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Abstract—Diagnosis is an essential subject for the reliability of multiprocessor systems. Under the PMC diagnosis model, Dahbura

and Masson [12] proposed a polynomial-time algorithm with time complexity OðN2:5Þ to identify all the faulty processors in a system

with N processors. In this paper, we present a novel method to diagnose a conditionally faulty system by applying the concept behind

the local diagnosis, introduced by Somani and Agarwal [30], and formalized by Hsu and Tan [18]. The goal of local diagnosis is to

identify the fault status of any single processor correctly. Under the PMC diagnosis model, we give a sufficient condition to estimate the

local diagnosability of a given processor. Furthermore, we propose a helpful structure, called the augmenting star, to efficiently

determine the fault status of each processor. For an N-processor system in which every processor has an OðlogNÞ degree, the time

complexity of our algorithm to diagnose any given processor is OððlogNÞ2Þ, provided that each processor can construct an augmenting

star structure of full order in time OððlogNÞ2Þ and the time for a processor to test another one is constant. Therefore, the time totals to

OðNðlogNÞ2Þ for diagnosing the whole system.

Index Terms—Fault diagnosis, PMC model, diagnosability, reliability, diagnosis algorithm.

Ç

1 INTRODUCTION

RECENTLY, high-speed multiprocessor systems have be-
come more and more popular in computer technology.

A multiprocessor system consists of processors and com-
munication links between processors. The reliability of
processors is crucial since even a few malfunctioning
processors may lead to a severe system breakdown.
Whenever processors are found to be faulty, they should
be replaced with fault-free ones as soon as possible to
guarantee the system can work properly.

Identifying all the faulty processors in a system is known
as system-level diagnosis. Preparata et al. [27] distinguished
two types of self-diagnosable systems: one-step diagnosable
systems and sequentially diagnosable systems. A system is
said to be one-step t-diagnosable if all its faulty processors can
be precisely pointed out by one application of a diagnostic
process provided that the total number of faulty processors
does not exceed t, whereas a system is sequentially t-
diagnosable if at least one faulty processor can be identified
provided that the total number of faulty processors does not
exceed t. In this paper, we focus on one-step diagnosis only.
The maximum number of faulty processors that can be
correctly identified is an important parameter, known as the
one-step diagnosability of a system. In other words, the one-step

diagnosability of a system G is just equal to the maximum
integer t such that G can be one-step t-diagnosable.

In practice, some multiprocessor systems are based on an
underlying bus structure, or fabric, and are perfectly
feasible for a centralized test controller (an independent
processor acting as a controller) to check each processor in
the system. In such a scheme, the centralized controller
itself can be tested externally. Some research is related to
the issue of network-on-chip (NoC); for example, Pande
et al. [26] developed an evaluation methodology to compare
the performance and characteristics of a variety of NoC
topologies; Bartic et al. [4] presented an NoC design which
is suitable for building networks with irregular topologies.
Instead, a self-diagnosable system contains no centralized
test controller. In a self-diagnosable system, a testing signal
is supposed to be delivered from a processor to another one
through the communication bus at one time. Then the
system performs self-diagnosis by making each processor
act as a tester to test each of the directly connected ones.
This paper is concerned with the self-diagnosis.

1.1 Diagnosis Models

The problem of system-level diagnosis has been widely
discussed by many researchers [9], [12], [13], [15], [16], [18],
[20], [23], [24], [27], [29]. Several well-known approaches have
been developed. One classic approach, called the PMC
diagnosis model (or PMC model for short), was first proposed
by Preparata et al. [27]. This model makes diagnosis by
sending a test signal from a processor to another linked one
and then receiving a response in the reverse direction.
According to the collection of all test outcomes, the fault
status of every processor can be identified. The fundamental
assumption of the PMC model is that a test outcome is reliable
if and only if the testing processor is fault-free. Another
diagnostic model, called the BGM model [3], was defined by
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Barsi, Grandoni, and Maestrini with asymmetric interpreta-
tion of test outcomes reported by faulty units. In the BGM
model, any test that is complete for a given class of faults in a
unit necessarily consists of a sequence of a large number of
stimuli. Supposedly, there must be at least one mismatch
between actual and expected reaction to the stimuli whenever
the tested unit is faulty, even if the testing unit itself is faulty.

In this paper we address the PMC model. Following this
model, Hakimi and Amin [16] proved that a system is one-
step t-diagnosable if it is t-connected with at least 2tþ 1
nodes. They also posed a sufficient and necessary condition
for verifying if a system is one-step t-diagnosable under the
PMC model. More practically, Dahbura and Masson [12]
presented an OðN2:5Þ diagnosis algorithm to identify all the
faulty processors in a system with N processors. It is
noticed that only processors with direct connections are
allowed to test each other. In particular, if all the
neighboring processors of a processor v are faulty simulta-
neously, then it seems unlikely to determine whether
processor v is fault-free or faulty. In this way, the one-step
diagnosability of a system G is trivially bounded by the
minimum degree of G. For most practical systems that are
sparsely connected, only a small number of faulty proces-
sors can be recognized under the PMC diagnosis model.
Therefore, it has long been an intriguing issue to explore
some measure that can better reflect fault patterns in a real
system. For example, Das et al. [13] investigated fault
diagnosis under local constraints; Lai et al. [20] proposed a
new measure of diagnosis capability, namely conditional
diagnosability, by restricting that for each processor in a
system, all its neighboring processors do not fail at the same
time. Recently, Xu et al. [31] investigated the conditional
diagnosability with respect to a class of matching composi-
tion networks. However, these works did not provide any
diagnosis algorithm, so it is not clear how to identify faults
efficiently in such a situation. In this paper, we will relax
that condition imposed in [20], [31] by assuming that every
fault-free processor can have at least one fault-free
neighbor. Under this assumption, not only can the
diagnosis capability be proved theoretically, but also it is
guaranteed in an algorithmic point of view.

1.2 The State-of-the-Art

Many previous studies about system-level diagnosis were
devoted to the diagnosis capability in a global sense but
ignored some local connection. For instance, it is likely to
correctly point out all the faulty processors in a t-diagnosable
system even when the number of faulty processors has been
already greater than t. Consider two hypercube systems Qm

and Qn, which are known to be m-diagnosable and n-
diagnosable [19], respectively, where m and n are two
integers with m� n. A new system G can be built by
integrating these two systems with a few communication
links in some way that makes the new system have one-step
diagnosability limited by n. See Fig. 1 for illustration.
Consider the following scenario: There are m faulty
processors within Qm. Then these m faulty processors can
be correctly identified because Qm is m-diagnosable. Even
though this new system is only n-diagnosable, it is of high
probability that the correct diagnosis can be made when the
total number of faulty processors is between m and n.

