
Data Compression by Temporal and Spatial
Correlations in a Body-Area Sensor Network:
A Case Study in Pilates Motion Recognition

Chun-Hao Wu and Yu-Chee Tseng, Senior Member, IEEE

Abstract—We consider a body-area sensor network (BSN) consisting of multiple small, wearable sensor nodes deployed on a human

body to track body motions. Concerning that human bodies are relatively small and wireless packets are subject to more serious

contention and collision, this paper addresses the data compression problem in a BSN. We observe that, when body parts move,

although sensor nodes in vicinity may compete strongly with each other, the transmitted data usually exist some levels of redundancy

and even strong temporal and spatial correlations. Unlike traditional data compression approaches for large-scale and multihop sensor

networks, our scheme is specifically designed for BSNs, where nodes are likely fully connected and overhearing among sensor nodes

is possible. In our scheme, an offline phase is conducted in advance to learn the temporal and spatial correlations of sensing data.

Then, a partial ordering of sensor nodes is determined to represent their transmission priorities so as to facilitate data compression

during the online phase. We present algorithms to determine such partial ordering and discuss the design of the underlying MAC

protocol to support our compression model. An experimental case study in Pilates exercises for patient rehabilitation is reported. The

results show that our schemes reduce more than 70 percent of overall transmitted data compared with previous approaches.

Index Terms—Body-area sensor network, data compression, inertial sensor, pervasive computing, wireless sensor network.

Ç

1 INTRODUCTION

THE advance of Microelectro Mechanical Systems
(MEMS) and wireless technology has boosted body-area

sensor networks (BSNs), in which sensor nodes are deployed
on a human body to monitor various physical and
biological signs, such as motions and heartbeat rates. Its
applications include sports training [1], medical care [2], [3],
pervasive games [4], [5], affective computing [4], and
human-computer interface [6].

This paper considers applying BSNs to physical rehabi-
litation, where patients have to frequently practice certain
fixed-pattern exercises repeatedly [3]. Fig. 1 shows a
scenario, where a BSN is deployed on a patient to capture
her body motions. Via wireless links, the sink is able to
collect sensing data, the data analyzer is able to analyze and
visualize her motions, and the application system is able to
give comments and send feedbacks to therapists for further
diagnosis. Such applications may require real-time and
high-resolution sensing data for various purposes, such as
visualizing motions, recognizing body conditions, and
diagnosing diseases. These requirements imply shorter
transmission delays and higher sampling rates for the
BSN. In addition, due to the size of a human body, nodes
are typically dense and almost fully connected, leading to
severe contention and collision among their transmissions
[7], [8]. Since wireless bandwidths are limited, how to
efficiently utilize them is very important.

We attack these issues by exploiting data compression by
taking advantage of the special features of sensing data when
sensors are deployed on a human body and the possibility
that sensors can overhear each others’ transmissions in a
BSN. We observe that when human body parts move, it
usually exhibits strong temporal and spatial correlations
among sensing data. By temporal correlation, body signs
sensed by a single node typically change smoothly and
slowly. By spatial correlation, body signs measured on
different nodes are typically correlated because body
components are connected and they normally move with
certain rhymes. On the other hand, since nodes in a BSN are
typically fully connected, spatial correlations can be effi-
ciently exploited through overhearing, a nature of wireless
communication, among nodes to minimize the total amount
of transmissions. Although data compression schemes that
exploit temporal and spatial correlations in wireless sensor
networks (WSNs) have been widely discussed [9], [10], such
schemes are usually designed for large-scale networks with
multihop communications and are thus not suitable for
BSNs, which are likely fully connected, providing a room for
customized data compression of body motion data.

Since wearable devices are typically lightweight and have
limited computation power and resources, the correspond-
ing sensing data processing, compression, and MAC proto-
col should be lightweight, too. In particular, the following
guidelines are important in designing data compression
schemes for BSNs. First, the general form to model the
temporal-spatial correlations of human body parts should
not be too complicated, especially when considering the
correlation among multiple sensors on different nodes.
Second, we have to take the data gathering process and the
distributed nature of a BSN into consideration. For example,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011 1459

. The authors are with the Department of Computer Science, National Chiao-
Tung University, 1001 University Road, Hsin-Chu 30010, Taiwan.
E-mail: {wchunhao, yctseng}@cs.nctu.edu.tw.

Manuscript received 11 Mar. 2010; revised 7 Oct. 2010; accepted 19 Oct.
2010; published online 17 Dec. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2010-03-0116.
Digital Object Identifier no. 10.1109/TMC.2010.264.

1536-1233/11/$26.00 � 2011 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

the rich connectivity of a BSN normally incurs higher
contention and collision among transmissions.

In this paper, we propose a novel data compression
method for BSNs based on overhearing. We exploit
temporal and spatial correlations among sensing data to
facilitate data compression and transmissions. Each node
samples its data, overhears others’ transmissions, com-
presses its data, and then transmits. Temporal and spatial
correlations are modeled by differential coding and linear
regression, respectively. Note that our data compression is
lossless. In our method, an offline phase is conducted to
learn these correlations and various system parameters.
Then, nodes are sorted into a partial-ordering tree, which
specifies the preferred transmission order of nodes (level-1
nodes transmit first, followed by level-2 nodes, etc.). During
the online phase, each node overhears others’ transmissions,
decodes some of them, encodes its own sample according to
the learned correlations, and transmits the encoded result.
It is to be noted that under our modeling, the compression
ratio is indeed affected by nodes’ transmission order. Our
scheme can also tolerate that the actual transmission
deviates from the ideally planned order, at the cost of a
higher compression ratio. We show how to construct an
optimal partial-ordering tree, called Minimum-Cost Tree
(MT), such that the total data transmitted on the air are
minimal statistically. The MT scheme, however, may need
to decode and encode a long sequence of overheard data. An
alternative is a near-optimal Minimum-Cost, Depth-Bounded
Tree (MDT), which limits the number of transmissions to be
overheard by each node. The MDT scheme is more practical,
but unfortunately, it has been proven that optimizing tree
cost given any bound on its depth is NP-hard.

To summarize, major contributions of this paper are
threefold. First, a distributed data compression method
suitable for BSNs is proposed to exploit temporal and
spatial correlations of sensing data. Our method considers
the correlation among multiple sensors on different nodes.
The computation complexity and communication overhead
are kept as low as possible. Second and more importantly,
we utilize overhearing, a nature of wireless communication,
and investigate the prediction directions in spatial correla-
tions. We show how to construct an optimal partial-ordering
tree, based on which nodes can sent their transmission
sequences and overhear others’ transmissions in a coopera-
tive way so as to minimize the total amount of transmis-
sions. To the best of our knowledge, applying overhearing
in data compression is never explored before. We also

propose a more practical minimum-cost, depth-bounded
tree, which turns out to be NP-hard. These techniques may
be applied to other distributed source coding, too. Third, to
verify our results, an experimental case study in Pilates
exercises for patient rehabilitation is reported.

The rest of paper is organized as follows: Section 2
reviews some related works. Section 3 describes our BSN
system architecture. Section 4 gives our data compression
models and algorithms, including some notes on practical
issues. Experimental results and our prototypes are shown
in Section 5. Section 6 concludes this paper.

2 RELATED WORKS

BSN is an emerging technique. Its bandwidth utilization
issues have started to receive attention. Assuming a fully
connected BSN, a QoS framework similar to IEEE 802.16 is
proposed for BSNs in [11] to grant connections and allocate
bandwidths based on applications’ requests. Several lossy
data compression methods have been proposed. In [12],
sensors with higher priorities are allowed to transmit their
sensing data with higher precision. If the data sources are
sparse, e.g., in the case of PPG signals, compressed sensing
techniques can be applied to reduce the required sampling
rates [13]. For motion capturing, Cheng et al. [14] have
tested the performance of several existing lossless and lossy
compression algorithms on motions that exhibit repetitive
patterns, such as running. However, the compression is
performed by each individual sensor and does not consider
the correlations among sensors. We extend their work to
consider correlations among sensors (both on the same
node and on different nodes). Although our data compres-
sion model is lossless, any lossy transform (e.g., FFT and
wavelet transform mentioned in [14]) can be applied to the
data source before passing through our data compression
model. If the application is interested only in certain events,
rather than the sensing values, distributed motion classifi-
cation/annotation would be most efficient [15], [16].

