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Visualizing graphs has been studied extensively in the community of graph drawing and
information visualization over the years. In some applications, the user is required to inter-
act with a graph by making slight changes to the underlying graph structure. To visualize
graphs in such an interactive environment, it is desirable that the differences between the
displays of the original and the modified graphs be kept minimal, allowing the user to
comprehend the changes in the graph structure faster. As the mental map concept refers
to the presentation of a person’s mind while exploring visual information, the better the
mental map is preserved, the easier the structure change of a graph is understood. It is
somewhat surprising that preserving the user’s mental map has largely been ignored in
the graph drawing community in the past. We propose an effective mental-map-preserving
graph drawing algorithm for straight-line drawings of general undirected graphs based on
the simulated-annealing technique. Our experimental results and questionnaire analysis
suggest this new approach to be promising.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Graphs are widely recognized as a popular and useful model for capturing a wide variety of real-world concepts in appli-
cation areas such as social networks, databases, discrete event systems, biological pathways, and many more [17]. Through a
nice visual display of a graph, the user is likely to gain a better insight into the information conveyed by the graph. As it is
virtually infeasible to manually draw graphs of high complexity in structure and size, many sophisticated automatic drawing
methods for displaying complicated graphs have been developed over the years (see, e.g., [9,10,20]). The interested reader is
referred to [1,21] for nice surveys on graph drawing.

In order to find nice drawings, graph drawing algorithms are often designed to meet certain aesthetic criteria (see, e.g.,
[31]), which specify the desired graphical structures and drawing properties. Such aesthetic criteria include minimizing
the number of edge crossings or bends, minimizing the drawing area, maximizing the degree of symmetry, and many more.
Unfortunately, the problem of simultaneously optimizing two or more criteria, in many cases, is NP-hard. Although the com-
putational efficiency as well as the drawing quality (i.e., the extent to which the output drawings conform to the desired
aesthetic criteria) remain the most popular measures for judging the effectiveness of a drawing algorithm, more and more
attention has been given to the issue of preserving the mental map [30] in the framework of interactive graph drawing.

In some applications, the user can interact with a graph by applying operations such as adding/deleting one or more
nodes/edges to the graph on a regular basis. To cope with this type of dynamically changing graphs, most automatic drawing
strategies rely on using an existing static graph drawing algorithm to redraw each modified graph from scratch. Although
. All rights reserved.
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such strategies are convenient and simple, they suffer from the following drawback. Since the user is already familiar with
the original drawing, applying an existing static graph drawing algorithm to the modified graph may render the output
drawing ill-behaved as far as preserving the user’s ‘‘mental map’’ is concerned. To see this, consider Fig. 1. Fig. 1(a) is the
drawing of a graph produced by the well-known spring algorithm [12]. Suppose we add node 4 and connect it to the remain-
ing nodes of the graph. Fig. 1(b) and (c) are two possible drawings of the modified graph produced by the spring algorithm
under different settings of spring lengths. Clearly, Fig. 1(c) is a better one as far as preserving the mental map is concerned,
since it inherits more information from the original drawing (i.e., Fig. 1(a)). Fig. 2 (originally given in [22]) shows a more
dramatic example illustrating the importance of preserving the mental map. The initial graph (Fig. 2(a), excluding the thick
curve) consists of a chain of quadrangles, which are displayed nicely by the ‘‘Circular with Radial’’ (CR for short) layout algo-
rithm [36]. When we connect the two outermost nodes by a single edge which is marked by the thick curve in Fig. 2(a), all
the quadrangles collapse into one in the layout redrawn by the CR algorithm (see Fig. 2(b)). Note that the basic idea of the CR
algorithm is to place all the nodes on a circle and then perform a crossing minimization heuristic, which still results in at
least n/4 crossings (where n is the number of nodes) in this example. Unfortunately, the new drawing suffers from a rather
small angular resolution such that it is hard to recognize the original structure. An alternative layout is displayed in Fig. 2(c)
which shows a complete ring of quadrangles as it is constructed from the initial drawing. The above two examples suggest
that using a static drawing algorithm to draw a modified graph from scratch may result in something that looks completely
different from the original, causing the user to have to spend a considerable amount of extra time to comprehend the new
drawing.

Eades, Lai, Misue, and Sugiyama [13] were the first to propose the mental map concept of graph drawing, which can be
thought of as the presentation of a person’s mind while exploring visual information of a graph. What makes the preserva-
tion of the mental map important in graph drawing is that the user is able to quickly recognize the redrawn layout of the
modified graph, based on his/her understanding of the original layout. Most of the existing algorithms for the problem of
preserving the mental map focus on preserving the orthogonal ordering (see, e.g., [25]) or adding constraints to the input graph
(see, e.g., [2,19]). For two nodes u and v in a graph, the preservation of the orthogonal ordering means the relative above/
below and left/right positions of the nodes remain unchanged after the graph is redrawn. Preserving the user’s mental
map is sometimes referred to as a stability problem (see, e.g., [26]). Recently, Brandes and Pampel [3] have showed that
it is NP-hard to preserve the orthogonal ordering even for the simplest graphs (paths). For specific drawing styles taking
mental map preservation into account, the reader is referred to [22] for circular drawing and [16] for online dynamic graph
drawing. Experimental studies concerning the effect of preserving the mental map can be found in [32,33,35]. The impor-
tance of preserving the mental map can also be found in applications including distributed mobile object environments
[15], online learning environments [37], and more.

The basic requirement of a graph drawing algorithm is to produce an aesthetically pleasing layout in 2-D or 3-D, taking
the abstract representation of a graph as the input. In Davidson and Harel’s work [6], a nice-looking graph drawing refers to a
drawing which: (1) distributes nodes evenly, (2) makes edge-lengths uniform, (3) minimizes edge-crossings, and (4) keeps
nodes from coming too close to edges. To draw graphs nicely, a simulated annealing (SA) method was used in [6] with the
energy cost function designed to respect the above requirements. The implementation of their work allows the user to adjust
the relative weights of criteria in the energy cost function among various parameters, though some of these criteria may be
in conflict with each other. The SA method offers a more flexible way of drawing graphs than many other algorithms. Our
simulated annealing graph drawing method is basically based on the strategy reported in [6]. The interested reader is also
referred to [7,8] for earlier work of applying the SA method to graph drawing.

