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Abstract. To deal with repetitive runout and disturbance in near-field optical disk drives, this study 
develops a sliding mode based learning controller. It incorporates characteristics of sliding mode control 
into learning control. The reason for using sliding mode control is attributed to robust properties dealing 
with model uncertainty and disturbances. The learning algorithm utilizes shape functions to approximate 
influence functions in integral transforms and estimate the control input to perform seeking movement. It 
learns at each sampling instant the desired control input without prior knowledge of system dynamics. To 
validate the proposed method, this work conducts track-seeking expei-iments. 
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1. INTRODUCTION 

control input vector generated by actuators, M ( q )  is 
the symmetric positive definite generalized inertia 
matrix, C(q,q)  results from Coriolis and centripetal 

n e  near-field optical disk drive as depicted in Fig. 1 is 
a new generation optical disk drive design after digital 
versatile disk drives. It employs techniques of near- 
field optics, a flying pickup head, a solid immersion 
lens to achieve much higher optical data density 
recording. As a consequence, the control performances 
all need to be elevated since the data track width, track 
pitch, etc. get smaller. This paper presents a sliding 

accelerations, G(q) is the generalized gravitational 
force vector, and d ( g ,  4) denotes the disturbance. 
Define a state vector as 

x = [ 3 = [ ;] 
mode based learning scheme to eliminate repetitive 
errors in optical disk drives. 

Eq. (1) can be written as 

x = A ( x )  + B(x)u + v (x )  

2. SLIDING MODE BASED LEARNING 
where CONTROL 

I x2 

- M -' ( x)C( X ) X ~  - M -I ( X) G( X) 
A ( x )  = The equation of motion for a general system can be 

expressed as 

M ( q ) q  + C(q,q>q + G(q) + d(q,q)  = (1) 

are respectively the position, where q , q , and 
velocity, and acceleration vectors, U represents the 
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and the disturbance is expressed by 

0 
- M -' ( x ) d  ( x )  

2.1 Sliding Mode Control 

A VCM is demanded to track a desired motion qd ( t )  . 
Define an error vector 

where e = q  qd and i = q  gd and hence a sliding 
variablt) s of the forb 

r 1 

where both and r are positive definite matrices. 

To execute the sliding mode control, there are many 
types of reaching laws proposed. The constant reaching 
speed form is the basic one that defined as 

S =  Qsgn(s) ( 3 )  

Simple is the advantage of this form, but obviously the 
value of Q must be well selected. The reaching time 
will be too long cause by small value of Q used, and 
too large value will induce chattering condition 
happening. In addition, a modified reaching law [I]  is 
defined as 

i=-Qsgn(s)-Ks (4) 

where gains Q and K are diagonal matrices with 
positive elements q, and k ,  , respectively. Chattering 
can be reduced by tuning q, and k, in this reaching 
law. Near the sliding surface, S, = 0 .  It follows from 

Eq. ( 3 )  that IS,I 4, . By using a small gain, the 

chattering amplitude can be reduced. However, q, 
cannot be chosen equal to zero-since the reaching time 
would become infinite. Moreover, when the state is not 

near the sliding surface a large k, is employed to 
increase the reaching rate. 

Taking the time derivative of Eq. (2) gives 

Equating Eqs. (3) and (4) yields control input 

2.2 Sliding Mode Based Learning Control 

Tracking control in this study is aimed at following a 
prescribed trajectory or eliminating a known frequency 
disturbance as closely as possible to improve the 
tracking performance. Using inverse kinematics one 
can obtain position, velocity, and acceleration vectors 
denoted by 4 d  ' qd ' ' and id ,  respectively. The desired 

control input of the VCM, denoted by wd( . )  

R _j R" , is defined as 

Definition: Let c, ( T )  denote a subset of C(T) (which 

is the space of continuous T-period functions 

R " )  such that every wd is piecewise wd ' R+ 
continuously differentiable, and 

Given a collection for shape functions {ai and 0 ,  
there exists a finite number of shape functions 
{ @ , @ , , @ ,... , @ } that uniformly approximate 
members of C,(T) within 0 , i.e. for every 
wd E C,(T) , there exists constant vectors 