On the other hand, for large-scale WSNs, data compres-
sion has been intensively studied. We classify these
solutions as follows:

. Cross-layer solutions. The impact of joint routing
and compression is studied in [17]. ElBatt [18]
studies the feasibility of sublinear scaling laws under
different cooperation schemes for spatially corre-
lated data.

. Data aggregation. Data compression may be per-
formed by relay nodes or cluster heads via data
aggregation. TAG [19] organizes a network into a
tree and proposes SQL-like semantics to aggregate
streaming data into histograms for low-power
aggregation. Multiresolution spatial and temporal
coding is addressed in [20].

. Data acquisition. As acquiring sensing data from a
large-scale WSN to a user’s hand-held device may
involve long delays, nonuniform energy consump-
tions, and network impairments, model-driven data
acquisition models are proposed in [9], [10], and [21].
Although these methods are suitable for infrequent
queries and slow-changing environments, they are

1460 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 1. A BSN architecture for motion recognition.

not practical for motion capturing, as motion data
usually change more rapidly.

3 BSN SYSTEM ARCHITECTURE

We consider a BSN deployed on a human body for motion
recognition. An example is the Pilates exercises for patient
rehabilitation. The system architecture is shown in Fig. 1.
Wearable sensor nodes are placed at main movable body
parts. These nodes will periodically report their readings to
a sink node, which is connected to the data analyzer. The
data analyzer will try to understand how well the person
conducts some motions. The application server can further
send feedbacks to the person and reconstruct, store, and
replay these motions.

As an example, to recognize Pilates exercises for lower
back pain relief [22], [23], nodes can be placed at main
body parts as shown in Fig. 2. Some Pilates exercises are
shown in Fig. 3. In the upper leg lifting exercise (b), one has
to lie on his side and put legs and feet together in parallel.
Then, lift the top leg up from 0 to about 45 degrees, stay for
about 5 seconds, and then return to the start. The exercise
needs to be repeated several times.

Due to the size of a human body, nodes in a BSN are
typically fully connected. Therefore, when a node is
transmitting, the other nodes can overhear its transmission.
In addition, their data could be highly correlated. By
utilizing the overheard information, one may conduct
compression based on sensor data’s spatial and temporal
correlations. We show that by properly arranging nodes’
transmission order, not only the competition and inter-
ference among nodes can be relieved, but also significant
compression can be done. In this work, we place a triaxial
accelerometer in each sensor node. The sampling rate on
each axis is set to 20 Hz, a common value for body motion
measurement [24]. (However, the applicability of our work
is not limited to these assumptions.) Sensor readings are
calibrated and compressed locally, but the computation
should be kept as simple as possible.

4 DESIGN OF DATA COMPRESSION BY

OVERHEARING

We first present our basic idea in Section 4.1. Then, we
present our data compression model and two algorithms to
sort nodes’ overhearing sequences in Sections 4.2 and 4.3,
respectively. Although our model does not require to
change the underlying MAC protocol, we discuss the
corresponding design issues in Section 4.4. Finally, in
Section 4.5, we discuss how to retrain the system where

there are deviations between the training parameters and

the actual behaviors.

4.1 Basic Idea

We consider a BSN with n nodes v1; v2; . . . ; vn, each

equipped with m sensors. Note that in the case of triaxial

accelerometer, each axis is regarded as one separate sensor.

We will design a compression scheme to exploit the temporal

and spatial correlations of sensor readings. The goal is to

automatically learn these correlations to facilitate compres-

sion. Our system has an offline phase and an online phase.

During the offline phase, we will collect the raw outputs of

the jth sensor of vi into a column vector R
ðjÞ
i , where the

tth sampling result is stored at the tth entry in the vector

and is written as R
ðjÞ
i ½t�. Note that since the same Pilates

exercise should be repeated multiple times by the same

person to make the training results more representative, R
ðjÞ
i

should contain the result of several repetitions of the same

Pilates exercise. Then, R
ðjÞ
i is calibrated into a column vector

X
ðjÞ
i of the same size carrying meaningful data. Note that we

do not specify the size of vector R
ðjÞ
i . A larger vector means

more statistics, leading to higher accuracy in our prediction

of correlations.

Temporal correlation hereby means the similarity of

sensing values over the time axis, i.e., �X
ðjÞ
i ½t� ¼ X

ðjÞ
i ½t� �

X
ðjÞ
i ½t� 1� is very likely to fall within a small range relative to

that of the original value X
ðjÞ
i ½t�. Previous researches [14],

[24] also show that body movements are normally centered

at very slow frequencies and do not change rapidly in

nearby samples.

Spatial correlation hereby means that human motions in

nearby body parts show inherent rhythm, making it a good

source for data compression. Specifically, one may easily

predict �X
ð1Þ
i ;�X

ð2Þ
i ; . . . ;�X

ðmÞ
i given �X

ð1Þ
k ;�X

ð2Þ
k ; . . . ;�X

ðmÞ
k ,

if nodes vi and vk are attached to correlated body parts. To

achieve low-complexity compression, we would investigate

the possibility of establishing the following linear correlation:

�X
ðjÞ
i ¼ �ði;jÞjk1þ �ði;jÞjðk;1Þ�X

ð1Þ
k

þ �ði;jÞjðk;2Þ�Xð2Þk þ � � � þ �ði;jÞjðk;mÞ�X
ðmÞ
k

þ �ði;jÞjk;

ð1Þ

WU AND TSENG: DATA COMPRESSION BY TEMPORAL AND SPATIAL CORRELATIONS IN A BODY-AREA SENSOR NETWORK: A CASE... 1461

Fig. 2. An example of placing sensor nodes on a human body.

Fig. 3. Examples of Pilates exercises.

where �ði;jÞjk and �ði;jÞjðk;1Þ; . . . ; �ði;jÞjðk;mÞ are scalars, 1 is a

column vector containing all 1s, and �ði;jÞjk is a column

vector to compensate the prediction errors. If the outputs of

some sensor of vk have little correlation with �X
ðjÞ
i , its

corresponding � should approach zero. With properly

selected coefficients � and �, vector �ði;jÞjk would contain

all very small values, making it much less costly to

represent �ði;jÞjk than �X
ðjÞ
i . The number of bits required

to represent �ði;1Þjk; �ði;2Þjk; . . . ; �ði;mÞjk is used as the cost to

compress sensing data of vi when the data of vk are known.

Intuitively, we try to recover vi’s data from vk’s data. In

subsequent sections, we will show how to find the optimal

predictor vk of each node vi (by building a partial-ordering

tree) so as to minimize the overall cost.
On the other hand, sensors of the same node vi (such as

�X
ðjÞ
i and �X

ðkÞ
i) may also exhibit strong spatial correlations,

especially among the three axes of a triaxial accelerometer.

We call such spatial correlations intranode spatial correlations,

and those among sensors of different nodes internode spatial

correlations. So, (1) is generalized as follows to include

intranode spatial correlations:

�X
ðjÞ
i ¼ �ði;jÞjk1þ

Xm

p¼1

�ði;jÞjðk;pÞ�X
ðpÞ
k

þ
X

q2Lði;jÞjk
�ði;jÞjði;qÞ�X

ðqÞ
i þ �ði;jÞjk;

ð2Þ

where we use all sensors of vk and a set Lði;jÞjk of sensors of

vi to predict �X
ðjÞ
i . Note that to conduct data compression,

we must avoid circular dependency among sensors of the

same vi. Lði;jÞjk is to specify the set of sensors of vi whose

sensing data are encoded before that of sensor j. Later on,

we will show how to determine the set Lði;jÞjk. By learning

the intranode spatial correlations in (2), the resulting error

vector �ði;jÞjk of (2) is expected to be even smaller than that of

(1), making compressing the former more efficient than

compressing the latter.