As there are many intuitive factors that affect the mental map, Bridgeman and Tamassia [5] formally defined those intu-
itive factors for orthogonal drawings and presented some statistical results to evaluate their effects on human perception of
similarity. They used many metrics to measure the similarity between different drawings, and then asked respondents to
evaluate the best measures that reflect their perception of similarity among a set of orthogonal drawings. Finally, they used
a statistical method to find the relationship between these measurements and users’ feelings, and suggested the following
for measuring the degree of preservation of the mental map: ranking, orthogonal ordering, k-matrix, unweighted nearest neigh-
bor within, average distance, weighted nearest neighbor between, shape, and relative distance. Previous studies ([32,33,35]), on
the other hand, often apply student-based surveys to evaluating the performance of mental-map-preserving graph drawing
algorithms.

In this paper, we propose a mental-map-preserving graph drawing algorithm for straight-line drawings of general undi-
rected graphs, based upon the simulated annealing graph drawing approach of [6] with the energy cost function incorporating
1

2 3 

1

2 3

4 1

2 3
4

(a) (b) (c)

Fig. 1. An example of the mental map problem.
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Fig. 2. An example of the mental map problem in circular drawing [22].
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six criteria of [5] to reflect the user’s mental map. As pointed out in [24], student-based surveys may not always be appropriate
as far as evaluating the quality of a mental-map preserving graph drawing algorithm is concerned. Hence, in our study we
consider not only experimental evaluation but also student-based questionnaire analysis, in order to better justify the claimed
performance of our design. The experimental results show that to a certain extent, our approach is capable of preserving the
drawing contour of a graph and the relative positions of nodes when applying a vertex/edge insertion/deletion operation to a
graph. Similar to [6], our approach is very flexible in the sense that it allows the user to adjust the relative weights of criteria
among various parameters. We also see from the experimental evaluation that there exists a trade-off between drawing
graphs nicely and preserving the mental map. As for the questionnaire analysis, a high percentage of respondents choose
the modified drawing produced by our approach as the best mental-map-preserving modified drawing in their minds.

The main contributions of this paper are summarized as follows:

1. Most of the previous work of preserving the mental map focused on how to preserve the orthogonal ordering (see, e.g.,
[25]) or add constraints to the input graph (see, e.g., [2,19]). To our knowledge, there have not been graph drawing algo-
rithms aiming at preserving the mental map on straight-line drawings of general undirected graphs while using more
sophisticated criteria simultaneously.

2. Our approach allows the user to adjust the relative weights of various criteria, making our drawing algorithm very
flexible.

3. By taking samples among a group of students with basic knowledge of graphs and graph drawing, Bridgeman and Tam-
assia [5] suggested a number of good criteria suitable for capturing the notion of the mental map. Our graph drawing
approach incorporates the criteria of [5] into the energy cost function of a simulated annealing graph drawing algorithm
to preserve the drawing contour of a graph and the relative positions of nodes when modifying the graph.

4. Our approach obtains the location of each node in each iteration, resulting in a smooth process from the initial drawing to
the final drawing–a desirable property in information visualization.

The rest of this paper is organized as follows. In Section 2, we introduce the simulated annealing graph drawing method,
upon which our graph drawing algorithm is based. Section 3 involves the design of an energy cost function to preserve the
mental map. Section 4 shows the experimental results of our approach. Section 5 gives a questionnaire analysis of our ap-
proach. A conclusion is given in Section 6.
2. Preliminaries

As mentioned in the previous section, the four requirements of a ‘‘nice drawing’’ include distributing nodes evenly, making
edge-lengths uniform, minimizing edge-crossings, and keeping nodes from being too close to edges. In this section, we first
introduce the general framework of simulated annealing, and then show how to draw graphs nicely using the simulated
annealing graph drawing algorithm proposed by Davidson and Harel (DH for short) [6].
2.1. Introduction to simulated annealing

Simulated annealing (SA) [23] is a generalization of the Monte Carlo method for examining the equations of states and
frozen states of n-body systems. SA is flexible and has successfully been applied to solving various combinational optimiza-
tion problems, including solving the maximum clique problem [18], determining the thickness of a graph [28], etc. It allows
‘‘uphill’’ moves–moves that spoil, rather than improve, the temporary solution. This unique feature allows SA to escape from
a local minimal solution, though it is not guaranteed that a global minimum can be reached eventually.

The basic steps of SA are given as follows. The first step of SA is to generate an initial configuration (either randomly or
heuristically constructed) and initialize the so-called temperature parameter T. Then the following is repeated until the ter-
mination condition is satisfied. A new solution from the neighborhood of the current solution is selected randomly. The en-
ergy cost of the new solution is calculated over the objective function and T is decremented. Let / and /0 denote the current
and new energy costs, respectively. If /0 < /, the new solution will be accepted. If /0 > /, this solution will be accepted with a
probability from a Boltzmann distribution function e�ð/

0�/Þ=kT , where k is the Boltzmann constant. We assume k = 1. This kind
of ‘‘uphill’’ moves will be fewer as SA proceeds, because T decreases after each iteration.
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2.2. The graph drawing algorithm using simulated annealing

The input of the DH algorithm is a graph G = (V,E), where V is the set of nodes and E is the set of edges. Each node in V has
a unique index. The key design in SA is the energy cost function, on which the efficiency of the algorithm highly depends. A
good energy cost function should reflect the properties of nice-looking drawings. The criteria used by the DH algorithm in the
design of the energy cost function are given as follows, in which k1, . . . ,k5 are normalizing factors that define the relative
importance of each criterion compared to the others.

1. Node distribution: "(i, j) 2 V � V, ai;j ¼ k1=d2
i;j is added so that nodes are spread evenly, where di,j is the distance between

nodes i and j.
2. Borderlines: "i 2 V, mi ¼ k2ð1=r2

i þ 1=l2
i þ 1=t2

i þ 1=b2
i Þ is added so that nodes are prevented from being too close to the

borderlines, where ri, li, ti, bi stand for the distances between node i and the right, left, top and bottom sides of the drawing
frame, respectively.

3. Edge lengths: The DH algorithm uses ck ¼ k3d2
k , where dk is the length of edge k. Instead, our algorithm uses r = k3s2, where

s is the standard deviation of edge lengths, because the utilization of ck tends to produce drawings with shorter edge
lengths which may not be desirable in some cases of preserving the mental map.

4. Edge crossings: "(k, l) 2 E � E, we simply add the term ek,l which equals k4fkfl if edges k and l cross; ek,l = 0 otherwise, where
fk (resp., fl) is the weight attributed to edge k (resp., l), representing the importance of edge k (resp., l) not intersecting
other edges. Note that k4 ¼ k5=g2

min where gmin is the given minimum distance between nodes and edges.
5. Node-edge distances: For node i and edge k with distance gi,k, the term hi;k ¼ k5=g2

i;k is added.