In the last two decades, a variety of methods were
developed to achieve system-level diagnosis for various
interconnected structures. For example, Chessa and
Maestrini [10] introduced a correct and almost complete
diagnosis method for square grids. Later, Caruso et al. [6],
[7], [8] presented two correct and almost complete
diagnosis algorithms, called EDARS and NDA, respec-
tively. The two algorithms have time complexity OðkNÞ
when applied to k-regular systems of N units. A lower
bound to the worst-case diagnosis completeness for
regular graphs under the PMC model is shown in [9].
Recently, Mánik and Gramatová [22], [23] proposed the
Boolean formalization of the PMC model for the syn-
drome-decoding process. When this approach is applied
to regular systems, the computation time of fault
diagnosis can be significantly reduced. In addition,
Somani and Agarwal [30] developed a distributed diag-
nosis algorithm for regular systems based on the concept
of local diagnosis. Later, Altmann et al. [2] addressed an
event-driven distributed approach to multiprocessor diag-
nosis, and Masuyama and Miyoshi [24] presented a
nonadaptive distributed system-level diagnosis method
for computer networks.

In some circumstances, however, we are only concerned
about some substructure of a multiprocessor system, which
is implementable in very large-scale integration (VLSI).
Such a substructure, for example, can be a ring, a path, a
tree, a mesh and so on. If all processors in these
substructures can be guaranteed to be fault-free, a proce-
dure is still workable even though there are many faulty
processors in the remaining part of the system. Thus, the
local substructure plays a more critical role than the global
fault status of the entire system. Motivated by such a
concept, Hsu and Tan [18] presented an elegant measure of
diagnosis capability, known as local diagnosability, to
identify the one-step diagnosability of a system by comput-
ing the local diagnosability with respect to each individual
processor. For any processor in a system, two useful
structures [18] were presented to determine its local
diagnosability under the PMC model. Hence, in this paper,
we will extend the previous study and design an efficient
diagnosis algorithm based on the proposed structure,
named the augmenting star, provided that each fault-free
processor has at least one fault-free neighboring processor.
In short, our algorithm proceeds depending on the

1670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

Fig. 1. An n-diagnosable system obtained by integrating an n-
diagnosable subsystem and m-diagnosable subsystem.



existence of the augmenting star structure. Moreover, the
key difference between our work and the others is that we
address the conditional-fault identification problem from a
standpoint of local diagnosis. For many practical multi-
processor systems, the number of links incident to each
processor is in the order of logN , where N is the total
number of processors. Accordingly, the time for diagnosing
any given processor v can be bounded by OððlogNÞ2Þ if
there exists an augmenting star structure rooted at
processor v. So all the faulty processors can be identified
one by one with time complexity OðNðlogNÞ2Þ, provided
that the augmenting star can also be constructed at each
processor in time OððlogNÞ2Þ.

The rest of this paper is organized as follows: Section 2
provides preliminary background for system-level diagnosis
and graph-theoretic terminology. Section 3 introduces how to
diagnose a system with random faults. A diagnosis algorithm
based on the augmenting star structure is presented in
Section 4. Some examples are shown in Section 5. Finally, our
conclusions are given in Section 6.

2 PRELIMINARIES

The underlying topology of a multiprocessor system is
usually modeled as a graph, whose vertex set and edge set
represent the set of all processors and the set of all
communication links between processors, respectively.
Throughout this paper graphs are finite, simple, and unless
specified otherwise, undirected. Some important graph-
theoretic definitions and notations will be introduced in
advance. For those not defined here, however, we follow
the standard terminology given by Bondy and Murty [5].

An undirected graph G is an ordered pair ðV ;EÞ, where
V is a nonempty set, and E is a subset of ffu; vg j fu;
vg is a 2-element subsets of V g.1 The set V is called the vertex
set of G, and the set E is called the edge set of G. For
convenience, we denote the vertex set and the edge set of G
by V ðGÞ and EðGÞ, respectively. Two vertices, u and v, in
graph G are adjacent if fu; vg 2 EðGÞ; we say u is a neighbor
of v, and vice versa. The degree of a vertex v in G, denoted
by degGðvÞ, is the number of edges incident to v. The
neighborhood of vertex v, denoted by NGðvÞ, is the set of
vertices adjacent to v. For a set S � V , the notation G� S
represents the graph obtained by removing every vertex in
S from G and deleting those edges incident to at least one
vertex in S. A graph H is a subgraph of G if V ðHÞ � V ðGÞ
and EðHÞ � EðGÞ. The components of a graph G are its
maximal connected subgraphs. A component is trivial if it
has no edges; otherwise, it is nontrivial.

In the PMC model [27], adjacent units are capable of
performing tests on each other. A testing unit ui specifies
some test sequence to a tested unit uj and receives a
response sequence from uj. The testing unit outputs a test
outcome ai;j ¼ 1 if the actual response sequence mismatches
the expected one; otherwise, ai;j ¼ 0. Let an undirected
graph G ¼ ðV ;EÞ denote the underlying topology of a
multiprocessor system. For any two adjacent vertices
u; v 2 V , the ordered pair ðu; vÞ represents the test that
processor u diagnoses processor v. In this situation, u is a

tester, and v is a testee. The outcome of a test ðu; vÞ is 1
(respectively, 0) if u evaluates v to be faulty (respectively,
fault-free). The notation u!� v means that u tests v with
outcome �. Because the faults considered here are perma-
nent, the outcome of a test is reliable if and only if the tester
is fault-free. A test assignment for system G is a collection of
tests and thus can be modeled as a directed graph
T ¼ ðV ; LÞ, where ðu; vÞ 2 L and ðv; uÞ 2 L if and only if
fu; vg 2 E. The collection of all test outcomes from the test
assignment T is called a syndrome. Formally, a syndrome of
T is a mapping � : L! f0; 1g. The set F of all faulty
processors in G is called a faulty set. It is noticed that F can
be any subset of V . The process of identifying all faulty
vertices is said to be the system-level diagnosis. Further-
more, the maximum number of faulty vertices that can be
correctly identified in a system G is called the one-step
diagnosability of G, denoted by �ðGÞ.

For any given syndrome� resulting from a test assignment
T ¼ ðV ; LÞ, a subset of vertices F � V is said to be consistent
with � if for any ðu; vÞ 2 L with u 2 V � F , then �ðu; vÞ ¼ 1 if
and only if v 2 F . This corresponds to the assumption that
fault-free testers always give correct test results, whereas
faulty testers can lead to unreliable results. Therefore, a given
set F of faulty vertices may be consistent with different
syndromes. Let �ðF Þ denote the set of all possible syndromes
with which the faulty set F can be consistent. Then two
distinct faulty sets F1; F2 � V are said to be distinguishable if
�ðF1Þ \ �ðF2Þ ¼ ;; otherwise, F1 and F2 are said to be
indistinguishable. That is, ðF1; F2Þ is a distinguishable pair
(respectively, an indistinguishable pair) of faulty sets if �ðF1Þ \
�ðF2Þ ¼ ; (respectively, �ðF1Þ \ �ðF2Þ 6¼ ;).
Lemma 1 [12]. A system G is one-step t-diagnosable if and only

if for any two distinct faulty sets F1; F2 � V ðGÞ with jF1j � t
and jF2j � t, ðF1; F2Þ is a distinguishable pair.