Our experiences show that the above modeling is quite

effective in recognizing Pilates exercises. Consider the

sensor deployment in Fig. 2 and the exercise in Fig. 3a

and assume that each node has only one x-axis acceler-

ometer. Fig. 4a shows the calibrated data X
ð1Þ
4 ; . . . ; X

ð1Þ
7 . We

see that X
ð1Þ
4 and X

ð1Þ
5 exhibit strong spatial correlations,

and so are X
ð1Þ
6 and X

ð1Þ
7 . By taking the difference operation

on X
ð1Þ
i , Fig. 4b shows that �X

ð1Þ
i has a much smaller range,

and the aforementioned spatial correlations still exist. So,

we can apply (2) to predict �X
ð1Þ
4 by �X

ð1Þ
5 , as shown in

Fig. 4c. Fig. 4d shows the corresponding probability

distribution of the contents of the error vector �ð4;1Þj5. As

can be seen, the distribution concentrates around 0 mg.
By overhearing among sensor nodes, we will investigate

the feasibility of learning these correlations in the offline

phase and exploring real-time data compression in a BSN

during the online phase. We will also address the issue of

the supporting MAC protocol, especially the design of

packet collision, in Section 4.4.

4.2 Data Compression Model

Data flows of our offline and online phases are shown in

Fig. 5. Temporal correlation will be exploited on individual

sensors by a simple differential coding, while spatial

correlation will be exploited across sensors and will be

learned from the offline phase. The learned results consist of

some coefficients and some transmission and encoding

orders, which are sent to the sensor nodes for them to

conduct online data compression. The transmission order,

which is represented by a spanning tree, specifies the partial

ordering of nodes’ transmissions and the target nodes that a

node should overhear. To simplify the notations, we

will abbreviate R
ð1Þ
i ; . . . ; R

ðmÞ
i by R

ð1:mÞ
i ;�X

ð1Þ
i ; . . . ;�X

ðmÞ
i by

1462 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 4. Validation of our temporal and spatial correlation modeling.

(a) Calibrated data X
ð1Þ
i of exercise Fig. 3a. (b) The difference vector

�X
ð1Þ
i . (c) Predicting �X

ð1Þ
4 by �X

ð1Þ
5 . (d) Probability distribution of the

prediction error vector �ð4;1Þj5.

�X
ð1:mÞ
i ; �ðj;qÞjði;1Þ; . . . ; �ðj;qÞjði;mÞ by �ðj;qÞjði;1:mÞ; �ði;1Þjj; . . . ; �ði;mÞjj

by �ði;1:mÞjj; �ðj;qÞjðj;lÞ for all l2Lðj;qÞji by �ðj;qÞjðj;Lðj;qÞjiÞ, and so on.

Offline phase. In the offline phase, for each type of motion,

training data are collected from the BSN in the “Data

Collection” block and then sent to an external data analyzer,

where the rest of the blocks will be executed.

Data collection. We will collect from nodes v1; v2; . . . ; vn
column vectors R

ð1:mÞ
1 ; R

ð1:mÞ
2 ; . . . ; Rð1:mÞ

n . In the collection

process, each node vi puts the tth sampling result of

its qth sensor into R
ðqÞ
i ½t�. R

ð1:mÞ
i should be stored in vi and

then forwarded to the sink in a reliable way to avoid the

impact of network impairments. The same Pilates exercise

should be repeated multiple times by the same person to

make the training results more representative, i.e., R
ðjÞ
i

should contain the results of several repetitions of the same

Pilates exercise. To make the learned results effective, it is

assumed that the same Pilates exercise is performed by the

same person in the online phase.

Calibration. Each R
ðjÞ
i ; i ¼ 1 . . .n; j ¼ 1 . . .m, is converted

into a meaningful vector X
ðjÞ
i . For example, the raw outputs

of an accelerometer may be converted from voltages into

physical units (e.g., Guass). Then, we may apply various data

filtering techniques to refine the data. For human motion, we

propose to use a low-pass filter to remove noise. We adopt

the FIR filter based on Kaiser window function [25]. A low-

pass filter will zero out the signal components whose

frequencies are higher than a predefined stopband fre-

quency. As the energy of the filtered signal components

becomes larger, the resulting signal waveform will become

smoother. To automatically determine the stopband, we

apply a fast Fourier transform to R
ðjÞ
i such that the removed

energy is equal to � percent of the total energy. We will test

different values of � in Section 5. The filtered data are

rounded to the nearest integers and recorded in X
ðjÞ
i .

Diff coding. To exploit temporal correlation, each X
ðjÞ
i is

converted into a differential column vector �X
ðjÞ
i such that

�X
ðjÞ
i ½t� ¼ X

ðjÞ
i ½t� �X

ðjÞ
i ½t� 1�.

Similarity test. Our goal is to identify the correlation
between the outputs of each pair of vi and vj. Specifically,
an n� n similarity matrix Ms will be constructed. Ms½i�½j� is
to measure how well we can predict the data of vj given the
data of vi. For ease of explanation, for now we assume that
Lðj;1:mÞji is given (we will explain how to find it later). To
compute Ms½i�½j�, we apply (2) and try to build the following
equality for each q ¼ 1; 2; . . . ;m, where t ¼ 1; 2; . . . :

�X
ðqÞ
j ½t� ¼ �ðj;qÞji þ

Xm

p¼1

�ðj;qÞjði;pÞ�X
ðpÞ
i ½t�

þ
X

l2Lðj;qÞji
�ðj;qÞjðj;lÞ�X

ðlÞ
j ½t�:

Then, we can compute �ðj;qÞji, �ðj;qÞjði;1:mÞ, and �ðj;qÞjðj;Lðj;qÞjiÞ for

each q by linear regression analysis [26]. Note that linear

regression only tries to use the coefficients on the right-

hand side to approximate �X
ðqÞ
j ½t�, so we let the difference

�ðj;qÞji½t� ¼ �X
ðqÞ
j ½t� � �ðj;qÞji �

Xm

p¼1

�ðj;qÞjði;pÞ�X
ðpÞ
i ½t�

�
X

l2Lðj;qÞji
�ðj;qÞjðj;lÞ�X

ðlÞ
j ½t�:

Intuitively, if �X
ð1:mÞ
i is obtained by overhearing, we

only need to transmit the difference vector �ðj;qÞji to obtain

�X
ðqÞ
j . Here, we use the notation �ðj;qÞj� to represent that vi’s

transmission is not based on any overhearing. Let the

offline and online distributions of �ðj;qÞji be fðj;qÞji and gðj;qÞji,

respectively. Assuming that the Huffman encoding [27] is

applied, we will use the distribution of �ðj;qÞji measured

during the offline phase to transmit the data measured during

the online phase. So, we let Ms½i�½j� be the total of entropies,Pm
q¼1 Hðfðj;qÞjiÞ. To compute this term, we also need to

determine the encoding sequence of the m sensors of vj, i.e.,

Lðj;qÞji; q ¼ 1 . . .m. We develop a greedy heuristic as follows:

we work in the backward direction starting from the last

sensor. Specifically, for q ¼ 1 . . .m, we compute Hðfðj;qÞjiÞ,
assuming that Lðj;qÞji contains all other sensors 6¼ q. Then, the

WU AND TSENG: DATA COMPRESSION BY TEMPORAL AND SPATIAL CORRELATIONS IN A BODY-AREA SENSOR NETWORK: A CASE... 1463

Fig. 5. Offline and online phases of our data compression model.

sensor qwith the minimum entropy is selected as the last one

in the sequence. We then exclude this sensor and repeat the

same process for the rest of the m� 1 sensors. After

determining the encoding sequence,Ms½i�½j� can be obtained.
Note that when i ¼ j;Ms½i�½i� is a special case, which

means that vi is the first node to transmit and cannot
overhear any information. In this case, we will ignore the
factor of internode correlation in (2) and only consider
intranode correlation. So, we reduce (2) to the following:

�X
ðqÞ
i ¼ �ði;qÞ1þ

X

l2Lði;qÞ
�ði;qÞjði;lÞ�X

ðlÞ
i þ �ði;qÞj�: ð3Þ

With a similar greedy process, we can compute Ms½i�½i�. So,
the whole matrix Ms is obtained.