In light of the above, the energy cost / of a drawing of graph G = (V,E) is computed as follows:
/ ¼
X

ði;jÞ2V�V ;i – j

ai;j þ
X
i2V

mi þ rþ
X

ðk;lÞ2E�E;k – l;kRNðlÞ
ek;l þ

X
ði;kÞ2V�E;kRNðiÞ

hi;k;
where we slightly abuse the notation N(�) with N(l) denoting the set of neighboring edges of edge l, and N(i) representing the
set of the edges incident to node i. In fact, only a node moves from the original configuration to the new configuration in each
step of the algorithm. For notational convenience, the node in the original (resp., new) configuration is called p (resp., p0). If
the calculation of a component takes p (resp., p0) into account, it implies that the component belongs to the energy cost func-
tion of the original (resp., new) configuration. Therefore, the difference of the energy costs between the original and the new
configurations can be computed more efficiently as follows: /0 � / ¼

P
ðp;jÞ2NðpÞðap0 ;j � ap;jÞ þ ðmp0 �mpÞ þ ðr0 � rÞþ

ð
P
ðk;lÞ2Nðp0 Þ�E;k – lek;l �

P
ðk;lÞ2NðpÞ�E;k – lek;lÞ þ

P
k2E;kRNðpÞðhp0 ;k � hp;kÞ, where r0 is the variance of the edge lengths in the new

configuration.
3. Our mental-map-preserving graph drawing algorithm

The work of Bridgeman and Tamassia [5] can be regarded as the most complete work on mental map metrics. They pre-
sented the results of a user study based on several similarity measures between orthogonal drawings, which reflect the
user’s mental map according to the user’s direct responses. As a result, our approach to the mental map preservation prob-
lem is to incorporate some of the best measures used in [5] for straight-line drawings into the DH algorithm. In what follows,
we introduce the main components of our algorithm.

3.1. Configuration

Given a graph G = (V,E), a configuration specifies the placement of nodes in V on a plane, assuming that edges are drawn as
straight-line segments, and G is drawn within a given rectangular frame. If there is no a priori information about the nodes,
we place the nodes randomly within the drawing frame. The neighborhood of a configuration C is a configuration that is ob-
tained from C by changing the location of a certain node. In each iteration, we choose a node arbitrarily and then assign it a
new random location within a circle of decreasing radius around its original location. The setting of a decreasing radius may
accelerate the convergence of the algorithm [6].

3.2. The mental map cost function

In order to preserve the mental map, we define the mental map cost M between the original drawing D and the modified
drawing D0 to reflect the similarity of drawings based on certain ’’components’’ used in the experiments reported in [5]. Note
that the value of each component in M is nonnegative, and hence M = 0 implies that the two drawings are viewed as the same
drawings. A larger magnitude of M means a higher degree of difference between the two drawings.

Note that all the measures proposed in [5] except the ‘‘Shape’’ measure are defined in terms of point sets, which are de-
rived from the edges and nodes of the graph instead of the edges and nodes themselves. Each point in the original drawing
has a corresponding point in the modified drawing. Although there are a variety of ways to select the point sets as indicated
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in [5,27], in this paper we choose the point set including all the nodes of the graph, because there is at most a node moving in
each trial of our SA algorithm–it suffices to compute only the values related to the moved node.

We adopt the notations originally used in [5] in our subsequent discussion. P and P0 always refer to the point sets of draw-
ings D and D0, respectively. Since only one point moves in each trial of our SA algorithm, we let p denote the moved point, and
p0 2 P0 is the corresponding point of p (and vice versa). The number of nodes in V is n. Recall that dp,q denotes the Euclidean
distance between points p and q.

In the following, we define components used in M, in which g1, . . . ,g6 are the normalizing factors that define the relative
importance of a criterion compared to the others.

1. Ranking: Considering that the relative horizontal and vertical positions of a node should not vary too much, we add to M
the component
rankðP; P0Þ ¼ g1

UB
minfjrightðpÞ � rightðp0Þj þ jaboveðpÞ � aboveðp0Þj;UBg;

where UB = 1.5(jPj � 1); right(p) and above(p) are the numbers of points to the right and above of p, respectively. Note that
the upper bound UB is set to 1.5(jPj � 1) rather than 2(jPj � 1) because the probability under which the actual maximum
value happens is very small.

2. k-matrix: Two point sets P and P0 have the same order type if, for every triple of points (p,q,r), they are oriented
counterclockwise if and only if (p0,q0,r0) are also oriented counterclockwise. The k-matrix is designed to preserve an order
type of points. Here we use a simplified version, which calculates the number of nodes to the left of two designated nodes.
Let k(p,q) be the number of points in P to the left of the directed line from p to q. We add to M the term
lambdaðP; P0Þ ¼ g2

UB

X
q2P;q – p

jkðp; qÞ � kðp0; qÞj;

where UB ¼ n ðn�1Þ2
2

j k
.

3. Unweighted nearest neighbor within: This component captures the intuitive idea that a node’s nearest neighbor should
remain its closest neighbor after the graph is redrawn. Let nn(p) be the nearest neighbor of p in P and nn(p)0 be the cor-
responding node in P0 to nn(p). The component is defined as:
nnwðP; P0Þ ¼ g3

UB

X
p2P

minfjnearerðpÞj;1g;

where UB ¼ jPj; nearerðpÞ ¼ fqjdp0 ;q < dp0 ;nnðpÞ0 ; q 2 P; q – p; q – nnðpÞg.
4. Weighted nearest neighbor between: This concept is based on the assumption that a node should not move too far from the

original position, and hence its new position should be as close to its original position as possible. As the new drawing is
presented, the user ought to be able to find a certain node which is recorded in his/her mental map. The component is
defined as:
nnbðP; P0Þ ¼ g4

UB

X
p2P

jnearerðpÞj;

where UB ¼ jPjðjPj � 1Þ; nearerðpÞ ¼ fqjdp;q < dp;p0 ; q 2 P; q – pg.
5. Shape: This component records the edge orientation of the graph. Note that the original measure in [5] was designed for

orthogonal drawings. To cope with straight-line drawings, the measure is modified as follows:
shape ¼ g5

UB

X
e2E

editsðe; e0Þ;

where UB = jEj and

editsðe; e0Þ ¼
1; if the included angle between e and e0 is small;
0; otherwise;

�

in which e0 is the corresponding edge of e in D0. Note that whether the included angle between two edges is small is deter-
mined by users.

