
Equivalence Checking of Integer Multipliers

Jiunn-Chern Chen Yirng-An Chen
gis87519@cis.nctu.edu.tw yachen@cis.nctu.edu.tw

Department of Computer & Information Science
National Chiao Tung University
Hsinchu, Taiwan 300, R. O. C.

Abstract— In this paper, we address on equivalence checking
of integer multipliers, especially for the multipliers without struc-
ture similarity. Our approach is based on Hamaguchi’s backward
substitution method with the following improvements: (1) auto-
matic identification of components to form proper cut points and
thus dramatically improve the backward substitution process, (2)
a layered-backward substitution algorithm to reduce the number
of substitutions, and (3) Multiplicative Power Hybrid Decision Di-
agrams(*PHDDs) as our word-level representation rather than
*BMD in Hamaguchi’s approach. Experimental results show that
our approach can efficiently check the equivalence of two integer
multipliers. To verify the equivalence of a

���������
array multiplier

versus a
���������

Wallace tree multiplier, our approach takes about
57 CPU seconds using 11 Mbytes, while Stanion’s approach took
21027 seconds using 130 MBytes. We also show that the complex-
ity of our approach is upper bounded by �	��

��� , where
 is the
word size, but our experimental results show that the complexity
of our approach grows cubically �	��

��� .

I. I NTRODUCTION

The practical motivation for study in this area is the high and
increasing cost of correcting design errors in VLSI technolo-
gies. Design Errors or Bugs cost money, especially the hard-
to-find bugs that surface late in the design cycle, that delay a
product launch, or that require a massive product recall. For
example, the Intel Pentium division bug [7] in 1994 demon-
strated how important it is to catch errors early in the design
cycle. This error cost Intel $475 million to recall the chips in
the field. This bug was not covered by the one trillion test vec-
tors used for this processor [6]. On May 10, 2000, a bug in Intel
820 chip set is reported and cost the company $200 millions
of dollars to recall the chips [11]. These bugs demonstrated
the inadequacy of simulation or emulation approaches to fully
validate circuits, and the importance as well as the emergency
need of formal verification approach to verify circuits.

Multipliers are widely used in current designs such as pro-
cessors, digital signal processors (DSPs), graphic chip sets, etc.
A bug in a chip with multiplier designs will cause the chips to
be recall and thus cost a lot of money, similar to Intel’s cases.
Recently, designers are more careful to validate their new and�

This work was supported in part by Synopsys Inc. and the National Sci-
ence Council, R. O.C., under contract no. NSC89-2215-E009-062.

improved designs by using equivalence checking tools to com-
pare them against their reference designs. Many CAD vendors
offer equivalence checking tools for design verification. For
example, the popular equivalence checking tools are Formality
from Synopsys, Tuxedo-LEC from Verplex and Design Verify
from Avati. These tools performs logic equivalence checking
of two circuits based the mixed approaches of functional and
structural methods. In general, theses tools are very successful,
even on multipliers, as long as the implementation circuits and
the reference circuits have large structure similarity. Unfortu-
nately, multipliers with different architectures do not provide
enough structure similarity to allow verification using these
tools. Based on our knowledge about these tools, they can not
handle large complex arithmetic circuits with very little struc-
tural similarity such as multipliers with different design archi-
tecture. Thus, there is an emergence need to have an approach
to check the equivalence of two multipliers.

Most of previous researches focused on verifying the cor-
rectness of integer multipliers based on Bit-level representa-
tions such as Binary Decision Diagrams (BDDs) [2] or word-
level representations such as Multiplicative Binary Moment
Diagrams (*BMDs) [4], etc. Bryant [3] has shown that the size
of BDDs for multiplication grows exponentially with respect to
the number of inputs regarding to any variable ordering. Yang
et. al reported that the number of BDD nodes to represent inte-
ger multiplication grows exponential at a factor of about 2.87
per bit of word size [13]. For a 16-bit multiplier, building the
BDDs for the output bits requires about 3.8GB memory on a
64-bit machine (i.e. 1.9GB on a 32-bit machine). Jainet al [9]
have used Indexed Binary Decision Diagrams (IBDDs) to ver-
ify several multiplier circuits. They were able to verify C6288
(a 16-bit multiplier) in 22 minutes of CPU time. They were
also able to verify a multiplier using Booth encoding, but this
required almost 4 hours of CPU time and generated over 1 mil-
lion vertices in the graphs. Stanion [12] has proposed a implicit
verification method for verifying structurally dissimilar arith-
metic circuits. Rather than trying to prove that two outputs are
equivalent, they tried to find an implication of the form�����
where the consequent� states that the outputs are equivalent.
The antecedent� is used to speed up the process of verify-
ing � . The antecedent� will be verified recursively using the
same manner. His experimental results show two 32-bit array
and Wallace multipliers can be verified in 21027 seconds using