TX order determination. Based on Ms, the main goal of
this block is to find a proper order of nodes’ transmission time
based on the correlations of their data to achieve the best
compression ratio. The ordering instructs a node vi to
sequentially overhear the transmissions of some earlier
nodes, so as to compute vi’s error vector �ði;1:mÞjj with respect
to vj’s data. In the offline phase, assuming ideal error-free
transmissions, we model the ordering problem as one of
finding a spanning treeT along a directed weighted complete
graph G ¼ ðfug [V ;EÞ, where u is a virtual node, V ¼
fv1; v2; . . . ; vng, and E contains all possible edges between
nodes. The directed edge hvi; vji 2 E means “predicting
�X

ð1:mÞ
j from �X

ð1:mÞ
i ” and the directed edge hu;vii2E

means “sending �X
ð1:mÞ
i to the sink directly without over-

hearing.” So, the weight of hvi; vji is wðhvi; vjiÞ ¼Ms½i�½j� and
the weight of hu; vii is wðhu; viiÞ ¼Ms½i�½i�. Since virtual node
u will not overhear any node, we let wðhvi; uiÞ ¼ 1 for all vi.
Note that T is an outgoing directed tree and is always rooted
at u. In Section 4.3, we propose two solutions to construct T .

Online phase. The online phase is performed by each node
in a distributed manner (refer to Fig. 5). Consider the
transmission of the tth sampling result of vi. There are two
cases: vi is a level-1 node and vi is a non-level-1 node. In
both cases, it will go through the “Sensing” block to collect
the raw data and the “Calibration” and the “Diff Coding”
blocks to obtain �X

ð1:mÞ
i ½t�. If vi is a level-1 node in

T;�X
ð1:mÞ
i ½t� will go through the “Intranode Deviation

Check” block and the resulting �ði;1:mÞj�½t� will be com-
pressed by the “Huffman” block and then transmitted
without overhearing. If vi is a non-level-1 node, then it has
to overhear all precedent nodes along the path from the root
u to itself in T . If all these data are overheard successfully,
the sequence of blocks “Data Recovery,” “Deviation
Check,” and “Huffman” will be activated, as shown in the
lower path of Fig. 5. However, it is possible that vi may miss
some expected overhearing targets for some reasons. In this
case, vi should transmit without going through overhearing;
it activates the “Intranode Deviation Check” block and the
“Huffman” block, as shown in the upper path of Fig. 5.

Intranode deviation check. In the above discussion, vi
has to transmit without overhearing. From �X

ð1:mÞ
i ½t�; vi

follows (3) to calculate

�ði;qÞj�½t� ¼ �X
ðqÞ
i ½t� � �ði;qÞ �

X

l2Lði;qÞ
�ði;qÞjði;lÞ�X

ðlÞ
i ½t�

for q ¼ 1; . . . ;m to obtain �ði;1:mÞj�½t�.

Data recovery. Let u! vj1 ! vj2 ! � � � ! vjp ! vi be the
path in tree T from the root u to vi. Node vi has to overhear
the transmissions by vj1 ; vj2 ; . . . ; vjp and recover the original
�ðj1;1:mÞj�½t�; �ðj2;1:mÞjj1

½t�; �ðj3;1:mÞjj2
½t�; . . . ; �ðjp;1:mÞjjp�1

½t� through
Huffman decoding. If all the necessary data are overheard
successfully, the lower path of Fig. 5 is executed. Otherwise,
it follows the upper path of Fig. 5 (i.e., this block and the
subsequent “Deviation Check” block are ignored). In the
former case, vi first applies

�X
ðqÞ
j1
¼ �ðj1;qÞ1þ

X

l2Lðj1 ;qÞ
�ðj1;qÞjðj1;lÞ�X

ðlÞ
j1
þ �ðj1;qÞj�

for q ¼ 1; . . . ;m to obtain �X
ð1:mÞ
j1

. Then, it follows the
encoding sequence and repeatedly applies

�X
ðqÞ
jkþ1
½t� ¼ �ðjkþ1;qÞjjk þ

Xm

r¼1

�ðjkþ1;qÞjðjk;rÞ�X
ðrÞ
jk
½t�

þ
X

l2Lðjkþ1 ;qÞ

�ðjkþ1;qÞjðjkþ1;lÞ�X
ðlÞ
jkþ1
½t� þ �ðjkþ1;qÞjjk ½t�

for each of its own sensor q, and for k ¼ 1; . . . ; p� 1, until
�X

ð1:mÞ
jp
½t� are obtained.

Deviation check. From �X
ð1:mÞ
i ½t� and �X

ð1:mÞ
jp
½t� (ob-

tained by the “Data Recovery” block), vi calculates

�ði;qÞjjp ½t� ¼ �X
ðqÞ
i ½t� � �ði;qÞjjp �

Xm

r¼1

�ði;qÞjðjp;rÞ�X
ðrÞ
jp
½t�

�
X

l2Lði;qÞjjp

�ði;qÞjði;lÞ�X
ðlÞ
i ½t�

for q ¼ 1; . . . ;m to obtain �ði;1:mÞjjp ½t�.
Huffman. If the lower path of Fig. 5 is taken, vi follows

its encoding sequence to encode �iðqÞjjp ½t� for each q ¼
1; . . . ;m by Huffman encoding, puts the encoding results
together, and transmits the compressed data. Note that the
average compressed data size should be pretty close to the
total entropies of �ði;1:mÞjjp computed in the offline phase if
the exercises are conducted similarly to the offline phase. If
the upper path of Fig. 5 is taken, vi also encodes �X

ðqÞ
i ½t� for

each q ¼ 1; . . . ;m by Huffman encoding, puts the encoding
results together, and transmits the compressed data.

4.3 Algorithms for Constructing the TX Order
Tree T

Recall that in the “TX Order Determination” block in the

offline phase, we are given a directed weighted complete

graph G, in which each edge represents the corresponding

message volume when a node’s transmission is based on

overhearing another node’s transmission. Our goal is to

form a TX order tree T from G for the best transmission

efficiency. We will propose two solutions. The first one,

called Minimum-Cost Tree, can achieve optimal compression

ratio, but may require a node to overhear and decompress

the transmissions of multiple nodes before it can transmit its

own data. The second one, called Minimum-Cost, Depth-

Bounded Tree, allows a node to bound the number of nodes

that it has to overhear and is thus more practical for wireless

environments with non-negligible transmission errors. Note

that given a T and a path u! vi ! vj ! vk ! . . . in T , the

1464 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

underlying meanings are: “vi transmits to the sink directly,”
“vj overhears vi’s transmission, recovers vi’s original data,
and compresses its own data,” “vk overhears vi’s transmis-
sion, recovers vi’s original data, overhears vj’s transmission,
recovers vj’s original data, and compresses its own data,”
etc. For vk, overhearing only vj’s transmission is not
sufficient because vj’s data are compressed data and can
be decompressed only if vi’s original data are known. This
chain effect is not preferred, especially for BSNs.

The MT scheme works by finding an outgoing tree T

rooted at u from G with the smallest total edge weight. We
adopt an efficient polynomial-time algorithm [28], [29] to
find T , which works similarly to Kruskal’s algorithm for
undirected graphs. The algorithm greedily selects incoming
edges with minimum weights and breaks cycles, if any.

1. We will pick a set S of edges from G to form the
edges of T . Edges entering u are first removed from
G. For all incoming edges of each vi, select the one
with the smallest weight into S. Now, S contains
n edges. For each vi 2 V , we denote by prevðviÞ the
(only) node such that prevhðviÞ; vii 2 S.

2. If S contains no cycles, then T ¼ ðfug [V ; SÞ is an
optimal tree and the algorithm terminates. Note that
T is connected because it is acyclic and every node
except the root u has an incoming edge. Otherwise,
continue to the following steps to break the cycles.
(Note that there are many polynomial-time algo-
rithms to identify cycles in a graph.)

3. Find any cycle C in S. For each edge hvi; vji 2 E such
that vi 62 C and vj 2 C, we reweight it as follows:

w0ðhvi; vjiÞ ¼ wðhvi; vjiÞ � wðhprevðvjÞ; vjiÞ:

Note that w0ðhvi; vjiÞ � 0 because hprevðvjÞ; vji has
the smallest weight among all vj’s incoming edges in
E (see step 1).

4. From all reweighted edges in step 3, let hvi; vji be the
one with the smallest weight w0ðhvi; vjiÞ. Break the
cycle by deleting hprevðvjÞ; vji from S and adding
hvi; vji to S.

5. After breaking the cycle, edges in C do not need to
be considered any more. So, we adjust G by
contracting the nodes in C into a pseudonode vk,
by removing all nodes and edges in C from G and
adding a vk to G. For each vi 62 C, we let weight
wðhvk; viiÞ ¼ minfwðhvj; viiÞ; vj 2 Cg and weight

wðhvi; vkiÞ ¼ minfw0ðhvi; vjiÞ; vj 2 Cg;

where w0 means the new weight in step 3.
6. Go to step 2 with the contracted graph G.