6. Average relative distance: The average relative distance is the average of the distances from p to the remaining nodes.
Therefore, we add the term
rdistðP; P0Þ ¼ g6

nðn� 1Þ
X
p;q2P

jdp;q � dp0 ;qj:
Although eight best similarity measures for orthogonal drawings were suggested in [5], only six of them are included in
our mental map cost function. The two measures designed for preserving the orthogonal ordering (called Orthogonal Ordering



4258 C.-C. Lin et al. / Information Sciences 181 (2011) 4253–4272
in [5]) of nodes and minimizing the movement distance of the selected node (called Average Distance in [5]) are excluded in
our work for the reasons given below. First, if some new nodes and edges are arbitrarily added to a drawing causing new
edge crossings, then those new edge crossings cannot be eliminated by an algorithm which preserves the orthogonal order-
ing of nodes. Also, minimizing the number of edge crossings is usually regarded as the most important aesthetic criterion in
graph drawing [29]. Therefore, we exclude the measure of preserving the orthogonal ordering of nodes. As our experimental
results indicate, a high degree of orthogonal order of nodes is still preserved without taking this measure into account. On
the other hand, the measure of minimizing the movement distance of the selected node is excluded because it has been im-
plied by the selection of the neighborhood of a configuration in the SA algorithm. In addition, it can also be viewed as being
achieved in part by the edge length component in the energy cost function. Finally, the exclusion of the two measures results
in a more efficient SA algorithm, as expected.

3.3. Our algorithm

Our algorithm, described in Algorithm 1, is almost the same as the DH algorithm except the if condition at step 2(b) is
replaced by the conjunction of the original condition and M0 < �M, where M0 is the value of the mental map function at
the new drawing D0 and �M is the maximal tolerance of the mental map cost that accepts the new drawing D0.

Algorithm 1 SA_MENTAL_MAP

1: denote the input drawing as D and set an initial temperature T0;
2: for i-th stage, denote the temperature as Ti, and repeat the following for 30jVj trials:

(a) randomly select a point p 2 P (note that P is the point set of D); select a new position p0 in a decreasing-radius
circle around p; let D0 be a new drawing which is almost the same as D except p is replaced by p0;

(b) let / and /0 be the values of the energy cost function at D and D0 respectively; let M0 be the value of the mental
map function at D0; if (/0 � / < 0 or random < e�ð/

0�/Þ=Ti ) and (M0 < �M), then set D D0;
3: Ti+1 = cTi;
4: if the termination condition is satisfied, stop; otherwise go to step 2.

The energy cost and the mental map cost are considered independently in Algorithm 1, because they serve for different
purposes. The former is used for drawing graph nicely, whereas the latter is used for preserving the mental map. Each com-
ponent in the mental map cost can be normalized with the upper bound of value 1 except for the ‘Average relative distance’
component (which is of small value while preserving the mental map), and hence, it is easy to control the relative weights of
these components to preserve the mental map. However, the values of the components in the energy cost are so diverse that
it is difficult to adjust their weights to generate a nice drawing when the algorithm converges. Consolidating the two costs
with different scales into one does not help, since it becomes more difficult to adjust the weights to reach convergence, and
more importantly, the goals associated with the two costs are likely to be in conflict with each other. As a result, the energy
cost and the mental map cost are considered independently in Algorithm 1.

Also note in Algorithm 1 that the SA scheme is only applied to the energy cost, because it would be difficult to achieve
convergence if applying to the two costs simultaneously. In addition, we believe that in most cases a user prefers a nice
drawing with a reasonable preservation of the mental map than a bad drawing with a well-preserved mental map. Conse-
quently we apply the SA scheme only to the energy cost.

The cooling schedule used in Algorithm 1 follows the basic geometric schedule described in [23].

1. Initial temperature: We set the initial temperature high enough in order for any configuration to work as the starting point
of the algorithm. A lower initial temperature can be chosen in the beginning, if the initial configuration is known to bear
some resemblance to the desired final result.

2. Temperature reduction: The temperature reduction stage determines when to change the temperature and how to change
it. This stage affects the number of moves at each temperature and the range of each move. Typical applications set the
number of trials at each temperature to be polynomial in the size of the input. In our setting, the number of moves at each
temperature is set to 30jVj, suggested by the DH algorithm. The cooling schedule rule is geometric. If Ti denotes the tem-
perature at the i-th stage, then the temperature at the next stage is Ti+1 = cTi, where c is a real number between 0.6 and
0.95. Similar to the DH algorithm, we let c = 0.75. The range of each move decreases when the temperature reduces. If the
range of movement at the i-th stage is R, then the range of movement serving for the next temperature is cR, which accel-
erates the convergence of the algorithm.

3. Termination condition: This is to decide when to stop the algorithm. Commonly used termination conditions include:
stopping the algorithm when the solution is not modified after several consecutive stages, or fixing the number of
stages to be a constant. To carry out a fair comparison between our algorithm and the DH algorithm, the number
of stages in our experiments is set to ten, which is identical to that used in [6]. Experimental results have shown that,
in many cases, substantial changes only happen in the early stages; subsequent stages yield only marginal
improvement.
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Now we turn our attention to the time complexity of our algorithm. As our algorithm is built upon the DH algorithm, it
suffices to consider the time complexity of the DH algorithm. As indicated in [6], the DH algorithm runs in O(jVj2jEj) time
because the number of stages is a constant, the number of trials in each stage is 30jVj, and every term in the energy cost
function can be computed in O(jVjjEj) time. Also, it is obvious that every component of the mental map cost can be computed
in time no more than O(jVjjEj). Hence, Algorithm 1 also runs in O(jVj2jEj) time.
4. Experimental results

This section shows four experimental results for evaluating the performance of our mental-map-preserving graph draw-
ing algorithm. In each experiment, the initial drawing of the input graph is a random drawing, and then a nice drawing is
produced by the DH algorithm. Subsequently, like the experiment designed in [5], the graph is modified by adding two nodes
with two and four incident edges, respectively. The locations of the two nodes are decided randomly, and the other end
points of the six edges are connected to arbitrary nodes in the original graph. Finally, we compare the drawings of the mod-
ified graph produced by our algorithm and the DH algorithm.

Our prototype system runs on an Intel Core 2 Duo CPU E8400 @ 3.00 GHz PC with 3.00 GB memory. The statistics on the
running time of the DH algorithm and our algorithm with respect to four examples are given in Table 1. Our algorithm runs a
bit slower than the DH algorithm since more criteria are taken into account. Like the conclusion given in [6] regarding the DH
algorithm, our algorithm, from a practical viewpoint, is only suitable for drawing dynamic graphs of small-size.