C,,,C,, C, ,..., C, R" Such that 
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To estimate the desired control input wd ( t )  , it can be 
approximated by a linear combination of appropriately 
selected period shape functions 

The estimated Gd ( t )  is hence indirectly updated by the 

adaptation of i ( t ,  ) , which is the estimate of the 
influence function I (  ) . i. Hence, 

N 
W d ( t ) Z  c; ;( t )  

i o  
(7) In the integral transform estimation, the feedforward 

term Gd ( t )  is estimated through updating the influence 

function i ( t ,  ) according to the learning law Eq. (13). 
However, if the influence function, which belongs to 
the space of continuous T-period functions, satisfies 

SUP l ( 1 7  - 5 ei ( t 7  r)@i ( r)/ , it can be 

expressed by a set of shape functions. The unknown 

where Ci R" represent unknown coefficient vectors 
for each shape function ; at an instant, and N denotes 
the total number of shape functions. The estimated 
feedforward term is generated by determining the 
coefficient vectors e; 121, i.e., 

t d O , T l  i o  

The coefficient vectors are updated on-line by 
conducting the following estimation law [2]: 

d -  
-Ci(t) = -K, , ( t )s i = 1,2,...,N (9) 
dt 

where K ,  is a constant positive definite matrix. 

Another approximation of the ideal feedforward 
compensation term can be represented by 

where the function K(o,o) 
Hilbert-Schmit kernel that satisfies 

Rx[O,T] is a known 

07K(t, )'d = k <  K(t ,  ) = K ( t + T ,  ) (11) 

whereas the influence function I(.) [O,T]----,Rn 
is unknown. If a kernel function is chosen to satisfy Eq. 
(11), then the feedforward term wd(t)  can be 
estimated by influence function I(.) . The following 
function adaptation law for estimating the unknown 
functions wd ( t )  and I(.) was presented by Messner et 
al. [3]: 

influence function is proposed as 

and the coefficient adaptation law becomes 

d e i ( t ,  ) = -K,K(t, )mi( )S (15) a t  

where mi(.) denotes a shape function and e;(.) its 
associated coefficient. 

Consider the plant defined in Eq. (l), a learning 
controller using sliding mode feedback control is 
proposed; i.e. 

where G d ( t )  can be estimated by the linear 
combination of shape functions Eq. (7) or by the 
integral of kernel function and influence function Eq. 
(12). The adaptation laws comprises Eqs. (8) and (15). 

3. IMPLEMENTATION 

As shown in Fig. 1,  the near-field optical disk drive 
replaces the readwrite head in a hard disk drive by a 
solid immersion lens. Based on the model of a hard 
disk drive [4], the VCM transfer function reads 

3.1 Sliding mode control 

Sliding mode control employs the reaching law in Eq. 
(4) to valid the sliding surface design. Defining an 
error vector 
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where e = 7 - qd , the s 'ding variable s is 'p 

(18) 

where A an& are positive. The reaching law in Eq. (4) 
can written as 

s=-Qsgn s - K s = e + A e + T e = A e + T e +  q - q d )  

where Q and K are positive. From Eq. (1 7) that 

the control input becomes 

U = M ,  [- Qsgn s - Ks - Ae -re + q d }  
(19) 

+ M2q + M39 

where M ,  - L m J  , M 2  - 
KrKdrvr  

3.2 Learning Control 

Except for its employing shape functions to estimate 
influence functions, the structure of this learning 
control method is the same as learning control that 
using integral transforms. The learning control law 
consists of Eqs. (12), (14), and (15). There are some 
typical shape functions [2] such as Fourier series shape 
functions, polynomial shape functions, and piecewise 
linear shape functions, which can be used to 
approximate the periodic continuous function I ( t ,  ) . 
This study employs a set of piecewise linear functions, 
as depicted in Fig. 2. Accordingly, in each interval of 
[ j ~  / N ,  (i + 1)T / N I ,  only two linear shape functions, 

m i  and m j  
corresponding coefficients, cj and ci , , to be updated 
at any instant. For computational efficiency of a kernel 
function, a piecewise linear function is used as a kernel 
function for integral transforms. 