It is proved in [28], [29] that the T found above is the
minimum outgoing tree. For example, consider the network
in Fig. 6a. The solid arrows are selected into S in step 2.
There is one cycle containing nodes v1; v2, and v3. The cycle
is contracted into a pseudonode v5 in Fig. 6b. We delete
hv1; v2i from S and add hu; v2i to S. Weights of edges to and
from v5 are recalculated. After one iteration, tree T is found.

The second MDT scheme enforces that the depth of T be
bounded by a constant �. For example, if we set � ¼ 2, then a
level-1 node can transmit anytime and a level-2 node only

needs to overhear its previous node’s transmission. Limit-
ing T ’s depth would be more practical for BSNs. However,
it turns out that optimizing this “bicriteria lowest-cost,
bounded-depth” problem is NP-hard [30]. It has been
proved that approximating this problem cannot be achieved
within a log factor and an approximation algorithm is
proposed in [30], which can bound the cost within a factor
of OðlognÞ of the optimal solution. Several heuristics for
finding bounded-diameter minimum spanning trees in an
undirected graph have been proposed (refer to [31] and the
references therein). Although their goals are similar to our
MDT problem in that bounding the depth of the tree to �
can be enforced by bounding its diameter to 2�, they are
only applicable to undirected graphs. So, we will adopt the
solution in [30] in our simulation studies. It remains an
open issue to find better heuristics for the MDT problem.

4.4 Design Issues of the Underlying MAC Protocol

The above overhearing and transmitting activities can rely
on any general wireless MAC protocols to achieve our goal
of data compression. The only requirement would be to
support assigning priorities to nodes so as to utilize the
partial-ordering tree T . For example, one may use a polling-
based protocol, a prioritized CSMA, or even a polling-based
protocol on top of an existing underlying MAC protocol.
However, if modifying the underlying MAC is possible,
better performance may be achieved. Below, we comment
on the desired changes on existing MAC protocols to
facilitate our overhearing behavior. Our discussions will
consider both polling-based and CSMA-based protocols.

. Backoff window. Recall the partial-ordering tree T .
Nodes should transmit their sensing data according
to their levels in T . If a polling-based MAC is
adopted, no change is needed; the sink node can
simply poll nodes level by level. If a CSMA-based
MAC is adopted, then we can assign nodes’ backoff
timers based on their levels. A lower level node
should adopt a smaller backoff window, while a
higher level one should adopt a larger backoff
window. (This is similar to the design of IEEE
802.11e, which uses differential backoff windows.)

. Packet loss behavior. Next, we consider the packet loss
issue. Packet loss may happen to the sink as well as a
node which intends to overhear the packet. For loss
at the sink node, if a polling-based MAC is used, it

WU AND TSENG: DATA COMPRESSION BY TEMPORAL AND SPATIAL CORRELATIONS IN A BODY-AREA SENSOR NETWORK: A CASE... 1465

Fig. 6. An example of the MT method.

can simply repoll the sender; if a CSMA-based MAC
is used, the sender will automatically retransmit
following the protocol’s definition. For loss at a node
intending to overhear the packet, no matter which
kind of MAC is adopted, when the opportunity for it
to transmit appears before it already overhears all
needed packets that it intends to overhear, it runs
into a dilemma of whether to transmit or not.
However, a node missing the packet that it intends
to overhear should not request for retransmission
because this would further complicate the problem
(e.g., Keally et al. [32] also suggest avoiding
retransmitting lost packets because doing so may
violate the delay requirement). There are two
options. One way is to repeat the backoff process,
expecting that all needed packets that it intends to
overhear would arrive correctly later on. The other
way is to still transmit but assume that it is a level-1
node (i.e., without compression by overhearing). We
would recommend using the second option because
the former approach may encounter a cascaded
effect and even a dilemma where a packet may have
been correctly received by the sink but simply
missed by the node. Also note that our data
collection is lossless. Missing intended overhearing
packets at a node only increases the compression
ratio, but the accuracy of collected data is unaffected.

. Data aggregation. In the above discussion, to keep our
presentation simple, we have focused on each piece
of data individually and discussed its compression.
To improve bandwidth utilization, it is better to pack
several (compressed) sensing data into one packet
instead of sending multiple small packets. This
would depend on the maximum payload size agreed
on the underlying MAC protocol. Since our over-
hearing scheme can further reduce the size of
transmitted data, any data aggregation scheme can
directly benefit from our scheme. (Note that since we
adopt Huffman coding, which is a prefix-free
coding, no delimiter character needs to be inserted
between two pieces of encoded data.)

4.5 Retraining the System

So far, we have assumed that the training data in the offline
phases can precisely reflect the behaviors during the online
phase. In practice, there may exist some degree of mismatch
in the predicted correlations, thus causing inefficiency.
Specifically, there could be two major sources of such
mismatch. One is that the trained Huffman codes may not
match the online probability distribution of the � functions.
The other is that the trained �s and �s may drift from the
actual coefficients during the online phase. Fortunately,
these problems are solvable because our data compression
model is lossless, implying that the online user motions are
always recoverable, as long as the communication channel
remains working. So long as the user’s motions are
repetitive, retraining the system by the data analyzer is
always possible.

When the learned probability distributions of the �
functions do not match with the online distributions, the
amount of additional bits in the online transmission is known

as the relative entropy [27]. We may use adaptive Huffman
coding [33] to measure current distributions, adjust the
Huffman trees accordingly, and forward the results to the
sensor nodes.

Sometimes, the online spatial correlations (�s and �s)
may not match with the learned results for many reasons.
For example, the user may simply perform a different
motion, or the system is worn by a different person. (Note
that this is less serious in the case of Pilates exercises
because they are a set of standard and repetitive motions.)
To make our scheme adaptive, the data analyzer can keep a
window of past sensing data in its database, periodically
compute new �s and �s, and update them to sensor nodes
whenever mismatch is detected.

5 EXPERIMENT RESULTS: A CASE STUDY IN

PILATES EXERCISES

To verify the effectiveness of the proposed compression
method, we have conducted some experiments on Pilates
exercises. We collect sensing data, split them into a training
data set and a test data set, build the offline data
compression model by the training data set, and then
analyze performance by the test data set.

5.1 Experiment Setup and Data Collection

We conduct experiments on the four Pilates exercises as
shown in Fig. 3. We place n ¼ 7 nodes on appropriate body
parts to monitor human motions (refer to Fig. 2). Each node
is a Jennic JN5139 single-chip microprocessor [34] with a
16-MIPS RISC CPU, 192 KB ROM, 96 KB RAM, a ZigBee-
compliant module, and an OS5000 triaxial accelerometer
[35]. Note that we regard a triaxial accelerometer as m ¼ 3

sensors. We index the x-, y-, and z-axes accelerometers as
sensors 1, 2, and 3, respectively. Each piece of raw data in
each axis is 16 bits, and the sampling rate is set to 20 Hz. To
fairly compare different methods, we collect sensing data
from the BSN, calibrate it on a PC, and also test different
methods on the same set of calibrated data on the PC. Each
exercise is repeated 20 times by the same person, and the
sensing results, which consist of thousands of sensing
values, are stored in nodes and then forwarded to the sink
in a reliable way to avoid the impact of network
impairments. Two-third of the calibrated sensing data are
used as the training data set, and the rest one-third as
the test data set. We use compression ratio (size of the
compressed data divided by that of the uncompressed
data) as our main performance metric.

For each exercise, we compare three data compression
methods.

. Zlib. This lossless method is used in [14] to
compress motion data. It first accumulates pieces
of sensing data in a fix-sized buffer, compresses the
buffer by the zlib compression algorithm once it is
full, and transmits the compressed buffer directly to
the sink. So, it compresses data in a block-by-block
fashion. Note that it has no sense of overhearing in
its design.

. MT. This is our MT method.

1466 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

. MDT. This is our MDT method with depth bounded
by � ¼ 2. The MDT tree is found by the approxima-
tion method in [30].

. Diff. To see the improvement made by exploiting
spatial correlations, this method utilizes only
differential coding, intranode correlations among
sensors, and Huffman encoding. Technically, it is
our MDT method with depth bounded by � ¼ 1.