Let F1; F2 be two distinct sets, and let F14F2 ¼
ðF1 � F2Þ [ ðF2 � F1Þ denote the symmetric difference between
F1 and F2. Dahbura and Masson [12] presented a sufficient
and necessary characterization of one-step t-diagnosable
systems and exploited it to design a polynomial-time
algorithm for identifying the set of faulty processors.

Lemma 2 [12]. Let G ¼ ðV ;EÞ be a graph. For any two distinct
faulty sets F1; F2 � V , ðF1; F2Þ is a distinguishable pair if and
only if there exists a vertex u 2 V � ðF1 [ F2Þ and a vertex
v 2 F14F2 such that fu; vg 2 E.

3 RANDOM-FAULT DIAGNOSIS

For a multiprocessor system, the random-fault model
assumes that the probabilities of processor failures are
identical and independent. Let v be any vertex in a graph G.
It is intuitive to observe that ðNGðvÞ; fvg [NGðvÞÞ forms an
indistinguishable pair of faulty sets. That is, the conven-
tional one-step diagnosability is mainly concerned with the
global status of a system under the random-fault model.
Instead, Hsu and Tan [18] turned their attention to the local
connective substructure in a system. More precisely, given
any single vertex v in a graph it is only required to
determine whether v is faulty or not. The following concept
is proposed in [18].
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Definition 1 [18]. Let G be a graph and v denote any one of its
vertices. Then G is locally t-diagnosable at vertex v if, given a
syndrome �F produced by a set of faulty vertices F � V with
v 2 F and jF j � t, every faulty set of at most t vertices that is
also consistent with �F must contain vertex v.

By Definition 1, Hsu and Tan [18] further proved that a
graph G is locally t-diagnosable at vertex v if and only if for
any two distinct sets of vertices F1; F2 � V ðGÞ such that
jF1j; jF2j � t and v 2 F14F2, ðF1; F2Þ is a distinguishable
pair. It was also shown that a graph G is one-step t-
diagnosable if and only if it is locally t-diagnosable at every
vertex. Moreover, the local diagnosability of a vertex v in G,
denoted by �GðvÞ, is defined to be the maximum integer of t
such that G is locally t-diagnosable at vertex v. The
relationship between one-step diagnosability and local
diagnosability is revealed in the next lemma.

Lemma 3 [18]. Let G denote the underlying topology of a
multiprocessor system. Then �ðGÞ ¼ minf�GðvÞ j v 2 V ðGÞg.

In [18], the following structure is presented to compute
the local diagnosability with respect to any given vertex
under the PMC model.

Definition 2 [18]. Letting G ¼ ðV ;EÞ be a graph, v 2 V be any
vertex, and k be an integer greater than or equal to 1, an
extending star of order k rooted at vertex v is defined to be the
subgraph of G, denoted by TTGðv; kÞ ¼ ðV ðv; kÞ; Eðv; kÞÞ,
w h e r e V ðv; kÞ ¼ fvg [ fuij j 1 � i � 2; 1 � j � kg a n d
Eðv; kÞ ¼ ffv; u1jg; fu1j; u2jg j 1 � j � kg. An extending
star of order k is said to be of full order if k ¼ degGðvÞ. See
Fig. 2 for illustration.

In practice, it is more applicable to have an efficient
procedure that is capable of identifying the fault status of a
given vertex. Based on the extending star, a polynomial-
time algorithm, namely Diagnose-Vertex-In-Random-Faults
(DVRF, abbreviated for short), is proposed to determine
whether any given vertex is faulty or not.

Algorithm. DVRF(G; v)
Input: Any vertex v in a graph G, in which there exists an

extending star of full order rooted at v.

Output: The fault status of vertex v. As a convention, the

algorithm output is 0 or 1 if vertex v is fault-free or faulty,

respectively.

BEGIN

1) t degGðvÞ.
2) Construct an extending star of order t rooted at vertex

v, TTGðv; tÞ, as illustrated in Fig. 2.

3) n0  jf1 � j � t j ð�ðu2j; u1jÞ; �ðu1j; vÞÞ ¼ ð0; 0Þgj
n1  jf1 � j � t j ð�ðu2j; u1jÞ; �ðu1j; vÞÞ ¼ ð0; 1Þgj

4) if n0 � n1

then return 0

else return 1
END

Theorem 1. Let G be a graph, v 2 V ðGÞ, and t ¼ degGðvÞ.
Suppose that there exists an extending star of full order rooted
at vertex v, TTGðv; tÞ. Then the algorithm DVRF(G; v)
correctly identifies the fault status of vertex v if the total
number of faulty vertices in TTGðv; tÞ does not exceed t.

Proof. Let

n0 ¼ jf1 � j � t j ð�ðu2j; u1jÞ; �ðu1j; vÞÞ ¼ ð0; 0Þgj;
n1 ¼ jf1 � j � t j ð�ðu2j; u1jÞ; �ðu1j; vÞÞ ¼ ð0; 1Þgj;
n2 ¼ jf1 � j � t j ð�ðu2j; u1jÞ; �ðu1j; vÞÞ ¼ ð1; 0Þgj;

and

n3 ¼ jf1 � j � t j ð�ðu2j; u1jÞ; �ðu1j; vÞÞ ¼ ð1; 1Þgj:

Obviously, we have t ¼ n0 þ n1 þ n2 þ n3.
First, we consider the case that vertex v is faulty.

Suppose, by contradiction, that n0 � n1. Then the total
number of faulty vertices in TTGðv; tÞ amounts to at least
2n0 þ n2 þ n3 þ 1 � n0 þ n1 þ n2 þ n3 þ 1 ¼ tþ 1. T h i s
contradicts the assumption that the total number of
faulty vertices in TTGðv; tÞ does not exceed t. Hence, n0 is
strictly less than n1, and the proposed algorithm outputs
a correct diagnosis result.

Next, we consider the case that vertex v is fault-free.
Again, we assume, by contradiction, that n0 < n1. Then
the total number of faulty vertices in TTGðv; tÞ amounts to
at least 2n1 þ n2 þ n3 þ 1 � n0 þ n1 þ n2 þ n3 þ 1 ¼ tþ 1,
contradicting the assumption that the total number of
faulty vertices in TTGðv; tÞ does not exceed t. Hence, n0

needs to be greater than or equal to n1, and the proposed
algorithm correctly diagnoses the given vertex v.

Therefore, the proof is completed. tu

The extending star structure can be constructed in many
multiprocessor systems and interconnection networks, such
as hypercubes [28], crossed cubes [14], augmented cubes
[11], star graphs [1], etc. Among various kinds of network
topologies, the hypercube is one of the most popular
networks for parallel and distributed computation. Not
only is it ideally suited to both special-purpose and general-
purpose tasks, but it can efficiently simulate many other
networks [21]. Hence, we describe here how to construct an
extending star of full order in the hypercube.