In order to see how the running time of our algorithm increases when the size of the input graph grows, we consider sev-
eral graphs taken from the well-known graph data set–Rome Graphs,1 which are originated from practical applications ranging
from data flow diagrams to Petri nets. The largest graph in the Rome Graph data set has 110 nodes. We conduct experiments on
the first 100 graphs in the Rome Graph set, and record the running time of redrawing the modified graph of each of the 100
graphs. To this end, we add two nodes, one with two edges and the other with four edges, to the nice drawing of each graph.
The average running time versus the number of nodes is plotted in Fig. 3. It turns out that it takes about 25 s to redraw a 100-
node graph, which is somewhat unacceptable for applications that require real-time responses.

Consider the first simple experiment shown in Fig. 4. An initial random drawing is given in Fig. 4(a). After applying the DH
algorithm under different settings of parameter k4, three possible nice-looking drawings are displayed in Fig. 4(b), in which
(i)–(iii) illustrate how less penalties on edge crossings affect the outcomes of the algorithm. Now we arbitrarily add two new
nodes 7 and 8 to each of the three drawings, where node 7 is connected to nodes 4 and 5, and node 8 is connected to nodes 1,
3, 4, and 5 (see Fig. 4(c)). The modified graphs are redrawn by our algorithm, as shown in Fig. 4(d). For the sake of compar-
ison, consider Fig. 4(e) and (f). Fig. 4(e) shows the three drawings obtained by applying the DH algorithm to drawings in (i)–
(iii) in Fig. 4(c) directly. On the other hand, Fig. 4(f) displays the outcomes of applying the DH algorithm to random drawings
of graphs associated with (i)–(iii) in Fig. 4(c) under the same setting of parameters.

In view of Fig. 4(c) and (d), it is obvious that our algorithm is capable of generating nice drawings. It is also not hard to see
from Fig. 4(b) and (d) that the contours of drawings and the relative positions of nodes are very similar in the two sets of
drawings, suggesting that our algorithm preserves a high degree of the mental map. In contrast, the drawings in Fig. 4(e)
and (f) produced by the DH algorithm share little similarity with those in Fig. 4(b).

If we remove the additional nodes 7 and 8 and their adjacent edges from the drawings in Fig. 4(c)–(f), it becomes clearer
why the drawings in Fig. 4(d) preserve better mental maps. See Fig. 5. Since the mental map criteria and the aesthetic criteria
are often in conflict with one another, there is a trade-off between preserving a high degree of the mental map and achieving
some aesthetic criteria such as minimizing the number of edge crossings. Fortunately, our algorithm allows the user to adjust
the weights between different criteria, in order to fit his/her drawing requirements. For example, node 5 in Fig. 5(b) (i)
(which is produced by our algorithm) does not preserve its original relative position (i.e., not satisfiable as far as preserving
the mental map is concerned). Consider Fig. 4(c)(i). To keep node 5 in the same relative position (by changing the settings of
parameters), node 8 cannot move into the quadrangle bounded by nodes 1, 2, 3, and 6, which in turn, induces additional edge
crossings, though node 8, in this case, keeps its original relative position intact.

In the second experiment, the initial graph Fig. 6(b) is a complete degree-four tree with 21 nodes and 20 edges. Taking the
initial random drawing shown in Fig. 6(a) as the input, the DH algorithm outputs the drawing in Fig. 6(b). Fig. 6(c) shows the
graph transformed by inserting nodes 22 and 23 (together with six edges) into the tree. Fig. 6(d) is the drawing produced by
applying our algorithm to the drawing in Fig. 6(c). We can observe that there are no drastic differences between Fig. 6(b) and
(d). Fig. 6(e) (resp., Fig. 6(f)) is the drawing produced by applying the DH algorithm to the drawing in Fig. 6(c) (resp., a ran-
dom drawing of the modified graph). Although the drawing in Fig. 6(f) almost has no common points with the drawing in
Fig. 6(b), there are only two edge crossings in the drawing in Fig. 6(f), which achieves the minimum number of edge crossings
among all possible drawings of the modified graph.

Fig. 7(a)–(d) simply display the drawings after removing the additional nodes 22 and 23 from Fig. 6(c)–(f), respectively. By
comparing Fig. 7(b) with Fig. 7(a), it can be observed that the drawing in Fig. 7(b) almost preserves the shape and structure of
the drawing in Fig. 7(a) except that the orderings of node pairs (6,7) and (15,16) are different. As mentioned earlier, preserv-
ing the mental map and optimizing some aesthetic criteria may not be achieved simultaneously. The reason why the order-
1 http://www.dia.uniroma3.it/ � gdt/.

http://www.dia.uniroma3.it
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Table 1
The statistics on the total running time of the DH and our algorithms.

Problem jVj jEj DH our

Fig. 4(c) 8 15 0.1453 s 0.1781 s
Fig. 6(c) 23 26 0.7206 s 0.9837 s
Fig. 8(c) 65 68 5.7500 s 8.5030 s
Fig. 10(c) 102 130 19.3353 s 28.1252 s
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ings of the two pairs of nodes are different is that the drawing in Fig. 7(b) corresponds to the drawing in Fig. 6(d) which in-
duces fewer edge crossings than the case when the orderings are not modified. If we compare Fig. 7(c) with Fig. 7(a) assum-
ing node 1 to be the root of the tree, the subtrees rooted at nodes 2, 3, and 4 look different although the counterclockwise
ordering of the children of node 1 is preserved. By comparing Fig. 7(d) with Fig. 7(a), it is obvious that the mental map is not
preserved.

We also carry out an experiment on a complete binary tree with 63 nodes and 62 edges. Similar to the previous exper-
iments, Fig. 8(a)–(f) show a random drawing of the initial graph, the nice drawing produced by the DH algorithm, the draw-
ing of the modified graph by adding two nodes, the modified drawing produced by our algorithm, the modified drawing
produced by the DH algorithm, and the drawing produced by applying the DH algorithm to a random drawing of the mod-
ified graph, respectively. Fig. 9(a)–(d) show the drawings after the two added nodes are removed from Fig. 8(c)–(f),
respectively.