To make comparison, we also implement a method with no
data compression, called uncompressed method. Note that
we realize the “Huffman” block based on the implementa-
tions recommended by [36] and [37]. The other blocks, from
our experiences, only take a few multiplications and
additions to complete. This is also true for the FIR filter in
the “Calibration” block. So, the feasibility of our scheme has
been verified by our prototyping. The performance part
done on a PC is mainly for comparing data compression
ratio and energy consumption of different methods (since
we do not have the implementations of other methods on
our sensor platform). This PC-based simulation can
correctly capture the intended metrics, except network
behaviors (which will be modeled by some network
simulations).

5.2 Effects of �

In the “Calibration” block, the parameter � of the low-pass
filter tries to remove noises while retaining information of
interest. Note that its purpose is to smooth out the raw

data; it does not change the size of a piece of sensing data.
Fig. 7a shows the low-pass-filtered X

ð1Þ
i in the x-axis of

exercise Fig. 3d for � ¼ 0, 30, and 60 percent (the results for
y-axis and z-axis are similar and are not shown here).
Fig. 7b shows the compression ratios achieved by different
�s when the MT method is applied. Considering both
accuracy and compression ratio, we will set � ¼ 30 percent
in the rest of our experiments.

5.3 Compression Ratio under Ideal Channel
Condition

First, we consider an ideal wireless channel. That is, the
effect of network impairments, such as transmission errors,
is ignored here. For MT, MDT, and Diff methods, we build
the data compression models by the training data set and
measure their online compression ratios by the test data set.
For each method, the offline phase outputs a transmission
scheduling tree T , the corresponding coefficients �s and �s,
and the Huffman codewords for each sensor. Note that all
nodes in the Diff method are level-1 nodes, so there is no
overhearing. These results are applied to the online phase to
compress the test data set. The “Huffman” block adopts the
adaptive Huffman coding. For the Zlib method, we buffer
the test data in every four seconds in a block and then
conduct compression (note that in Zlib, the block size is a
trade-off between compression ratio and delay [14]). Note
that this is not an issue for our methods because our
methods can perform compression on each piece of sensing
data �X

ð1:mÞ
i ½t�.

Fig. 8 shows the compression ratios achieved by
individual nodes. Fig. 9a compares the overall compression
ratios after summing up the data transmitted by all nodes.
The corresponding partial-ordering trees are shown in
Fig. 9b. Our MT, MDT, and Diff outperform Zlib signifi-
cantly in all nodes and all exercises. Note that nodes that
move more frequently exhibit higher compression ratios.
Also note that Diff can be regarded as a special case of our
scheme which only tries to exploit the correlation of
intranode data. So, these performance curves show the
importance of exploiting the correlation of internode data.
For most nodes, MT outperforms MDT by small gaps (for
very few nodes, MDT may outperform MT because MT tries
to minimize the average of compressed data sizes). From
Fig. 9b, we also see that the number of level-1 nodes of a
partial-ordering tree has major impact on the compression
ratio of a scheme (Diff can be regarded as consisting of only
level-1 nodes). This observation again proves the impor-
tance of exploiting spatial correlations. We believe that this
is even more important when the network becomes larger.
While the overall performance of MT is always better than
MDT, MDT is much simpler and is more robust against
network impairments, as to be shown later on.

5.4 Compression Ratio under Nonideal Channel
Condition

Since MT and MDT rely on overhearing, we intend to
evaluate how packet loss may degrade the performance of
our methods (note that when a node fails to overhear the
packets that it expects to receive, it will simply compress its
data based on temporal and intranode spatial correlations).
The packet loss probabilities of wireless links typically vary

WU AND TSENG: DATA COMPRESSION BY TEMPORAL AND SPATIAL CORRELATIONS IN A BODY-AREA SENSOR NETWORK: A CASE... 1467

Fig. 7. The effect of �. (a) Waveforms of X
ð1Þ
i before and after the low-

pass filter. (b) Compression ratio versus �.

over time and space, depending on the environment [38].
We simulate the network behavior by MATLAB because the
probability of packet loss in a real testbed is not
controllable. In our simulation, we set a packet loss
probability pl for each wireless link (i.e., the network
is fully connected, but each link has a loss probability of pl)
and vary pl for the whole network to observe the

compression performance. We believe that using the same
pl for all links suffices because our BSN is not large (with
eight nodes) and varying pl for individual links may bias
the observed results.

We use a simple polling MAC, which works as follows:

1. The sink node sorts nodes of the partial-ordering
scheduling tree T (shown in Fig. 9b) by a BFS
traversal. The result is the polling order.

1468 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 9. Comparison of overall compression ratios and the partial-ordering
trees being used. (a) Overall compression ratio. (b) Partial-ordering trees.Fig. 8. Comparison of compression ratios of individual nodes

(v1; v2; . . . ; v7) under an ideal wireless channel. (a) Exercise Fig. 3a.
(b) Exercise Fig. 3b. (c) Exercise Fig. 3c. (d) Exercise Fig. 3d.

2. In each round, the sink node polls nodes according
to the above polling order. It asks each polled
node vi to either report �ði;1:mÞj� or �ði;1:mÞjjp depend-
ing on whether the sink node could recover the
received data.

3. Upon receiving the polling request, the polled node
broadcasts its reply packet, which contains 10 con-
secutive pieces of sensing data. All other nodes,
including the sink node, have a probability of ð1�plÞ
to correctly receive the packet.

4. The sink node retransmits its polling request at
most twice in case of packet loss, and then polls
the next node.

Note that in the above MAC protocol, the event of packet

loss is solely based on each node’s own observation of

success/failure (and thus has the same loss probability of

pl). We run the simulation 1,000 times and calculate the

overall compression ratio over all nodes. The polling

message sent by the sink node is a 1-byte packet consisting

of the node ID of the polled node and the expected type of

reply (�ði;1:mÞj� or �ði;1:mÞjjp). The reply packet (for MT and

MDT) contains a 9-byte MAC header and a variable-size

payload (say, �ði;1:mÞjjp ½t�; �ði;1:mÞjjp ½tþ 1�; . . . ; �ði;1:mÞjjp ½tþ 9�).
To eliminate the impact of packet loss, the MAC header

always includes the first piece of the original sensing data,

i.e., X
ð1:mÞ
i ½t�. For the uncompressed method, the reply

packet contains a 2-byte MAC header and a fix-size payload
(say, X

ð1:mÞ
i ½t�; Xð1:mÞ

i ½tþ 1�; . . . ; X
ð1:mÞ
i ½tþ 9�).

Fig. 10 shows the overall compression ratios and the
corresponding overhearing percentages for each exercise
under different methods, where the overhearing percentage
is defined as the number of reply packets that send �ði;1:mÞjjp
divided by the total number of reply packets. Intuitively, a
higher percentage of overhearing will help reduce the
overall compression ratio. As we can see, as pl increases,
both MT’s and MDT’s compression ratios will increase, but
MDT will gradually outperform MT as pl increases.

5.5 Energy Cost

As energy consumption is an important factor in BSNs, we
conduct experiments to observe how our methods perform
with respect to this. We adopt the polling MAC protocol in
Section 5.4. Table 1 summarizes the parameters used in this
evaluation. The round length of the polling MAC will
depend on the sampling rate. In the beginning of each
round, each node has to wake up. The sink node then polls
nodes according to the polling order. In the case of packet
loss from the polled node, the sink can repoll at most two
more times. Loss is determined by the polling timeout
parameter. Each node has to keep on listening to the
channel until it receives a polling request. After being
polled and transmitting its data, the node can turn off its
transceiver until the beginning of the next round. Note that

WU AND TSENG: DATA COMPRESSION BY TEMPORAL AND SPATIAL CORRELATIONS IN A BODY-AREA SENSOR NETWORK: A CASE... 1469

Fig. 10. The effect of wireless packet loss.

after transmission, a node has to wait for an additional
polling timeout interval before turning off its transceiver to
make sure that the sink will not repoll it.

The power consumption of a sensor node mainly comes
from its computing module, sensor module, and wireless
module. Here, we are mainly interested in the power
consumption of the wireless module because the other
factors are irrelevant to our work. The parameters in Table 1
are mainly based on those in [39] and [40], which consider
IEEE 802.15.4-compatible transceivers operating in 2.4 GHz
with a data rate of 250 kbps. A node can switch among three
modes: reception, transmission, and idle modes. When
being turned off, a wireless module consumes no power.
The bit time is the reverse of the data rate. The RX/TX
switching time specifies the time interval required for a
reception followed by an immediate transmission to
account the nodal processing time.