Let v ¼ bn . . . bi . . . b1 be an n-bit binary string. For
1 � i � n, we use ðvÞi to denote the binary string
bn . . . �bi . . . b1. Moreover, we use ½v�i to denote the ith bit bi
of v. The n-dimensional hypercube (or n-cube for short),
denoted by Qn, consists of 2n vertices and n2n�1 edges.
Each vertex corresponds to an n-bit binary string. Two
vertices, u and v, are adjacent if and only if v ¼ ðuÞi for
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some i. An n-cube can be constructed recursively. Let Qð0Þn
and Qð1Þn denote two subgraphs of Qn induced by vertex
subsets fv 2 V ðQnÞ j ½v�n ¼ 0g and fv 2 V ðQnÞ j ½v�n ¼ 1g,
respectively. For n � 2, Qð0Þn and Qð1Þn are isomorphic to
Qn�1. Then an extending star of full order rooted at any
vertex v in the n-cube can be formed by the graph
TTQn
ðv; nÞ, whose vertex set and edge set are fv; ðvÞ1;

ððvÞ1Þ2; ðvÞn; ððvÞnÞ1g [
Sn�1
i¼2 fðvÞ

i; ððvÞiÞng and ffv; ðvÞ1g;
fðvÞ1; ððvÞ1Þ2g; fv; ðvÞng; fðvÞn; ððvÞnÞ1gg [

Sn�1
i¼2 ffv; ðvÞ

ig;
fðvÞi; ððvÞiÞngg, respectively. See Fig. 3 for illustration.

We now measure the time complexity of the proposed
algorithm. For most of the practical systems G with N

vertices, the degree of each vertex is in the order of logN , and
the extending star structure of full order can be constructed in
time OðlogNÞ. For example, both the n-cube and n-dimen-
sional crossed cube have N ¼ 2n vertices, and the degree of
each vertex is n ¼ logN . Under the PMC model we assume
that the time for a vertex to test another one is a constant c.
Given an extending star TTGðv; nÞ rooted at a vertex v in
systemG, the time needed for determining the fault status of
vertex v is 2c logN ¼ OðlogNÞ. As a result, the total time for
diagnosing the whole system G is OðN logNÞ.

4 CONDITIONAL-FAULT DIAGNOSIS

The underlying topologies of many multiprocessor systems
are usually regular and even vertex-symmetric. By defini-
tion [1], a graph is vertex-symmetric if for every pair u; v of
vertices, there exists an automorphism of the graph that
maps u into v.

Consider a vertex-symmetric graph G with one-step
diagnosability �ðGÞ ¼ t; so G is one-step t-diagnosable but
not ðtþ 1Þ-diagnosable. However, the only case that stops it
from being ðtþ 1Þ-diagnosable is usually that there exists a
vertex v whose neighbors are all faulty simultaneously. For
example, members in the cube family are so. A system is
known to be strongly t-diagnosable if it is one-step t-
diagnosable and can achieve ðtþ 1Þ-diagnosability, except
for the case where a node’s neighbor are all faulty. Recently,
Hsieh and Chuang [17] studied the strong diagnosability of
regular networks and product networks under the PMC
model. We are, however, led to the following question:
How large can the maximum value of t be such that G
remains t-diagnosable under the additional condition that
every fault-free vertex has at least one fault-free neighbor?

For a classical measurement of diagnosis capability, it is
usually assumed that processor failures are statistically
independent. It does not reflect the total number of
processors in the system and the probabilities of processor
failures. Najjar and Gaudiot [25] proposed the network
resilience as the maximum number of failures that can be
sustained while the network remains connected with a
reasonably high probability. For a hypercube, the fault
resilience is shown to be 25 percent for the four-dimensional
hypercube Q4, and it increases to 33 percent for the 10-
dimensional hypercube Q10. More particularly, the 10-
dimensional hypercube Q10 still remains connected with a
probability higher than 0.99 even when 33 percent of its
processors fail. They also drew a conclusion that large-scale
systems with a constant degree are more susceptible to
failures by disconnection than smaller networks. Intuitively,
a connected network should have better diagnosis capability.

Let G be a graph. A set F � V ðGÞ is called conditionally
faulty if NGðvÞ 6� F for every vertex v 2 V ðGÞ � F . A graph
is conditionally faulty if its faulty vertices form a condition-
ally faulty set. Furthermore, G is said to be conditionally t-
diagnosable if for any two conditionally faulty sets F1; F2 �
V ððGÞ with F1 6¼ F2 and jF1j; jF2j � t, ðF1; F2Þ is a distin-
guishable pair. We propose the following concept.

Definition 3. Let G be a graph and v denote any vertex in G.
Then G is conditionally t-diagnosable locally at vertex v if,
given a syndrome �F produced by any conditionally faulty set
of vertices F � V ðGÞ with v 2 F and jF j � t, the vertex v
must be an element of every conditionally faulty set of at most
t vertices that is consistent with �F .

The following theorem is another standpoint for char-
acterizing whether a system is conditionally t-diagnosable
locally at its vertex v.

Theorem 2. A graph G is conditionally t-diagnosable locally at
vertex v 2 V ðGÞ if F1 and F2 form a distinguishable pair for
any two conditionally faulty sets F1; F2 � V ðGÞ such that
F1 6¼ F2, v 2 F14F2, jF1j � t, and jF2j � t.

Proof. Let S1 � V ðGÞ be any conditionally faulty set with
jS1j � t and v 2 S1. Furthermore, let S2 � V ðGÞ denote
any conditionally faulty set with jS2j � t and v 62 S2.
Suppose that any two distinct conditionally faulty sets
F1; F2 of G, with v 2 F14F2 and jF1j; jF2j � t, form a
distinguishable pair. Then we have �ðS1Þ \ �ðS2Þ ¼ ;.
Thus, S2 is not consistent with any syndrome in �ðS1Þ. It
follows from contraposition that any conditionally faulty
set X � V ðGÞ, which has at most t elements and can be
consistent with a syndrome in �ðS1Þ, must contain vertex
v. By Definition 3, G is conditionally t-diagnosable
locally at vertex v. tu

The edge-degree of an edge fu; vg in a graph G, denoted by
�Gðfu; vgÞ, is the number of distinct vertices of V ðGÞ � fu; vg
adjacent to u or v. For any vertex v 2 V ðGÞ, let �GðvÞ ¼
minf�Gðfu; vgÞ j fu; vg 2 EðGÞg denote the minimum edge-
degree of all the edges incident to vertex v.

Theorem 3. Let G be a graph, v 2 V ðGÞ denote a vertex, and t be
any positive integer less than or equal to �GðvÞ þ 1. Then G is
conditionally t-diagnosable locally at vertex v if for every
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Fig. 3. An extending star of full order rooted at a vertex v 2 V ðQð0Þn Þ.



conditionally faulty set F � V ðGÞ � fvg with 0 � jF j �
t� 1, the connected component of G� F , which contains
vertex v, either has at least 2ðt� jF jÞ þ 1 vertices or consists
of only two vertices that are adjacent to each other.