are required; i.e. there are only two 

To implement the present method, Eqs. (12), (14), and 
(1 5) are rewritten to become the discretized form: 

1"  ' 
2 /=o 

Gd(k) =- [K(k,I)j(k,I)+K(k,I+l)j(k,I+l)la t (20) 

k 

ki(k,Z) = k(k-l,I)-KLK(k,Z) i(I) s(i)At (22) 
i k-a+l 

where integral transforms are computed by a trapezoid 
method. Moreover, the sliding surface is formulated as 

It follows from Eq. (23) that the control law Eq. (16) 
becomes, in discretized form, 

~ ( k )  = -Qsgn[s(k)] - K[s(k)]  + Gd ( E )  (24) 

In this discrete control algorithm, k represents an 
index for the feedback portion of the controller, E and 
I indexes for the learning portion, and a an integer 
that relates these indexes. For any given k in a period 
of the path, k ak a l .  In other words, the adaptation 
parameters 2i are updated at a rate a times slower 
than the inner feedback loop. Each increment in k 
represents a time step of At second, and each 
increment in k represents a time step of aAt second. 

4. EXPERIMENTAL RESULTS 

This study uses a digital optical readhead and an 
additional fan-shape component with reflective tape 
scale attached at one end of the suspension arm as 
shown in Fig. 3. The reflective tape scale in motion is 
scanned by a readhead. The readhead generates a 
digital square wave signal to the encoder in the NI PCI- 
7344 FlexMotion control card as position feedback 
signals. Accordingly, the system resolution can achieve 
0.1 m . Fig. 4 depicts this experimental setup. 

From Eqs. (4) and (1 6), the sliding mode controller is 
defined as 

U = Qsgn(s) KS 
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and with the feedfonvard term the sliding mode based 
learning controller is defined as 

I I  

- 

U = -Q sgn(s) - Ks + W, 

Flying Head 

The value Q and K in both controllers are the same. Fig. 
5 shows the off-track error in the sliding mode 
controller without learning control compensation. In 
contrast, Figs. 6 depicts the result of sliding mode 
based repetitive learning controller. Comparing results 
of Figs. 5 and 6 confirms that the sliding mode based 
repetitive learning controller indeed improves the 
repetitive motion accuracy better than the sliding mode 
controller. 

In the presence of a sinusoidal disturbance, the sliding 
mode controller leads to results depicted in Fig. 7, 
which is inferior to those by the sliding mode based 
repetitive learning control method, as shown in Figs. 8 
and 9. It is seen that the error amplitude is reduced with 
time, due to th feedforward input. The comparison 
between Figs. 8 and 9 demonstrates that the proper 
choice for learning coefficients K ,  in Eq. (15) 
increases the error eliminating speed. 

5. CONCLUSIONS 

The present method yields error convergence faster 
than the sliding mode control method. Based on the 
property of learning control, the motion or disturbance 
period has to be known in advance to implement the 
proposed controller. Future study will combine 
adaptive control with the present method to overcome 
this limit. 
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Figure 1 - Flying head in optical system 
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Figure 2 - Piecewise linear shape functions 
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Figure 3 - Fan-shape based measurement device 
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Figure 4 - Experimental Setup 
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Figure 5 - Position error in sliding mode control 
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Figure 6 - Position error in sliding mode based 
learning control 
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Figure 7 - Position error in sliding mode control 
with disturbance 
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Figure 8 - Position error in sliding mode based learning control 
with learning coefficient K ,  200 
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Figure 9 - Position error in sliding mode based learning control 

with learning coefficient K ,  400 
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