If we look at Fig. 8(b) and (d), there are only slight modifications between the two drawings, as only node pairs (7,15),
(32,33), (36,37), (40,41), (58,59), and (60,61) are of different orderings. This is mainly caused by the fact that the measure
of preserving the orthogonal ordering of nodes is excluded in our mental map cost function. If, on the other hand, such a
measure is included, then additional edge crossings become inevitable, causing the output to be less attractive from the aes-
thetic viewpoint. In contrast, although the drawing in Fig. 8(e) has fewer edge crossings than the drawing produced by our
algorithm, it differs a lot in comparison with the original drawing illustrated in Fig. 8(b), especially, in the left half of the
drawing. Assuming node 1 to be the root of the tree, the subtrees rooted at nodes 8, 9, 14, 20, and 26 in the drawing of
Fig. 8(a) are totally different from those in the drawing of Fig. 8(e). As for Fig. 8(f), the drawing has only one edge crossing,
which achieves the minimum number of edge crossings among all the possible drawings of the modified graph. From Fig. 9,
the advantage of our drawing algorithm becomes apparent when the primary concern is placed on the preservation of the
mental map.

Finally, we present an experiment carried out on a graph with 100 nodes and 124 edges chosen from the Rome Graph data
set. Similar to the previous experiments, Fig. 10(a)–(f) show a random drawing of the input graph, the nice drawing produced
by the DH algorithm, the drawing of the modified graph by adding two nodes and six edges, the modified drawing produced
by our algorithm, the modified drawing produced by the DH algorithm, and the drawing produced by applying the DH algo-
rithm to a random drawing of the modified graph, respectively.

Although the drawings in Fig. 10 are more complicated, there is a common feature in (b)–(e) that most nodes are central-
ized in the bottom right part of the whole area. By comparing Fig. 10(b) with Fig. 10(d) and (e), it is clear that drawing (d) by
our algorithm preserves the contour of the original drawing (b), but drawing (e) by the DH algorithm does not have this
property.

Figs. 11 and 12 show how our SA algorithm is capable of escaping from local minima. Fig. 11 gives the plot of the energy
cost versus the number of trials in the process of applying the DH algorithm to Fig. 8(c) to yield Fig. 8(e). Recall from Algo-
rithm 1 that the number of trials is equal to 30jVj multiplied by the number of executed stages plus the number of trials
executed at the current stage. Fig. 11 illustrates that some ‘uphill’ moves can successfully escape from local minima by using
the DH algorithm. To see this, consider the energy costs in the window between the 16500-th trial and the 18000-th trial in
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(c) adding nodes 7 and 8 to each of the three drawings in (b). 
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(d) applying our algorithm to each of the three drawings in (c). 
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(f) applying the DH algorithm to a random drawing of the graph in (c). 
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(e) applying the DH algorithm to each of the three drawings in (c). 
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Fig. 4. The experiment for an initial cubic graph with six nodes.
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Fig. 11. The curve of the energy cost between the 16500-th trial and the 17000-th trial (‘plain’-moving) is almost flat. How-
ever, ‘downhill’-moving followed by ‘uphill’-moving near the 17000-th trial yields a better solution, which illustrates the
advantage of the SA method.
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(b) Figure 3(d) without nodes 7 and 8. 
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(c)  Figure 3(e) without nodes 7 and 8. 
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Fig. 5. Removing nodes 7 and 8 from Fig. 4 (c)(d) and (f).
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Fig. 12 illustrates a ‘‘cost versus trial number’’ plot in the process of yielding Fig. 8(d) from Fig. 8(c) using our algorithm.
Fig. 12(a) and (b) give the plots of the energy cost / and the mental map cost M, respectively, against the number of trials.
Fig. 12(c) and (d) give detailed views of the dotted-line boxes in (a) and (b), respectively. Note that the tolerance �M of M is
set to 0.3 in this experiment, causing the configuration with the value of M larger than 0.3 to be rejected in Fig. 12(b) and (d),
which in turn yields a considerable amount of ‘plain-moving’ in Fig. 12(a). From Fig. 12(a) and (c), we observe that our algo-
rithm, an SA-based method, also has the ability to escape from local minima in many cases. It should be noted that the max-
imum energy cost in Fig. 11 (under the DH algorithm) is larger than that in Fig. 12(a) (under our algorithm) by approximately
4 billion. Such a disparity is due to the fact that the weight of the measure of penalizing the number of edge crossings (one of
the most important measures in producing a nice drawing) is set to a huge value. In order to preserve the mental map, our
algorithm produces the drawing in Fig. 8(d) with three more edge crossings than the drawing in Fig. 8(e), causing the extra 4
billion in the corresponding energy cost.

As our algorithm is based on the stochastic simulated annealing (SSA) strategy, it is not surprising that our algorithm is
somewhat slow when applying to large graphs. A possible way to improve the performance of our algorithm is to consider
using the deterministic simulated annealing (DSA) technique [11] instead, which runs faster in many real-world problems of
large scale without sacrificing the accuracy of the solution. The basic idea of DSA is to use a hyperbolic tangent function to
transform digital values of the energy cost in SSA (see Fig. 11) into analog values. Designing a DSA-based mental-map-pre-
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Fig. 6. The experiment for an initial complete degree-four tree with 21 nodes.
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serving graph drawing algorithm remains an interesting future research. In fact, consolidating the five factors k1 –k5 (which
are of different scales) into a single hyperbolic function in the DSA framework is without doubt a challenge.

Note that a good measure of similarity between two graphs in terms of rotation, scaling and shift invariants is the Pro-
crustes statistic [4], which is defined as follows:
R2 ¼ 1� ðtrðXT YYT XÞ1=2Þ2=ðtrðXT XÞ � trðYT YÞÞ
where X;Y 2 Rn�2 denote the current and the next positions of nodes, respectively. If the statistic is minimized, it implies to
optimally dilate, scale, rotate, and reflect X to fit Y [4]. It can be shown that 0 6 R2

6 1 and if R2 = 0, X and Y can be perfectly
matched; if R2 = 1, they cannot be matched by any P 2 R2�2 at all.

Although the Procrustes statistic cannot be used in our objective function, for comparison we measure the Procrustes sta-
tistics of the graphs used in the above experiments. More specifically, the Procrustes statistics between Fig. 4(c)(i) and (d)(i),
between Fig. 6(c) and (d), between Fig. 8(c) and (d), and between Fig. 10(c) and (d) are 0.0866, 0.0692, 0.0288, and 0.0249,
respectively. Since all the values are very small (less than 0.1), it is fair to draw a conclusion that the similarity by the Pro-
crustes statistic is also preserved by our algorithm. As the output of our algorithm is produced after 10 stages, we plot the
Procrustes statistics between the initial and final drawings of each stage in Fig. 13. As it turns out, all the Procrustes statistic
values are small, suggesting that the similarity between each pair of adjacent stages is preserved.
5. Questionnaire analysis

In this section, we give a statistical analysis on two student-based surveys to evaluate the performance of our approach.
Note that the experimental methodology used in the surveys is similar to those found in [5,32,33,35].
5.1. Experiment design

We develop an online system for our questionnaire survey. Our first survey includes ten questions. Each question consists
of two phases:



1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1

2

3

4

5

6
78

9

10

11

12

13

14
15

16

17

18

19

20

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18
19

20

21

(a) Figure 5(c) without nodes 22 and 23. (b) Figure 5(d) without nodes 22 and 23.