Proof. We prove the sufficiency by contradiction. Suppose
that G is not conditionally t-diagnosable locally at vertex
v if the sufficient condition holds. By Theorem 2, there
exists an indistinguishable pair of conditionally faulty
sets ðF1; F2Þ, where F1 6¼ F2, jF1j � t, jF2j � t, and
v 2 F14F2. It follows from Lemma 2 that there is no
edge between V ðGÞ � ðF1 [ F2Þ and F14F2.

Let F ¼ F1 \ F2 and p ¼ jF j. Because both F1 and F2

are conditionally faulty, F is conditionally faulty too.
Moreover, we have 0 � p � t� 1 and v 62 F . Hence,
F14F2 is disconnected from other parts after removing
all the vertices in F from G. We observe that jF14F2j �
2ðt� pÞ. Thus, the connected component Cv of G� F ,
which contains vertex v, has at most 2ðt� pÞ vertices. It is
noticed that jV ðCvÞj � 2 since NGðvÞ 6� F . Hence, we
distinguish the following two cases.

Case 1: Suppose that jV ðCvÞj � 3. Since jV ðCvÞj �
jF14F2j � 2ðt� pÞ, this contradicts the assumption that
the component Cv has at least 2ðt� pÞ þ 1 vertices.

Case 2: Suppose that jV ðCvÞj ¼ 2. For convenience, let
V ðCvÞ ¼ fu; vg. Without loss of generality, we assume
that v 2 F1. It is easy to see that NGðvÞ [NGðuÞ �
fu; vg � F . Thus, we have jF j � �Gðfu; vgÞ. However,
because F1 is conditionally faulty, vertex u is also in F1.
Hence, we have jF1j � jF [ fu; vgj ¼ jF j þ 2 � �Gðfu;
vgÞ þ 2, contradicting the assumption that jF1j � t �
�GðvÞ þ 1 � �Gðfu; vgÞ þ 1.

By contradiction, G is really conditionally t-diagno-
sable locally at vertex v. tu

We now propose a helpful structure, called augmenting
star, to identify whether a given vertex is fault-free in a
conditionally faulty system.

Definition 4. Letting G ¼ ðV ;EÞ be a graph, v 2 V be any
vertex, and k be an integer greater than or equal to 2, an
augmenting star of order k rooted at vertex v is defined to be
the subgraph AAGðv; kÞ ¼ ðV ðv; kÞ; Eðv; kÞÞ of G, where
V ðv; kÞ ¼ fvg [ fui j 1 � i � kg [ fxi;j; yi;j; zi;j j 1 � i � k ;
1 � j � k� 1g and

Eðv; kÞ ¼ ffv; uig j 1 � i � jg [ ffui; xi;jg j 1 � i � k;
1 � j � k� 1g [ ffxi;j; yi;jg; fyi;j; zi;jg j 1 � i � k;
1 � j � k� 1g:

An augmenting star of order k is said to be of full order if
k ¼ degGðvÞ. See Fig. 4 for illustration. For any 1 � i � k, the
subgraph of AAGðv; kÞ induced by the vertex set fui; xi;j;
yi;j; zi;j j 1 � j � k� 1g is denoted by AA

ðiÞ
G ðv; kÞ.

Theorem 4. Let G be a graph and v 2 V ðGÞ denote a vertex.
Suppose that the degree t of vertex v is at least 2; i.e., t � 2.
Then G is conditionally ð2t� 1Þ-diagnosable locally at vertex
v if it contains an augmenting star of full order rooted at
vertex v as a subgraph.

Proof. Suppose that G contains an augmenting star of full
order rooted at v, AAGðv; tÞ, as a subgraph. Then it is easy
to see that �GðvÞ � 2t� 2. Therefore, we can apply
Theorem 3 to prove the result.

Let F � V ðGÞ � fvg be a conditionally faulty set of p
vertices for 0 � p � 2t� 2. Then we have to show that
the connected component Cv of G� F , which contains
vertex v, either has at least 2ð2t� 1� pÞ þ 1 ¼ 4t� 2p� 1
vertices or consists of only two adjacent vertices. For
convenience, let r ¼

��fu1; u2; . . . ; utg \ F
��. Because F is

conditionally faulty and v 62 F , we have 0 � r �
minft� 1; pg. Without loss of generality, we can assume
that furþ1; . . . ; utg \ F ¼ ;. Let Li;j ¼ fui; xi;j; yi;j; zi;jg for
1 � i � t and 1 � j � t� 1. Hence, there are at least
ðt� rÞðt� 1Þ � ðp� rÞ Li;j’s with Li;j \ F ¼ ;. Thus, Cv
has at least 3½ðt� rÞðt� 1Þ � ðp� rÞ� þ ðt� rÞ þ 1 ver-
tices. Comparing 3½ðt� rÞðt� 1Þ � ðp� rÞ� þ ðt� rÞ þ 1
with 4t� 2p� 1, we set

� ¼def f3½ðt� rÞðt� 1Þ � ðp� rÞ� þ ðt� rÞ þ 1g
� ð4t� 2p� 1Þ: ð1Þ

First, we assume that 0 � p � 2t� 3 or r � t� 2. If
0 � p � 2t� 3, then

� ¼ 3ðt� rÞðt� 1Þ � 3tþ 2r� pþ 2

� 3ðt� rÞðt� 1Þ � 3tþ 2r� ð2t� 3Þ þ 2

¼ ðt� r� 1Þð3t� 5Þ � 0;

i f r � t� 2, t h e n � � 3ðt� rÞðt� 1Þ � 5tþ 2rþ 4 ¼
ðt� r� 2Þð3t� 2Þ þ 3r � 0. Thus, Cv has at least 4t�
2p� 1 vertices.

Second, we consider that p ¼ 2t� 2 and r ¼ t� 1. It is
noticed that u1; u2; . . . ; ut�1 2 F and ut 62 F . Then we
distinguish the following two cases.

Case 1: Suppose that NGðutÞ � fvg � F . Obviously,

we have F ¼
St�1
k¼1fuk; xt;kg. Hence, Cv contains only two

adjacent vertices v and ut.
Case 2: Suppose that NGðutÞ � fvg 6� F . Accordingly,

Cv has at least three vertices, i.e., jV ðCvÞj � 3 ¼
4t� 2p� 1 ¼ 4t� 2ð2t� 2Þ � 1.

Hence, the theorem holds. tu

Using the augmenting star structure we can design an

efficient algorithm, namely Diagnose-The-Given-Vertex-In-

Conditional-Faults (DVCF, for short), to diagnose any

vertex in a conditionally faulty system.

Algorithm. DVCF(G; v)

Input: Any vertex v in a conditionally faulty graph G,

in which there exists an augmenting star of full order

rooted at v.
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Fig. 4. The augmenting star AAGðv; kÞ consists of 3k2 � 2kþ 1 vertices

and 3k2 � 2k edges.