0-7803-6634-4/2001/$10.00 © 2001 IEEE

169

130MBytes.
Thedrawbacksof thebit-level approachesaretheBDD ex-

plosion problemand the needof complex expectedBoolean
functions,which aredifficult to be given. To overcomethese
drawbacks,MultiplicativeBinary MomentDiagrams(*BMD-
s) [4] areproposedto provide a compactrepresentationfor
theseinteger encodingsand operations. A *BMD-basedhi-
erarchicalapproachwasalsoproposedto verify integer mul-
tipliers. Usingsub-specificationsfor subcomponents,this ap-
proachcanhandleextremelylargemultiplierswith reasonable
computationalrequirements.However, it requiresusersto par-
tition thecircuits into subcomponents.To overcomethis con-
straint,Hamaguchiet al. [8] proposeda backwardsubstitution
methodto construct*BMDs directly from circuit description-
s without any high level information. The main ideaof their
approachis to construct*BMDs startingfrom theprimaryout-
putswith assignedvariablesandthenbackwardlysubstitutethe
variablein the*BMDs with thefunctionobtainedfrom thecir-
cuits for eachlogic gateuntil the*BMDs only dependon the
primary input variables.Basedon their experimentalresults,
thecomplexity of their approachgrows ��������� with respectto
theword size � andit takesabout10263secondsto complete
theconstructionof *BMDs for a 64 64multiplier.

In this paper, we addresson equivalencecheckingof inte-
germultipliers,especiallyfor themultiplierswithout structure
similarity. Our approachis basedon Hamaguchi’s backward
substitutionmethod[8] with thefollowing improvements:(1)
automatic identification of componentsto form proper cut
points and thus dramatically improve the backward substi-
tution process,(2) a layered-backward substitutionalgorith-
m to reducethe numberof substitutions,and(3) Multiplica-
tive Power Hybrid Decision Diagrams(*PHDDs)[5] as our
word-level representationratherthan*BMD in Hamaguchi’s
approach.

Experimentalresultsshow thatour approachcanefficiently
checktheequivalenceof two integermultipliers.To verify the
equivalenceof a !#"$ %!#" arraymultiplier versusa !#"$ %!&" Wal-
lacetreemultiplier, ourapproachtakesabout57 CPUseconds
using 11 Mbytes,while Stanion’s approachtook 21027sec-
ondsusing130MBytes. We alsoshow that thecomplexity of
ourapproachis upperboundedby ����� � � , where� is theword
size,but our experimentalresultsshow that thecomplexity of
our approachgrowscubically ���'�)(�� .

I I . INTEGER MULTIPLIER ARCHITECTURE

The integer multiplier is mainly divided into two portion-
s: partial productgenerationto generatethe partial product
vectorsfor two operands� and * andsumof vectorsto add
up the partial productvectorasshown in Figure1. Usually,
the partial productsare generatedby Bit-Pair or Booth Re-
codingAlgorithm [1]. Given two operands� and * , where� is the multiplier word in the form: �,+.-0/01)23-0/01�4657585 -&9 ,
and * is the multiplicandin the form: *:+<;3/01)23;3/01�4657585=;>9 ,
Bit-Pair approachgenerates�?� -bit vectorsasfollows: @ACB +D - BFE ; /01�2�G - BHE ; /01I4JG 5K5L5 G - BFE ; 9�MNGPORQTSUQ �WVYX . Thesecond
partialproductgenerationapproachis theBoothRecodingAl-

gorithm[1]. Basedon theradixnumber, this techniquegroups
several bits in the operand� at a time togetherwith another
operand* to generateonepartialproductvector. To generate
all partialproductvectors,theoperand� will bepartitionedin-
to severalgroupsandadjacentgroupsshareonecommonbit.

Sum of vectors

Z Product

Partial Product

Generation

[A

\
B

.
]

.
]

.
]
Fig. 1. Multiplier Architecture.