We mainly observe the average energy consumption per-
node per-polling round. Assuming the same initial battery
energies for all nodes, it follows that the node that exhausts
the maximal average energy per round dies first. In Fig. 11,
we run our simulation 1,000 rounds for each exercise and
show the maximal per-node, per-round energy consump-
tion among all nodes under different packet loss probabil-
ities. As we can see, both MT and MDT save over 40 percent
of energy as opposed to the uncompressed case.

5.6 Scalability Issue

In addition, given a fixed channel bandwidth, the overall
compression ratio also reflects how many sensor nodes may
coexist in a BSN. So, this also implies the scalability of a
method. For example, in Fig. 10, the compression ratios of
both MT and MDT are upper bounded by 0.4. This implies
that our methods can roughly tolerate a BSN that is 2.5 times
that of the uncompressed method. Of course, the impact of
contention and collision among nodes is not taken into
consideration. Since our work is not targeted at MAC design,
we will leave this issue for future study.

5.7 Effect of System Retraining

In the previous experiments, we have assumed that
the training and testing data are collected from the same
person. In reality, a set of training data may be used to serve
a different person who performs exercises in a different
fashion. In this case, the system needs to be retrained, as
discussed in Section 4.5, when we find deviations between
the training parameters and the actual behaviors. Fortu-
nately, our data compression is lossless, which means that

any deviation can be accurately captured. The cost is a
higher compression ratio before the retraining is done. We
evaluate this problem below.

We conduct this experiment with two users. A window-
based method is adopted to keep the most recent sensing
data. Before the network starts, the initial data compression
model is built by the training data of one user. Recall that a
model includes coefficients �s and �s in (2), Huffman

1470 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 11. Comparison of the maximal average per-node energy
consumption among all nodes for each exercise. (a) Exercise Fig. 3a.
(b) Exercise Fig. 3b. (c) Exercise Fig. 3c. (d) Exercise Fig. 3d.

TABLE 1
Energy-Related Parameters Used in Our Evaluation

codewords, and partial-ordering trees. Then, the second
user conducts exercises on the system. Upon receiving new
sensing data, the data analyzer inserts it at the end of the
sliding window and removes the same amount of old data
from the window. In this evaluation, a sliding window
which can keep 20 seconds of sensing data is used.
Originally, it contains sensing data from the first person.
Testing data are divided into blocks of length of 5 seconds.
These blocks will gradually replace all data of the first user.
In Fig. 12, we evaluate the overall compression ratio under

ideal channels before the ith block is moved into the sliding
window. To make comparison, we also show overall
compression ratios where the initial data compression
models are trained by the actual user who performs the
online testing (i.e., the second person). We can see that there
is a higher compression ratio before retraining starts. The
gap diminishes as the second person’s data gradually
replace the first person’s in the sliding window. After the
fifth block, the sliding window is completely filled with
the actual user’s data, so there is no deviation between the
training parameters and the actual behaviors. We can see
that our data compression model can be accurately
retrained within a short delay.

6 CONCLUSIONS

In this paper, we have introduced a novel data compres-
sion framework to attack the multisensor, multinode
compression problem in BSNs. We exploit the temporal
and spatial correlations among sensing data from multiple
sensor nodes by differential coding and overhearing
among sensor nodes via linear regression. We also
formulated the transmission-ordering problem to deter-
mine nodes’ overhearing sequence to better exploit spatial
correlations and thus minimize the total amount of
transmissions. We proposed two scheduling methods,
which differ in the longest sequence of nodes that a node
needs to overhear. Our experiments on capturing Pilates
exercises demonstrated the effectiveness of our approach.
Our approach only requires a sensor node to overhear at
most one other node. One future direction that deserves
further research is to exploit the correlation between a node
and a set of other nodes.

ACKNOWLEDGMENTS

Yu-Chee Tseng’s research was cosponsored by the MoE
ATU Plan; by NSC grants 97-3114-E-009-001, 97-2221-E-009-
142-MY3, 98-2219-E-009-019, and 98-2219-E-009-005; by
MOEA 98-EC-17-A-02-S2-0048 and 98-EC-17-A-19-S2-0052;
by ITRI, Taiwan; by III, Taiwan; and by Intel.

REFERENCES

[1] D.T.W. Fong, J.C.Y. Wong, A.H.F. Lam, R.H.W. Lam, and W.J. Li,
“A Wireless Motion Sensing System Using ADXL MEMS
Accelerometers for Sports Science Applications,” Proc. World
Congress on Intelligent Control and Automation, 2004.

[2] J. Brutovsky and D. Novak, “Low-Cost Motivated Rehabilitation
System for Post-Operation Exercises,” Proc. Int’l Conf. IEEE Eng. in
Medicine and Biology Soc. (EMBS ’06), 2006.

[3] J.M. Winters, Y. Wang, and J.M. Winters, “Wearable Sensors and
Telerehabilitation: Integrating Intelligent Telerehabilitation Assis-
tants with a Model for Optimizing Home Therapy,” IEEE Eng. in
Medicine and Biology Magazine, vol. 22, no. 3, pp. 56-65, May/June
2003.

[4] S. Kang, J. Lee, H. Jang, Y. Lee, S. Park, and J. Song, “A Scalable
and Energy-Efficient Context Monitoring Framework for Mobile
Personal Sensor Networks,” IEEE Trans. Mobile Computing, vol. 9,
no. 5, pp. 686-702, May 2010.

[5] C.-H. Wu, Y.-T. Chang, and Y.-C. Tseng, “Multi-Screen Cyber-
Physical Video Game: An Integration with Body-Area Inertial
Sensor Networks,” Proc. IEEE Int’l Conf. Pervasive Computing and
Comm. Workshops (PERCOM Workshops), 2010.

[6] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W.
Matusik, and J. Popovi�c, “Practical Motion Capture in Everyday
Surroundings,” ACM Trans. Graphics, vol. 26, no. 3, p. 35, 2007.

WU AND TSENG: DATA COMPRESSION BY TEMPORAL AND SPATIAL CORRELATIONS IN A BODY-AREA SENSOR NETWORK: A CASE... 1471

1 2 3 4 5 6 7

0.1

0.15

0.2

0.25

O
ve

ra
ll

C
om

pr
es

si
on

 R
at

io

Block Index (Time Index)

Trained by Different User Trained by Actual User

1 2 3 4 5 6 7

0.1

0.12

0.14

0.16

0.18

0.2

O
ve

ra
ll

C
om

pr
es

si
on

 R
at

io

Block Index (Time Index)

Trained by Different User Trained by Actual User

1 2 3 4 5 6 7
0.18

0.2

0.22

0.24

0.26

0.28

O
ve

ra
ll

C
om

pr
es

si
on

 R
at

io

Block Index (Time Index)

Trained by Different User Trained by Actual User

1 2 3 4 5 6 7

0.24

0.26

0.28

0.3

0.32

0.34

O
ve

ra
ll

C
om

pr
es

si
on

 R
at

io

Block Index (Time Index)

Trained by Different User Trained by Actual User

Fig. 12. The effect of system retraining on overall compression ratio.
(a) Exercise Fig. 3a. (b) Exercise Fig. 3b. (c) Exercise Fig. 3c.
(d) Exercise Fig. 3d.

[7] D. Cavalcanti, R. Schmitt, and A. Soomro, “Performance Analysis
of 802.15.4 and 802.11e for Body Sensor Network Applications,”
Proc. Int’l Workshop Wearable and Implantable Body Sensor Networks
(BSN ’07), 2007.

[8] B. de Silva, A. Natarajan, and M. Motani, “Inter-User Interference
in Body Sensor Networks: Preliminary Investigation and an
Infrastructure-Based Solution,” Proc. Int’l Workshop Wearable and
Implantable Body Sensor Networks (BSN ’09), 2009.

[9] A. Deshpande, C. Guestrin, S.R. Madden, J.M. Hellerstein, and W.
Hong, “Model-Driven Data Acquisition in Sensor Networks,”
Proc. Int’l Conf. Very Large Data Bases (VLDB ’04), 2004.