Output: The fault status of vertex v. As a convention, the
algorithm output is 0 or 1 if vertex v is fault-free or faulty,

respectively.

BEGIN

1) t degGðvÞ.
2) Construct an augmenting star of order t rooted at v,

AAGðv; tÞ, as illustrated in Fig. 4.

3) S  
S

1�i�tfui j DVRFðAAðiÞG ðv; tÞ; uiÞ outputs 0g
mi;0  jf1 � j � t� 1 j ð�ðyi;j; xi;jÞ; �ðxi;j; uiÞÞ ¼ ð0; 0Þgj
mi;1  jf1 � j � t� 1 j ð�ðyi;j; xi;jÞ; �ðxi;j; uiÞÞ ¼ ð0; 1Þgj
mi;2  jf1 � j � t� 1 j ð�ðyi;j; xi;jÞ; �ðxi;j; uiÞÞ ¼ ð1; 0Þgj
mi;3  jf1 � j � t� 1 j ð�ðyi;j; xi;jÞ; �ðxi;j; uiÞÞ ¼ ð1; 1Þgj

4) if jSj � 3

then n0  jfw 2 S j �ðw; vÞ ¼ 0gj
n1  jfw 2 S j �ðw; vÞ ¼ 1gj
if n0 > n1

then return 0

else return 1

5) if jSj ¼ 2

then let up; uq 2 S
if mp;0 �mp;1 � mq;0 �mq;1

then return �ðup; vÞ
else return �ðuq; vÞ

6) if jSj ¼ 1

then let up 2 S and return �ðup; vÞ
7) if jSj ¼ 0

then if mi;1 �mi;0 � 2 for every 1 � i � t
then return 1

else let p be an integer such that mp;1 �mp;0 is

equal to 1

r jf1 � j � t� 1 j ð�ðzp;j; yp;jÞ,
�ðyp;j; xp;jÞ; �ðxp;j; upÞÞ ¼ ð1; 0; 1Þgj
if r � 1

then return �ðup; vÞ
else return 1

END

Theorem 5. Let G be a conditionally faulty graph, v 2 V ðGÞ
denote any vertex, and t ¼ degGðvÞ. Suppose that there exists

an augmenting star of full order rooted at vertex v, AAGðv; tÞ.
Then the proposed algorithm DVCF(G; v) can identify the

fault status of vertex v correctly if t � 4 and the total number

of faulty vertices in AAGðv; tÞ does not exceed 2t� 1.

Proof. Let fu1; u2; . . . ; utg denote the set of neighbors of

vertex v and S � fu1; u2; . . . ; utg be the set used in

step (3) of the proposed algorithm. For convenience,

we denote the set of all faulty vertices in AAGðv; tÞ by F .

Let A and B denote two subsets of neighbors of vertex

v as follows:

A ¼
[

1�i�t
fui j DVRFðAAðiÞG ðv; tÞ; uiÞ outputs 0g

 !
\ F

B ¼
[

1�i�t
fui j DVRFðAAðiÞG ðv; tÞ; uiÞ outputs 1g

 !
� F

First of all, we claim that jAj þ jBj � 1. By Theorem 1,
the algorithm DVRF(AA

ðiÞ
G ðv; tÞ; ui) correctly identifies the

faulty/fault-free status of vertex ui, 1 � i � t, in AA
ðiÞ
G ðv; tÞ

if the number of faulty vertices in AA
ðiÞ
G ðv; tÞ does not

exceed t� 1. We assume, by contradiction, that
jAj þ jBj � 2. Then we have jF j � tjAj þ tjBj ¼ ðjAj þ
jBjÞt � 2t, contradicting the condition that jF j � 2t� 1.
Hence, the claim holds.

We now consider the following four cases according to
the number of vertices in S. For convenience, we use fðHÞ
to denote the number of faulty vertices in a graph H.

Case 1: Suppose that jSj � 3. Since jAj þ jBj � 1, at most
one vertex inS is likely to be faulty. Thus, more than half of
the vertices in S can correctly diagnose vertex v. Let n0 ¼
jfw 2 S j �ðw; vÞ ¼ 0gj and n1 ¼ jfw 2 S j �ðw; vÞ ¼ 1gj.
Then vertex v is fault-free if and only if n0 > n1.

Case 2: Suppose that jSj ¼ 2. Let S ¼ fup; uqg with
some 1 � p; q � t. Then we claim that up is fault-free if
mp;0 �mp;1 � mq;0 �mq;1. Suppose, by contradiction, that
up is faulty. Moreover, because at most one vertex in S is
likely to be faulty, vertex uq has to be fault-free. We further
claim that mq;1 ¼ 0 and mq;2 þmq;3 � 1. We assume, by
contradiction, that mq;1 � 1 or mq;2 þmq;3 � 2. Accord-
ingly, the number of faulty vertices can be counted as
follows:

jF j � jfui j 1 � i � t; i 62 fp; qggj þ fðAAðpÞG ðv; tÞÞ
þ fðAAðqÞG ðv; tÞÞ
� ðt� 2Þ þ tþ ð2mq;1 þmq;2 þmq;3Þ
� ðt� 2Þ þ tþ 2

¼ 2t;

which contradicts the assumption that jF j � 2t� 1.
Hence, the claim of mq;1 ¼ 0 and mq;2 þmq;3 � 1 is true.
Since mq;0 þmq;1 þmq;2 þmq;3 ¼ t� 1, we have mp;0 �
mp;1 � mq;0 �mq;1 ¼ mq;0 � t� 2 � 2 for t � 4. As a result,
the number of faulty vertices is estimated as follows:

jF j � jfui j 1 � i � t; i 62 fp; qggj þ fðAAðpÞG ðv; tÞÞ
� ðt� 2Þ þ ð1þ 2mp;0 þmp;2 þmp;3Þ
¼ ðt� 2Þ þ ð1þmp;0 þmp;0 þmp;2 þmp;3Þ
� ðt� 2Þ þ ð1þmp;1 þ 2þmp;0 þmp;2 þmp;3Þ
¼ ðt� 2Þ þ ð3þ t� 1Þ
¼ 2t;

which contradicts the requirement of jF j � 2t� 1. Such a
contradiction results from the original assumption that
up is faulty. In other words, vertex up is really fault-free
and able to make a correct diagnosis if mp;0 �mp;1 �
mq;0 �mq;1.

Case 3: Suppose that jSj ¼ 1. Let S ¼ fupg with some

1 � p � t. Then we claim that vertex up is fault-free.

Suppose, by contradiction, that up is faulty; i.e., up 2 A.