After the partial product vectorsare generated,they are
addedtogetherto form thetotal productbasedon thearrange-
mentof the adders. Therearemany variationapproachesto
perform the summationof partial productvectors. In these
approaches,therearecomponentcomponents,1-bit full adder
andhalf adder, to beusedin thispartof circuits.Two common
approachesarearraymultiplier andWallacetree.

I I I . * PHDD PRELIMINARY

MultiplicativePowerHybrid DecisionDiagrams(*PHDDs)
[5] is proposedto representfunctionsthatmapBooleanvectors
to integeror floatingpoint values.*PHDDs usethreedecom-
positionsasexpressedin thefollowing Equation1:

^�_ G>`�a +
bc dfe�g E �h�h�hXiVkj�� E ` lUm j E ` lJ�K�on�pC-&���)q��r�e g E � ` lUm j E `�s l#�K�'t%q6u SNvwSyx0zU{ - x&S q6�e�g E � ` l m �|XiV}jI� E ` s l ���o~ zL� - vwSNx&zU{ - x#S q6�

where � _ G�`�� denotese�g ` and ` s l + ` l V ` l is the
partial derivative of ` with respectto j . In general,e canbe
any integer. To verify arithmeticcircuit, e is " , becausethe
basevalueof mostarithmeticcircuitsis 2.

x
� 3

�

x
� 2

x
� 1

x
� 0

0

�

1

1

2

� 3

� y
� 2

y
� 1

y
� 0

x
� 2

x
� 1

x
� 0
 1

2

�

1

2

�

0

�

1

(a)

�

(b)

�

(c)

�

(d)

�

x
� 2

�

x
� 1

x
� 0

x
� 1

x
� 0

0

�

1

1

-1

x
� 0

1

1

x
� 2

x
� 1

x
� 0

x
� 1

x
� 0

0

�

1
 -1

1

Fig. 2. *PHDD representationsof four functions:(a) � , (b) ���	� , (c)�|�J���8�J�L�o�0�3�'�6�3� and(d) �|���>�>� �7�J�L�'�0�>�o�6�3� .
*PHDDs can representinteger functions efficiently. For

example, Figure 2.(a) and (b) show � (B7� 9 " B j B and ¢¡£
= � 4B7� 9 " B j B � 4B8� 9 " B'¤ B , respectively. Edgeweight S in

*PHDDsrepresents" B andunlabelededgeshaveweight0(" 9).
The edgeweightscombinemultiplicatively. The dash(solid)
line representsthe0(1)-branch.*PHDDs grows linearly with
theword sizefor thedifferentencodingfunctionsandinteger
multiplication, andcanalsorepresentBooleanfunctionseffi-
ciently. Figure2.(c)and(d) representsthesumandcarryfunc-
tionsof 1-bit full adderwith inputs j 4 , j 2 and j 9 , respectively.

170

In [5], experimentalresultsshowedthat*PHDD is at leastfive
timesfasterthan*BMDs to verify integer multipliers. Read-
ersrefer to) [5] for moredetailsof *PHDD, dueto thespace
limitation.

IV. OUR VERIFICATION APPROACH

Let usformally definetheproblem:Giventwo integermul-
tipliers with differentarchitecturesin gate-level netlistformat,
thetaskis to checkwhetherthesetwo circuitsareequivalent.

Circuit 2

Circuit 1

ENC

¥

ENC

= ?

F
2

X

F

¦

1
C
om

p. 1

C
om

p. n

. . .

C
om

p. 2

C
om

p'. 1

C
om

p'. 2

C
om

p'. m

bit-level

§
word-level
¨

. . .

Fig. 3. A sketchof ourapproach.

Figure3 illustratesschematicallyour approachto verify t-
wo multiplier circuits whetherthey areequivalent. First, for
eachcircuit, ancomponentidentificationalgorithmis perform
to automaticallyfind expectedcomponentssuchasBooth re-
coding,1-bit adder, etc.Then,thesecomponentswill besorted
to form severalcut linesaccordingto their connectivity. Thus,
thecircuit is partitionedinto severalportionsby thesecut lines.
After that,eachsignalin thesecut lines,includingtheprimary
outputs,areassignedto a BDD variable.Basedon theencod-
ing, *PHDDs is constructedto representthe word-level func-
tion © of primaryoutputsin termsof outputvariables.Then,
Layered-backwardsubstitutionalgorithmis appliedon © re-
cursively from the outputstoward the inputs,to constructthe
*PHDDs in termof inputvariablesonly. Theaboveprocedure
is appliedtwice,oneon implementationcircuit andanotheron
the referencecircuits, to get two *PHDDs. Thus, the equiv-
alenceof two circuits canbe checked by comparingwhether
two *PHDDsareequalor not. If not,acounterexampleis gen-
eratedto point out thedifferenceof two circuits.

