82 184 186 188

FIG. 1. Comparison of the calculated ground-state cranking moments of inertia and. the experimental observations for
rare-earth nuclei.
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ground state @(~,J = 2) of the intrinsic system. To do
this, we construct a 4'(w) and calculate (@[j [4). Then
we vary ur until (4'[j [4') = 2 [if the magnitude of the
angular moment is gJ(J + I), its maximum projection
in one direction is Jj.

The calculated values of the 4's and 0's for rare-earth
nuclei at ~ = 0 and w = ur(J = 2), together with the
experimental values for 0 are shown in Table I. Those
values for 8(u), 8(0), and 0(exp) are shown in Fig. 1.
In Table I, we can see, as it is expected, that the values
of L's are decreased as a result of the Mottelson-Valatn
eKect due to rotation. We can also see that the overall be-
havior of the calculated values of ground-state moments
of inertia for rare-earth nuclei have actually been im-
proved. If one wishes to improve the calculation further,
solutions of 'R with good angular momenta and energies

should be obtained by using angular momentum projec-
tion and 8 should be calculated according to Eq. (41).
In this way, the results should be, in principle, better and
quantitatively more accurate. However, all of the quan-
tities would be computed numerically and the simple an-
alytical form of the cranking formula would no longer ex-
ist. Nevertheless, a treatment like the present work can
be considered as an approximation method which has
more analytical aspects of a problem such that we can
use it easier to study the physical qualitative features of
a system.
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