However, Theorem 1 ensures that the algorithm

DVRF(AA
ðpÞ
G ðv; tÞ; up) correctly identifies the fault status of

vertex up in AA
ðpÞ
G ðv; tÞ if the number of faulty vertices in

AA
ðpÞ
G ðv; tÞ does not exceed t� 1. Therefore, the set of faulty

vertices in AA
ðpÞ
G ðv; tÞ, denoted byX, has cardinality at least

t. Furthermore, since jAj þ jBj � 1, the remaining t� 1

neighbors of vertex v (i.e., ui; 1 � i 6¼ p � t) are faulty too.

In a conditionally faulty graph, every fault-free vertex
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needs to have at least one fault-free neighbor. As a
consequence, vertex v is also faulty. In short, we have fvg [
NGðvÞ [X � F s o t h a t jF j � jfvg [NGðvÞ [
Xj ¼ jfvgj þ jNGðvÞ [Xj � 1þ tþ ðt� 1Þ ¼ 2t. A g a i n ,

this contradicts the assumption that jF j � 2t� 1; that is,

the claim holds.
Case 4: Suppose that jSj ¼ 0. Obviously, we have

mi;1 �mi;0 � 1 for every 1 � i � t. In this case we first
claim that for any 1 � i � t, vertex ui is faulty if
mi;1 �mi;0 � 2. Suppose, by contradiction, that ui is
fault-free. Since jAj þ jBj � 1, ui is the only fault-free
neighbor of v. Accordingly, the number of faulty vertices
can be counted as follows:

jF j � jfuj j 1 � j 6¼ i � tgj þ fðAAðiÞG ðv; tÞÞ
� ðt� 1Þ þ 2mi;1 þmi;2 þmi;3

� ðt� 1Þ þ ð2þmi;0Þ þmi;1 þmi;2 þmi;3

¼ ðt� 1Þ þ 2þ ðt� 1Þ
¼ 2t;

which contradicts the assumption that jF j � 2t� 1. So

vertex ui is faulty if mi;1 �mi;0 � 2. With this claim, it is

easy to see that vertex v is faulty if mi;1 �mi;0 � 2 for

every 1 � i � t.
Suppose that there exists an integer p, 1 � p � t,

such that mp;1 �mp;0 ¼ 1. Let r be an integer defined
as follows:

r ¼ jf1 � j � t� 1 j ð�ðzp;j; yp;jÞ; �ðyp;j; xp;jÞ; �ðxp;j; upÞÞ
¼ ð1; 0; 1Þgj:

We claim that vertex up happens to be fault-free

(respectively, faulty) if r � 1 (respectively, r ¼ 0).
Subcase 4.1: Assume that r � 1. Suppose, by contra-

diction, that up is faulty. If ui is faulty for every 1 � i � t,
then v has to be faulty. Accordingly, the total number of
faulty vertices can be counted as follows:

jF j � jfui j 1 � i 6¼ p � tg [ fvgj þ fðAAðpÞG ðv; tÞÞ
� tþ ð1þ 2mp;0 þmp;2 þmp;3 þ 1Þ
¼ tþmp;0 þmp;1 þmp;2 þmp;3 þ 1

¼ tþ ðt� 1Þ þ 1

¼ 2t;

which contradicts the assumption that jF j � 2t� 1. On

the other hand, if v has a fault-free neighbor, say uq

(q 6¼ p), then the number of faulty vertices is counted

as follows:

jF j � jfui j 1 � i 6¼ q � tgj þ fðAAðqÞG ðv; tÞÞ þ fðAA
ðpÞ
G ðv; tÞÞ

� ðt� 1Þ þ tþ ð2mp;0 þmp;2 þmp;3 þ 1Þ
� 2t;

which contradicts the assumption that jF j � 2t� 1.

Anyway, vertex up is fault-free and can be an adequate

tester if r � 1.
Subcase 4.2: Assume that r ¼ 0. Suppose, by contra-

diction, that up is fault-free. Then the total number of
faulty vertices can be counted as follows:

jF j � jfui j 1 � i 6¼ p � tgj þ fðAAðpÞG ðv; tÞÞ
� ðt� 1Þ þ 3mp;1 þmp;2 þmp;3

¼ ðt� 1Þ þ 1þmp;0 þ 2mp;1 þmp;2 þmp;3

¼ ðt� 1Þ þ tþmp;1

� 2t;

which contradicts the assumption that jF j � 2t� 1. That
is, vertex up is faulty, and so is vertex v if r ¼ 0.

The proof is completed. tu

We end with estimating the time complexity of the
proposed algorithm. As described in Section 3, many
interconnected systems with N vertices have degree in the
order of logN for each vertex. In these systems, an
augmenting star structure can be constructed with time
complexity OððlogNÞ2Þ. However, for some unstructured
networks, such as the ad hoc network, it is possible to build
such a structure with a greater time complexity. Given an
augmenting star AAGðv; nÞ rooted at a vertex v in a system G,
the time taken in step (3) of the algorithm is OððlogNÞ2Þ,
because the time complexity of the algorithm DVRF is
OðlogNÞ for AA

ðiÞ
G ðv; nÞ, and it is run OðlogNÞ times. As a

result, the time complexity of DVCF algorithm is
OððlogNÞ2Þ when an augmenting star of full order is
obtained in time OððlogNÞ2Þ. Based on the symmetry of
most practical multiprocessor systems, the time for system-
level diagnosis is OðNðlogNÞ2Þ.

5 EXAMPLES

In this section, we show the proposed diagnosis algorithm
can be applied to some well-known multiprocessor inter-
connected systems.

5.1 Construction of Augmenting Stars

As the first example, we show that the star graph [1] with
dimension of five or more contains an augmenting star
structure of full order rooted at each vertex as a subgraph. Let
n be a positive integer. The n-dimensional star graph, denoted
by SSn, is a graph whose vertex set consists of all permuta-
tions of f1; 2; . . . ; ng. Each vertex is uniquely assigned a
permutation x1x2 . . .xn and is adjacent to ðn� 1Þ vertices
xix2 . . .xi�1x1xiþ1 . . .xn for 2 � i � n, which are vertices
obtained by a transposition of the first digit with the ith
one. Consequently, there are n! vertices in an n-dimensional
star graph, and each vertex has degree n� 1.

For clarity, we use boldface letters to denote vertices of a
star graph. For any vertex v 2 V ðSSnÞ, its i-neighbor, denoted
by ðvÞi, is just the vertex obtained by a transposition of the
first digit with the ith one of vertex v. For convenience of
description, we say that vertices v and ðvÞi are adjacent to
each other with a (1i) edge.

To construct an augmenting star of full order rooted at
any vertex v in SSn, we need to use a topological property of
star graphs. For any 1 � i � n, let Vi denote a subset of
permutations of f1; 2; . . . ; ng, whose elements have symbol i
in the nth digit. Clearly, we have V ðSSnÞ ¼

Sn
i¼1 Vi. More-

over, it is shown in [1] that the subgraph of SSn induced by
Vi is isomorphic to an ðn� 1Þ-dimensional star graph SSn�1.
We denote this subgraph by SSfign .
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As usual, we use AASSnðv;n� 1Þ to denote an augmenting

star structure of full order rooted at any given vertex v in

SSn. We depict AASS5
ðv; 4Þ in Fig. 5. In order to construct an

augmenting star structure in SSn for n � 5, we propose the

following algorithm (see Fig. 6 for illustration).