A. ComponentIdentification

After readingand flattening the circuits, the first step is
to performcomponentidentificationandmark the outputsof
thesecomponentascut points. Basedon our observation,the
propercut pointsarethe outputof partial productgeneration
andtheoutputsof 1-bit adders.Thus,thecomponentswewant
to identify are the partial productgenerationand1-bit adder
cellsin thesum-of-vectorspartof integermultipliers.

In orderto identify a componentwhetherit implementsthe
expectedfunctions,we incorporatea BDD symbolicsimula-
tor to simulatecircuit andthencomparethe BDDs in the cir-

cuit with the expectedfunctions to identify the components
we want. First, BDD variablesareassignedfor specificinput-
s, which arethe input candidatesof the expectedcomponent.
Next, symbolicsimulationis performedthroughthecircuit us-
ing theseBDD variables.For expectedfunctions,their BDDs
arealsobuilt on the sameBDD variables. After both BDDs
arebuilt, theexpectedBDDs areusedto checkwhetherthere
existssomesignalswhoseBDDsarethesameastheexpected.
If so, we find the expectedcomponentandthesesignalswill
beidentifiedandmarkedascut points.

Algorithm: Comp Ident(ª)
Input: ª —A gate-level combinationalcircuit;
Output: «y¬0­ —identifiedcutpoints;
1 ®°¯²±´³¶µ8·7¬¶µ7¸�«�¹6
»º ; ¼½¯¾±¿³¶µ8·y¸À¬¶µ7¸�«�¹�·NÁKÂ ;

/* identify partialproducts(¬¶­) */
2 ¬¶­Ã¯Ä¼ÅÁLÁ�·wÆ0ÇÉÈ (®UÊw¼�Êwª);
3 if !(¬¶­) ¬0­Ë¯²¼UÁKÁK·NÆ0Ç � (®UÊ|¼%Êwª);
4 if !(¬¶­) ¬0­Ë¯²¼U¸�·wÌ$¹6¸�Â (®UÊw¼%Êwª);
5 if !(¬¶­) return¬¶­ ;
6 «y¬¶­Ã¯�¬0­ ;
7 while addersexist /* identify full or half adders*/
8 if (®Íº�º6Î3Â$¯¾«>Æ0Î3«>Ï Ð$³¶µÑµÑ®Íº�º6Î�Â (¬¶­	Êoª)) then
9 else(®Íº�º6Î3Â$¯¾«>Æ0Î3«>Ï Ò�¹Jµ�Ó0®Íº�º6Î3Â (¬¶­	Ê'ª));
10 if (®Íº�º6Î3Â) then
11 ÔU¯ inputsof ®Íº�º6Î�Â ;
13 �Ë¯ outputsof ®Íº�º6Î3Â ;
14 ¬¶­Õ¯�¬¶­°ÖØ×�Ô#ÙÛÚÜ×��UÙ ;
15 «y¬¶­Õ¯¾«y¬¶­}Ú�×K�UÙ ;
16 Sorting «y¬0­ by levels;
17 return «o¬¶­
Fig. 4. Our componentidentificationalgorithm

Figure4 show our algorithmto identify thecomponentswe
want. First, we identify the componentsof partial produc-
t generation,accordingto the partial productrules. Current-
ly, we implementedthree algorithms, *Ýq�q v pCÞàß , *´q�q v p
Þ%"
and * SNv t%- SNá , to identify threetypesof partial productgen-
erationcircuits, Booth recodingbasedon Radix-4,Booth re-
coding basedon Radix-2 and Bit-Pair, respectively. Proce-
dure *Ýq�q v pCÞâß is calledto detectwhetherthecircuit useBooth
Radix-4recodingmethodto generatepartialproductsandre-
turns the set of cut points, if detected. If it is not based
on BoothRadix-4recodingmethod,procedure*´q�q v p
Þ%" and* SNv t%- SNá are applied in the order. If thesethreealgorithms
cannot detectthepartialproductgenerations,theemptysetis
returnedandtheverificationprocesswill beaborted.