[10] D. Chu, A. Deshpande, J.M. Hellerstein, and W. Hong, “Approx-
imate Data Collection in Sensor Networks Using Probabilistic
Models,” Proc. Int’l Conf. Data Eng. (ICDE ’06), 2006.

[11] G. Zhou, J. Lu, C.-Y. Wan, M. Yarvis, and J. Stankovic, “BodyQoS:
Adaptive and Radio-Agnostic QoS for Body Sensor Networks,”
Proc. IEEE INFOCOM, 2008.

[12] D. Jea, W. Wu, W.J. Kaiser, and M.B. Srivastava, “Approximate
Data Collection Using Resolution Control Based on Context,” Proc.
Int’l Workshop Wearable and Implantable Body Sensor Networks (BSN
’07), 2007.

[13] P.K. Baheti and H. Garudadri, “An Ultra Low Power Pulse
Oximeter Sensor Based on Compressed Sensing,” Proc. Int’l
Workshop Wearable and Implantable Body Sensor Networks (BSN
’07), 2009.

[14] L. Cheng, S. Hailes, Z. Cheng, F.-Y. Fan, D. Hang, and Y. Yang,
“Compressing Inertial Motion Data in Wireless Sensing Systems -
An Initial Experiment,” Proc. Int’l Workshop Wearable and Im-
plantable Body Sensor Networks (BSN ’08), 2008.

[15] H. Ghasemzadeh, E. Guenterberg, and R. Jafari, “Energy-Efficient
Information-Driven Coverage for Physical Movement Monitoring
in Body Sensor Networks,” IEEE J. Selected Areas in Comm., vol. 27,
no. 1, pp. 58-69, Jan. 2009.

[16] E. Guenterberg, H. Ghasemzadeh, and R. Jafari, “A Distributed
Hidden Markov Model for Fine-Grained Annotation in Body
Sensor Networks,” Proc. Int’l Workshop Wearable and Implantable
Body Sensor Networks (BSN ’09), 2009.

[17] A. Scaglione and S.D. Servetto, “On the Interdependence of
Routing and Data Compression in Multi-Hop Sensor Networks,”
Proc. ACM MobiCom, 2002.

[18] T. ElBatt, “On the Trade-Offs of Cooperative Data Compression in
Wireless Sensor Networks with Spatial Correlations,” IEEE Trans.
Wireless Comm., vol. 8, no. 5, pp. 2546-2557, May 2009.

[19] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A
Tiny Aggregation Service for Ad-Hoc Sensor Networks,” ACM
SIGOPS Operating Systems Rev., vol. 36, pp. 131-146, 2002.

[20] Y.-C. Wang, Y.-Y. Hsieh, and Y.-C. Tseng, “Multiresolution Spatial
and Temporal Coding in a Wireless Sensor Network for Long-
Term Monitoring Applications,” IEEE Trans. Computers, vol. 58,
no. 6, pp. 827-838, June 2009.

[21] A. Silberstein, G. Puggioni, A. Gelfand, K. Munagala, and J. Yang,
“Suppression and Failures in Sensor Networks: A Bayesian
Approach,” Proc. Int’l Conf. Very Large Data Bases (VLDB ’07), 2007.

[22] R. Rydeard, A. Leger, and D. Smith, “Pilates-Based Therapeutic
Exercise: Effect on Subjects with Nonspecific Chronic Low Back
Pain and Functional Disability: A Randomized Controlled Trial,”
J. Orthopaedic and Sports Physical Therapy, vol. 36, no. 7, pp. 472-484,
2006.

[23] I. Garciá, S. de Barros, and M. Saldanha, “Isokinetic Evaluation of
the Musculature Involved in Trunk Flexion and Extension: Pilates
Method Effect,” Revista Brasileira de Medicina do Esporte, vol. 10,
no. 6, pp. 491-493, 2004.

[24] C.V.C. Bouten, K.T.M. Koekkoek, M. Verduin, R. Kodde, and J.D.
Janssen, “A Triaxial Accelerometer and Portable Data Processing
Unit for the Assessment of Daily Physical Activity,” IEEE Trans.
Biomedical Eng., vol. 44, no. 3, pp. 136-147, Mar. 1997.

[25] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing.
Prentice-Hall, 1989.

[26] D.C. Montgomery, E.A. Peck, and G.G. Vining, Introduction to
Linear Regression Analysis, fourth ed. Wiley-Interscience, 2006.

[27] T.M. Cover and J.A. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[28] Y.J. Chu and T.H. Liu, “On the Shortest Arborescence of a
Directed Graph,” Science Sinica, vol. 14, pp. 1396-1400, 1965.

[29] J. Edmonds, “Optimum Branchings,” J. Research of the Nat’l Bureau
of Standards, 1967.

[30] J. Naor and B. Schieber, “Improved Approximations for Shallow-
Light Spanning Trees,” Proc. IEEE Symp. Foundations of Computer
Science (SFCS ’97), 1997.

[31] T.T.H. Binh, R.I. McKay, N.X. Hoai, and N.D. Nghia, “New
Heuristic and Hybrid Genetic Algorithm for Solving the Bounded
Diameter Minimum Spanning Tree Problem,” Proc. ACM Conf.
Genetic and Evolutionary Computation (GECCO ’09), 2009.

[32] M. Keally, G. Zhou, and G. Xing, “Watchdog: Confident Event
Detection in Heterogeneous Sensor Networks,” Proc. IEEE Real-
Time and Embedded Technology and Applications Symp. (RTAS ’10),
2010.

[33] D.E. Knuth, “Dynamic Huffman Coding,” J. Algorithms, vol. 6,
no. 2, pp. 163-180, 1985.

[34] Jennic, JN5139 Datasheet, http://www.jennic.com/support/
datasheets/jn5139_module_datasheet, 2011.

[35] OceanServer, “OS5000 Family - Triaxial Accelerometer,” http://
www.ocean-server.com, 2008.

[36] H.-A. Pham, V.-H. Bui, and A.-V. Dinh-Duc, “An Adaptive,
Memory-Efficient and Fast Algorithm for Huffman Decoding and
Its Implementation,” Proc. Int’l Conf. Interaction Sciences (ICIS ’09),
2009.

[37] R. Hashemian, “Design and Hardware Implementation of a
Memory Efficient Huffman Decoding,” IEEE Trans. Consumer
Electronics, vol. 40, no. 3, pp. 345-352, Aug. 1994.

[38] A. Natarajan, B.d. Silva, K.-K. Yap, and M. Motani, “Link Layer
Behavior of Body Area Networks at 2.4 GHz,” Proc. ACM
MobiCom, 2009.

[39] J. Ammer and J. Rabacy, “The Energy-per-Useful-Bit Metric for
Evaluating and Optimizing Sensor Network Physical Layers,”
Proc. IEEE Sensor and Ad Hoc Comm. and Networks Conf. (SECON
’06), 2006.

[40] A.Y. Wang and C.G. Sodini, “A Simple Energy Model for Wireless
Microsensor Transceivers,” Proc. IEEE Global Telecomm. Conf.
(GlobeCom ’04), 2004.

Chun-Hao Wu received the BS degree in
computer science from the National Chiao-Tung
University, Taiwan, in 2007. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science, National Chiao-
Tung University. His research interests include
mobile computing, wireless communication,
wireless body-area sensor network, and parallel
and distributed computing.

Yu-Chee Tseng received the PhD degree in
computer and information science from the Ohio
State University in January 1994. He is a
professor (2000-present), the chairman (2005-
2009), and an associate dean (2007-present) in
the Department of Computer Science, National
Chiao-Tung University, Taiwan. He was the
adjunct chair professor at the Chung Yuan
Christian University (2006-2010). His research
interests include mobile computing, wireless

communication, and parallel and distributed computing. He received
the Outstanding Research Award from the National Science Council of
China in 2001, 2003, and 2009, the Best Paper Award from the
International Conference on Parallel Processing in 2003, the Elite I.T.
Award in 2004, and the Distinguished Alumnus Award from the Ohio
State University in 2005. He serves/served on the editorial boards for
Telecommunication Systems (2005-present), IEEE Transactions on
Vehicular Technology (2005-2009), IEEE Transactions on Mobile
Computing (2006-present), and IEEE Transactions on Parallel and
Distributed Systems (2008-present). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1472 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