(c) Figure 5(e) without nodes 22 and 23. (d) Figure 5(f) without nodes 22 and 23.

1

2 3

4

5

6
7

8

9

10

11

12

13

14

15

16
1718

19

20

21

Fig. 7. Drawings obtained from those in Fig. 6 by deleting nodes 22 and 23.

4264 C.-C. Lin et al. / Information Sciences 181 (2011) 4253–4272
1. During the first phase, the system displays a nice drawing of the original graph (see Fig. 4(b)(i)) and a drawing of the
modified graph (see Fig. 4(c)(i)) which is slightly modified from the original graph by arbitrarily adding or deleting at
most three nodes and at most six edges. Also, a node is identified which appears at the same position in both the
original and the modified graphs. In this phase, time is not recorded so the respondent can take whatever time he
or she needs to understand the modification between the two graph drawings. The respondent is also allowed to take
a break during this phase. The respondent clicks the ‘ok’ button to enter the second phase of answering a set of
questions.

2. During the second phase, the system outputs eight drawings: the original drawing, the modified drawing, three redrawn
drawings, as well as three recovered drawings. The three redrawn drawings are produced in the following ways: our algo-
rithm taking the modified drawing as the input Fig. 4(d)(i), the DH algorithm taking the modified drawing as the input
Fig. 4(e)(i), and the DH algorithm taking a random drawing of the modified graph as the input Fig. 4(f)(i). For convenience,
the DH algorithm using the modified drawing (resp., a random drawing of the modified graph) as the input is denoted by
DH_mdf (resp., DH_rand). Each redrawn drawing has a corresponding recovered drawing, in which the node or edge not in
the original graph is deleted, and the edge not in the modified graph but in the original graph is added. For instance,
Fig. 5(b)(i) is the recovered drawing of Fig. 4(d)(i). Note that the online system demonstrates the three redrawn drawings
(and their corresponding recovered drawings) from left to right randomly, so the respondent does not know which
redrawn drawing is produced by our algorithm.

Hypothesis 1. If the quality of the preservation of the mental map is measured in terms of the closeness of the drawing con-
tour and the relative positions of nodes between drawings of the original and the modified graphs, our algorithm outper-
forms the DH algorithm.

Based on the above hypothesis, each respondent is asked to choose (click) the best mental-map-preserving redrawn
drawing in his/her mind according to the following criteria:

� each redrawn drawing Fig. 14(c)–(e) is compared with the modified and the original drawings Fig. 14(a) and (b) to see if
their contours look similar;
� the recovered drawing of each redrawn drawing Fig. 14(g)–(i) is compared with the original drawing Fig. 14(a) to see if

the relative positions of nodes look similar (noticing that each node is labeled by a number, and the labeling is crucial).

Once the respondent makes the decision, the question is finished. Since time is recorded in this phase, respondents are
asked to finish their questions as soon as possible.
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Fig. 8. The experiment for an initial complete binary tree with 63 nodes.
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Aside from the ten questions mentioned above, the system contains three additional questions serving as a tutorial of our
survey. We explain and operate the three tutorial questions in advance, and then ask the respondents to practice the three
tutorial questions before answering the above ten questions.

After finishing all the ten questions, respondents are asked to input their comments to this system. Note that this is not
compulsive.

5.2. Source of questions

Before the survey began, five graduate students were recruited from the CS group in the EE Department of National Tai-
wan University in advance. We provided them with the five nice graph drawings shown in Figs. 4(b)(i)–(b)(iii), 6(b), and 8(b),
and asked them to slightly modify those drawings, producing 25 slightly modified drawings in total. Note that not every mod-
ified drawing is suitable for the survey. For example, if the modified graph has too many symmetries, then the redrawn
drawings produced by our and the DH algorithms would look very similar. Hence, 10 modified drawings from the 25 draw-
ings were chosen appropriately as the questions in our questionnaire survey. They are denoted by Q1–Q10, in which Q1 and
Q2, Q3 and Q4, Q5 and Q6, Q7 and Q8, Q9 and Q10 are modified from Figs. 4(b)(i)–(b)(iii), 6(b), and 8(b), respectively. In
addition, three additional drawings (which are modified drawings of Figs. 4(b)(i), 6(b) and 8(b)) were chosen from the
remaining 15 drawings to serve as the questions used in the tutorial of our survey.

5.3. Experimental process

We recruited 22 graduate students with basic knowledge of algorithms and data structures from either the CS group of
the EE department or the CSIE Department in National Taiwan University. They were gathered in a computer classroom and
each student was provided with a PC. To begin with, we explained to the students the purpose of our survey, as well as the
concept of preserving the mental map in graph drawing. Then, we explained and operated the three tutorial questions on our
online system, and then asked our students to practice those questions on the system. Once the tutorial session was com-
pleted, we asked those students to start the ten questions on the system formally. The entire procedure took about 50 min,
including the tutorial session.
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(a) Figure 7(c) without nodes 64 and 65. (b) Figure 7(d) without nodes 64 and 65.

(c) Figure 7(e) without nodes 64 and 65. (d) Figure 7(f) without nodes 64 and 65.
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Fig. 9. Drawings obtained from those in Fig. 8 by deleting nodes 64 and 65.

4266 C.-C. Lin et al. / Information Sciences 181 (2011) 4253–4272
5.4. Analysis

Since there are no outliers in the collected data, we do not exclude any data. The statistics of our questionnaire results are
given in Table 2. Fig. 15 displays the stack charts, each of which illustrates the percentage of an approach over a given ques-
tion. We observe from Table 2 that, on average, 82.27% of our respondents chose our redrawn drawing as the best mental-
map-preserving redrawn drawing in their minds. The average time spent on a question is 29.89 s.

There are statistical differences in performance among the choices of the three approaches (percentage: F = 156.88 >
F (2,27) = 3.35).2 Post-hoc tests3 between choice conditions result in the following conclusions:

� the percentage of choosing our redrawn drawing is greater than the percentage of choosing either DH_mdf or DH_rand
redrawn drawing;
� it is not obvious which of the percentages of choosing DH_mdf and DH_rand redrawn drawings is larger.