After the partial productsare identified,the next taskis to
identify 1-bit full andhalf adders,shown in lines 7 to 15 in
Figure4. It first try to identify 1-bit full adder, and thentry
to identify 1-bit half adder. If both arenot found, it exits the
while loop; Otherwise,it deletesthe inputsof the adderfrom
the cut point set AIã , andaddsthe outputsto the setsAIã ande AIã . After the exit of the while loop, set e AIã containsall of
the cut pointswe want. Then, e A�ã will be sorted,according
to their levels from theprimaryoutputsto theprimary inputs.
Finally, theprocedurereturnsthesortedcutpoint set e AIã .

171

B. Layered-BackwardSubstitutionApproach

After thepropercut linesarefound,we constructtheover-
all function of the circuit by the layered-backward substi-
tution methodusing *PHDDs as our word-level representa-
tion. To performbackwardsubstitutionmethodfor construct-
ing *PHDDsof integermultipliers,variablesä�å G ä�å 1)2�G 5K5K5 G ä 9
areassignedto theoutputsof integermultiplier. Basedon the
givenencoding(e.g.,unsignedencoding),*PHDDs for word-
level function © (� åB7� 9 " B àä B) is constructedin termsof these
variables.

Algorithm: ær¼ ç�³0è3é�· (æ , Ì , Ð)
Input: æ —Numberof levels;Ì –Setsof cutpoints;Ð –*PHDDsin termsof outputvariables.
Output: Ç$ÎKé>³¶µ8· –*PHDDsof thecircuit in termsof inputvariables;
1 Ç$ÎKé>³¶µ8·r¯²Ð ;
2 for (¸ = æêÖ?ë ; ¸rìÉíïî ; ¸ ++)
3 ð � ¯ setof cutpointsat level ¸»ñ}ë ;
4 ð � ¯ setof cutpointsat level ¸ ;
5 assignvariablesto eachcutpoint in ð � ;
6 Simulate(ð � , ð �);
7 for eachcutpoint ¬ in ð �
8 getvariable Ó of ¬ ;
9 gettheevaluatedfunction ò of ¬ from thesimulation;
10 Ç$ÎKé>³¶µ8·)¯Äç�³0è3é�·N¸�·y³&·wÎ���Ç$ÎKé>³¶µ8·PÊ|Ó&ÊNò#� ;
11 return Ç$ÎKé>³¶µ8· ;
Fig. 5. Thealgorithmof Layered-BackwardSubstitution.

Then,algorithm óÍ* nÛô�;Ku v , shown in Figure5, is applied
to perform backward substitutionon word-level function © .
Assumethat thecircuitshave ó +1 levelsof cut points,where
level O is theprimary inputs,level X is thepartialproduction-
s and level ó is the primary outputs. The algorithm repeats
the following processó timesstartingfrom level ó -1. First,
it getsthe setsof cut points, �$2 and �õ4 , at level S and SFm X ,
respectively. BDD variablesareassignedto the cut points in�i2 . After that,a symbolicsimulatoris calledto simulatethe
circuits with BDD variablesin �i2 as inputsand build BDD
functionsfor thecut pointsin �É4 . Now, every cut point in �õ4
is associatedto avariablè andaBooleanfunction � , whichis
a functionof BDD variablesin � 2 . Since Þ z uLô�ö v is depended
on variable ` , variable ` in Þ z uLôIö v is substitutedby Boolean
function � , for everycutpoint in � 4 . After repeatingtheabove
processó times,function Þ z uLôIö v dependson input variables
only. Observethatonly two setsof variablesareneededsimul-
tanouslyin thesubstitutionprocess.Thus,BDDsvariablescan
bereused.

V. COMPLEXITY OF OUR APPROACH

To analyzethe complexity of our approach,we begin with
the complexity of �	q�÷ A ø&ù z � v algorithmandthenthe com-
plexity of layeredbackwardsubstitutionalgorithm.
Theorem 4.1 The complexity of �	q�÷ A ø&ù z � v algorithm is
boundedby �����)(�� , where� is theword size.
Proof: Thealgorithmis composedof partialproductandadder
cell identification.For thepartialproductidentification,there
are at most ����� 4 � products(i.e., using BitPair approach)to

be identified. Theidentificationprocessof eachproducttakes
contanttime. Thus,thecomplexity of partialproductidentifi-
cationis boundedby ����� 4 � .