Algorithm. Construct-Augmenting-Star-Of-Full-Order-In-

Star-Graph(SSn; x1x2 . . .xn)

Input: An n-dimensional star graph SSn, n � 5, and its any

vertex v ¼ x1x2 . . .xn.

Output: An augmenting star of full order rooted at vertex
v ¼ x1x2 . . .xn in SSn.

BEGIN

1) if n < 5

then error “the dimensionality is illegal”

2) ðV ;EÞ  ðfvg; ;Þ
3) if n ¼ 5

then for i 2 to n

do u ðvÞi
ðV ;EÞ  ðV [ fug; E [ ffv;uggÞ
for j 2 to n

do if j 6¼ i
then for k 0 to 2

do if jþ k � 6

then w ðuÞjþk�4

else w ðuÞjþk
ðV ;EÞ  ðV [ fwg; E [
ffu;wggÞ
u w

return the graph G ðV ;EÞ (see Fig. 5 for

illustration)

4) ðV ;EÞ  Construct-Augmenting-Star-Of-Full-

Order-In-Star-Graph(SSfxngn ; x1x2 . . .xn)

5) for i 2 to n� 1

do u ðvÞi
V  V [ fðuÞn; ððuÞnÞ2; ðððuÞnÞ2Þ3g
E  E [ ffu; ðuÞng; fðuÞn; ððuÞnÞ2g; fððuÞnÞ2,

ðððuÞnÞ2Þ3gg
6) ðV ;EÞ  ðV [ fðvÞng; E [ ffv; ðvÞnggÞ
7) for i 2 to n� 1

do u ðvÞn
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Fig. 5. An augmenting star AASS5
ðv; 4Þ rooted at any vertex v in SS5.

Fig. 6. An augmenting star AASSn
ðv;n� 1Þ rooted at any vertex v in SSn, in which r ¼ 2 if n ¼ 6, and r ¼ 6 if n � 7.



for k 0 to 2

do if iþ k � n
then w ðuÞiþk�nþ2

else w ðuÞiþk
ðV ;EÞ  ðV [ fwg; E [ ffu;wggÞ

u w

8) return the graph G ðV ;EÞ (see Fig. 6 for illustration)

END

As another example, we show that the pancake graph
with dimension of 5 or more also contains an augmenting
star of full order rooted at any vertex. The n-dimensional
pancake graph, denoted by IPn, has the same vertex set as an
n-dimensional star graph, i.e., all permutations of
f1; 2; . . . ; ng. Its adjacency is defined as follows: vertex
x1x2 . . .xi . . .xn is adjacent to vertex y1y2 . . . yi . . . yn through
an i-dimensional edge, 2 � i � n, if yj ¼ xi�jþ1 for all 1 �
j � i and yj ¼ xj for all i < j � n. Because the pancake
graph is algebraically similar to the star graph, an
augmenting star of full order can be constructed in a way
the same as that for the star graph, except for the case of
n ¼ 5. For this reason, we only depict an augmenting star of
full order in the five-dimensional pancake graph. See Fig. 7.

5.2 Example of DVCF

Now we give an example of DVCF algorithm. Suppose that

F1 ¼ f12345; 32145; 42315; 52341; 41325; 51342; 15342g

is a set of seven faulty vertices in SS5, and we are required to

identify the fault status of vertex 12345. The test assignment

for AASS5
ð12345; 4Þ and its syndrome is illustrated in Fig. 8. In

step 2 of DVCF algorithm, the method presented in the

above section can be applied to obtain an augmenting star

of full order rooted at vertex 12345. Next, in step 3, S ¼
f21345g is computed. Since jSj ¼ 1, the procedure will goto

step 6 and return the test outcome �ð21345; 12345Þ ¼ 1 as its

diagnosis output. That is, vertex 12345 is faulty.
In another case, we assume that

F2 ¼ f32145; 42315; 52341; 31245; 41325; 51342; 15342g

is a set of seven faulty vertices in SS5. Again, we would like
to identify the fault status of vertex 12345. The test
assignment for AASS5

ð12345; 4Þ and its syndrome is illu-
strated in Fig. 9. Now, in step (3), S ¼ ; is determined.
Since jSj ¼ 0, the procedure will goto step (7). Accordingly,
we have up ¼ 21345 and r ¼ 1 so that the test outcome
�ð21345; 12345Þ ¼ 0 is returned. That is, vertex 12345 is
fault-free.

5.3 Simulation

Our simulation is aimed at measuring the time consuming
of DVCF algorithm over the star graphs and the pancake
graphs of different sizes. Because both the two graphs, SSn
and IPn, are vertex-symmetric and ðn� 1Þ-regular, we
simulate the diagnosis process with respect to vertex
wn ¼ 12 . . .n. We carry out a round of simulation by
randomly assigning a conditionally faulty set of 2ðn� 1Þ �
1 ¼ 2n� 3 vertices in the augmenting star structure rooted
at wn for 10,000 times and compute the average time for
identifying the fault status of wn. Then such a round of
simulation will be repeated 30 times to obtain the overall
average. The hardware and software configuration include:

1. Intel Core 2 Quad CPU Q8300 2.5 GHz,
2. 4 GB RAM,
3. 64-bit Windows 7 OS, and
4. C++ Programming Language in Microsoft Visual

Studio 2005.

The experimental results are shown in Fig. 10.

6 CONCLUDING REMARKS

The issue of identifying faulty processors is important for
the design of multiprocessor interconnected systems, which
are implementable with VLSI. The process of identifying all
the faulty processors is the system-level diagnosis. In the
random-fault probabilistic model of multiprocessor sys-
tems, processors are assumed to fail independently. Hence,
the one-step diagnosability of a multiprocessor system is
always upper bounded by its minimum degree. For
many practical multiprocessor systems or interconnection

1678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

Fig. 7. An augmenting star AAIP5
ðv; 4Þ rooted at any vertex v in IP5.



networks, however, the probability that all the neighbors of

a processor are faulty simultaneously is very small. In

addition, the small diagnosability of a system is also owing

to the fact that it only considers a global status of the entire

system but ignores the unlikelihood of faulty processors

occurring within a local substructure at the same time.
In this paper, we extend our previous research [18] and

study the local diagnosis capability of a conditionally faulty
system, in which every fault-free processor is required to
have at least one fault-free neighbor. As shown in [18],
estimating the local diagnosability with respect to each
processor can also be thought of as a new strategy for
checking the traditional one-step diagnosability of the

whole system. Under the PMC model, we present a

sufficient condition to estimate a given processor’s local

diagnosis capability in a conditionally faulty system. More-

over, we propose an efficient fault identification algorithm,

provided that there can be an augmenting star structure of

full order rooted at each processor and the time for a

processor to test another one is a constant.
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