From Table 2 and Fig. 15, it is clear that our approach does not behave well with respect to Q8. The reason behind this is that
in Q8, the original graph is connected but the modified graph is disconnected. Our recovered drawing (in which some edges
are added) looks unsatisfactory because it has the largest number of edge crossings among all recovered drawings, though our
redrawn drawing performs well in terms of the preservation of the user’s mental map. Thus, 36.36% of students chose the
DH_mdf redrawn drawing, which looks nice although a bit weak in the preservation of the user’s mental map. It is interesting
to notice that although some students commented that they had a difficult time recognizing the user’s mental map in Q9 and
Q10, the percentages of choosing our approach for Q9 and Q10 remain high, according to our statistical analysis.
5.5. More complicated questions

In this subsection, we give a statistical analysis on another student-based survey, in which we ask respondents more com-
plicated questions on three 100-node graphs taken from the Rome Graph data set. Unless stated otherwise, we continue
2 Here we apply the standard two-tailed analysis, which is based on the critical values of the F distribution, under a = 0.05.
3 Like [33], the post hoc test used here is the Tukey test, under a = 0.05.
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Fig. 10. The experiment for an initial graph with 100 nodes.

Fig. 11. The plot of the energy costs versus the number of trials by applying the DH algorithm to transforming Fig. 8(c) into (e).
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applying the setting used in the previous subsections. In this survey, there were 14 respondents (graduate students), and
similarly we gave the nice drawing produced by the DH algorithm, modified drawing, our drawing, DH_mdf drawing, and
DH_rand drawing for each graph (drawings (b)–(f) in Fig. 10). For each of the three graphs extracted from the Rome Graph
data set, we asked two more complicated questions based upon path tracing, i.e., there are six questions in total, where Q1’
and Q2’ denote the questions on the upper and lower drawing boundaries of the first graph, respectively; Q3’ and Q4’ (resp.,
Q5’ and Q6’) denote similar questions for the second (resp., third) graph. If the node labeled by i is denoted by vi, we list the
questions on the first graph (i.e., the graph in Fig. 10) as follows:

Q1’: In Fig. 10, if we focus on the two paths v65v87v57v85v53 and v54v50v89v49v93v97v48 located near the top boundary of
drawing (b), which of the three drawings (d)(e)(f) looks similar to (b)?

Q2’: In Fig. 10, if we focus on the path v88v64v72 located near the bottom boundary of drawing (b), which of the three draw-
ings (d)(e)(f) looks similar to (b)?



(a) (b)

(c) (d)

Fig. 12. The plots of the costs versus the number of trials by applying our algorithm to transforming Fig. 8(c) into Fig. 8(d).
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Note that the above questions are designed according to Hypothesis 1.
The statistics of our questionnaire results are given in Table 3, and the respective stack charts are depicted in Fig. 16. From

Table 3, on average, 86.90% of the respondents chose our redrawn drawing as the best mental-map-preserving redrawn
drawing in their minds. The average time spent on a question is 17.24 s. We observe from Table 3 that when the percentage
of choosing our drawing is lower (i.e., for Q1’, Q2’), more time is spent because the DH_mdf drawings in those questions look
also similar to the original drawing along those boundary paths (see Fig. 10(b) and (e)).

There are statistical differences in performance among the choices of the three approaches (F = 68.18 > F (1,10) = 4.96;
P = 0.000). Post-hoc tests between choice conditions result in the following conclusions:

� the percentage of choosing our redrawn drawing is greater than the percentage of choosing either DH_mdf or DH_rand
redrawn drawing;
� the percentage of choosing the DH_mdf redrawn drawing is greater than the percentage of choosing the DH_rand

redrawn drawing.
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Fig. 14. The 15 questions used in our first student-based user study.
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One may notice that in each question, no respondents chose the DH_rand drawings (see Table 3). This reflects that as a
graph contains more nodes (like the 100-node graphs used in this experiment), respondents are more certain to reject the
possibility of the similarity between an arbitrary drawing and the original drawing.



Table 2
Statistics of our first questionnaire results.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 average

our 86.36% 77.27% 95.45% 72.73% 95.45% 90.91% 72.73% 54.55% 81.82% 95.45% 82.27%
DH_mdf 13.64% 18.18% 4.55% 4.55% 4.55% 9.09% 13.64% 36.36% 18.18% 0.00% 12.27%
DH_rand 0.00% 4.55% 0.00% 22.73% 0.00% 0.00% 13.64% 9.09% 0.00% 4.55% 5.45%
time (sec.) 34.02 28.13 23.96 28.20 14.16 29.30 44.11 39.68 35.45 21.86 29.89
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Fig. 15. The first student-based survey, in which the stack column chart illustrates the percentage of choosing each approach over each question.

Table 3
Statistics of our second questionnaire results.

Q1’ Q2’ Q3’ Q4’ Q5’ Q6’ average

our 71.43% 64.29% 100.00% 100.00% 92.86% 92.86% 86.90%
DH_mdf 28.57% 35.71% 0.00% 0.00% 7.14% 7.14% 13.10%
DH_rand 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
time (sec.) 34.23 24.80 9.35 9.02 12.68 13.37 17.24
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Fig. 16. The second student-based survey.
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It is observed from Tables 2 and 3 that the average response time of the second survey (for complicated graphs) is shorter
than that of the first survey by about 12 s, suggesting that tracing given boundary paths is in general helpful in recognizing
the preservation of the user’s mental map.
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6. Conclusion and future work

In this paper, we have presented a simulated-annealing-based graph drawing algorithm, taking the mental map preser-
vation into account. Our algorithm helps the user better preserve their mental maps in terms of preserving the drawing con-
tours of graphs and the relative positions of nodes when a slight modification is made to the original graph. By using our
algorithm, the user can reduce the time required to relearn the modified drawing. In addition, since the mental map pres-
ervation may be in conflict with the optimization of some aesthetic criteria, our implementation allows the user to adjust the
weights of different criteria according to their requirements. Due to the limitations inherited from the simulated annealing
scheme, the applicability of our algorithm is limited to graphs of small size. Hence, it would be of interest and importance to
seek a more efficient mental-map preserving graph drawing algorithm capable of processing graphs of interest in the real
world.

In addition to the factors considered in this paper, graph features such as color, node size, shape or line width may also
play a key role in issues related to the preservation of the mental map. See [14] and [34] for the work of preserving the men-
tal map from a psychological viewpoint. Therefore, a challenging line of future work is to take such additional features of
graphs into account in the design of mental-map-preserving graph drawing algorithms. It is also of interest to incorporate
the concept of mental map preservation into drawing dynamic graphs, which involves the evolution of graphs subject to a
sequence of basic graph operations.
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