For theaddercell identification,therewill be ����� 4 � adders
to add ����� 4 � partialproductsinto thefinal result. Theidenti-
ficationprocessof anaddercell takesconstanttime. Thus,the
complexity of addercell identificationis boundedby ����� 4 � .
Sincethereare ����� 4 � cut points, sorting them accordingto
their levelsareboundedby ���'�)(�� . Therefore,thecomplexity
of �	q�÷ A ø#ù z � v algorithmis boundedby �����)(�� .

To representencodingfunctions,*PHDD is aspecificstruc-
ture,calledSum Of weighted Variables (SOV) [10]. For exam-
ple, *PHDD for unsignedencodingfunction ` + � /01)2B7� 9 - B " B , shown in Figure2.(a)with � =4, is a SOV-structure.By ex-
tendingtheLemma4.1and4.2in [10] for *BMDs, weanalyze
thecostsof constructingthe*PHDD for theadder-partof the
multiplier. First, we analyzethesubstitutioncostsfor a single
full adderto gettheoverall costs.
Lemma 4.1 Let © be a *PHDD andlet denotesthe setof
variableof © . Let j B G j»ú be two variablesin , represent-
ing the sum- and carry-outputof the samefull adder. The
inputs to the full adderare representedby jIû G j
ü G j åþýÿ .
Independentof the orderon the variablesetsof the *PHDDs
involved in the substitutionprocess,it holds that substitutingj B G j ú in © by the*PHDDsfor thefunctionsuLôI÷}�'jIû G j
ü G j å � ,e - á�á ¤ �'jIû G j
ü G j å � generatesa *PHDD ©�� with variableset�� <V � j B G j ú�� ��� � j�û G jCü G j å�� and:

1. ©�� is in SOV.

2. Theterminalvalueof thehigh-successorsof thenodesforjIû G jCü G j å in ©�� is thesameasthatfor thehigh-successor
of thenodefor j B in © .

Proof: For thesum-andcarry-outputbasedon functionalar-
gument,we getthefollowing functions:

uLôC÷ ��j û0G j ü|G jIå%�¢+ j û	� j ü
� jCå+ j ûÅm j üCm jCå�V "6j û j ü V "6j û jIåVU"�jCü�j å m ß#jIû�jCü�j åe - á�á ¤ ��j�û G jCü G j å �¢+ ��j�û	� j
üo���}�'jIû
� j å ���}��jCü�� j å �+ jIû6j
ü m jIû�j å m j
ü�j å V°"�jIû�j
ü�j å
by expressingthe booleanoperations� and � , � by integer
addition,subtractionandmultiplication,i.e., j � ¤ +fj m ¤ V"�j ¤ , j�� ¤ +fj ¤ , j�� ¤ +Yj m ¤ V}j ¤ .

Assumej B and j»ú variableshave weights " g and " g�� 2 , re-
spectively. Thesubstitutionof j B G j¶ú in ` by uLôI÷}�'j û0G j ü|G jCå	� ,e - á�á ¤ �'j û
G j ühG jCå	� yieldsthefollowing function ©�� .

© � + 5K5L5 m "Jg E uLôI÷}�'jIû G j
ü G j å �m " g�� 2 E e - á�á ¤ ��j�û G j
ü G j å � m 5L5K5+ 5K5L5 m "Jg E j�û m "Jg E jCü m "Jg E j å m 5K5L5
ascaneasilybeverified.SincejIû G j
ü G j å ýÿ andtheweight-
edvariablesj B G j¶ú appearonly oncein © , therestof thevari-
ablesin © arenot affected.Thereforethe*PHDD of ©�� must

172

be in SOV again. Furthermoreall threehigh-edgesof the n-
odesfor jIû G jCü G j å in ©�� point to an edgeweight nodewith
value

_
.

With Lemma4.1 we canbe surethe SOV-structureof the
*PHDD is maintained,if we substitutethe variablescorre-
spondingto bothoutputsof a particularfull adderdirectlyone
after another. Furthermore,at eachpoint of the substitution
process,the sizeof *PHDD is increasedby oneafter having
processedthenext full adder.
Lemma 4.2 Let © be a *PHDD in SOV with size � ©�� . Let G j B G j¶ú G j û¶G j üwG jCå , uLôC÷ ��j û0G j ü|G jIå	� and e - á�á ¤ ��j û»G j ü|G jCå	�
be definedas in Lemma 4.1. Substituting j B G j»ú in © byuLôC÷ ��j û0G j ü|G jIåâ� and e - á�á ¤ ��j û¶G j ü|G jIåâ� is boundedby ����� ©�� �
with respectto time,independentof thevariableorderor order
of substitutions.
Proof: We denote the *PHDDs for uLôC÷ ��j û0G j ü|G jIåâ� ande - á�á ¤ �'j û
G j ühG jCå	� by n and � . For consideringfirst thesub-
stitutionof j B by n , thesubstitutionprocesscanvisualizedin
Figure6. The substitutealgorithmcalls itself recursively un-
til it reachesthe nodein © labeledwith j B . Obviously, the
numberof recursive calls is boundedby ����� ©�� � . At thenode
labeledwith j B , the operation© ü�� g�� l���� m n E © � B"! � � l��#� hasto
be carriedout, where © ü$� g�� l���� G © � B"! � � l��#� denotethe *PHDDs
to which the low- andhigh-edgeof node j B point. Since © is
in SOV, © � B"! � � l��#� is a terminalnodeandthecall to multiplica-
tion operationendsimmediately. Since© ü$� g�� l � � is in SOV, too,
and n is of constantsize,the additionis boundedby ����� ©�� � .
The*PHDD after this substitutioncanbeseenin Figure7 for
a variableorder j û � 5K5K5
�Ãj ü � 5K5L5»�ÃjIå .

w
%

1
0

&

x
' i

x
' j

(

w+1
%

0

)

1
 -1

1

0

)

1

1

-1

1

1

Fig. 6. Representationof substituting��* by + and �-, by . .

For thesubstitutionof j ú by � , analogousargumentshold.
The*PHDD afterthissubstitutioncanbeseenin Figure7.bfor
a variableorder jIû � 5K5K5��YjCüÍ� 5K5L5��Yj å . Therefore,since
the resulting*PHDD is of size � ©�� m X accordingto Lemma
4.1, we get a time boundof ����� ©�� � for the substitutionof j B

by n and j ú by � and �� <V � j B G j ú�� ��� � j�û G jCü G j å�� .

w

0

x
/ k

x
/ l
 x
/ l

x
/ m
 x
/ m

1

w+1

x
/ m

1

w

-1

w+1

w

(a)
0

0

x
1 k

x
1 l

x
1 m

1

2

w
3

w
3

w
3

(b)

Fig. 7. (a) *PHDD aftersubstitutionof variable ��* only. (b) *PHDD after
substitutionof variable��* and �-, .
Theorem4.2Constructingthe*PHDD for theadder-partusing
substitutionis boundedby ��������� .
Proof: For the proof we first count the number of adder
components. Dependingon the realization,the exact num-
berof theseelementsdiffers. Asymptoticallythereare ÷ 2 +����� 4 � addersforming theadder-partof any multiplier. There-
fore the numberof execution stepshas an upper bound of� å	4 1�2B7� 9 ��� ©H9�� mfS ��+ ���'����� , where � ©H9��Û+<���'�r� is the size
of theinitial *PHDD.

We analyzedthe complexity of layered-backwardsubstitu-
tion for the part of the multiplier circuit that addsthe partial
productsto obtain the result of the multiplication above. In
the sequencewe analyzethe costsof substitutingthe partial
productsinto the *PHDD. Our startingpoint is the *PHDD
constructedup to the outputsof the AND gates. It hassize÷ � +f���'� 4 � , sincethereare � 4 partialproductbits.
Theorem 4.3 Let © be the *PHDD constructedfor the adder
part. Substitutionof the variablesof © by the *PHDDs for
partial products- BÉE ;Pú is boundedby ��������� with respectto
time with componentsortingfor theAND gates.
Proof: Sincethe numberof substitutionsfor partial products
is boundedby ����� 4 � andthesizeof the*PHDD © aftersub-
stitutingthepartof summinguppartialproductsis ���'� 4 � , we

getanoverall timeboundof � å65B8� 2 ����� 4 �Í+f���'����� .
CombiningTheorem4.1,4.2 and4.3,we concludethat the

complexity of our approachis boundedby ��������� .
VI . EXPERIMENTAL RESULTS

We have implementedour approachin C usingCUDD and
*PHDD packages. To check the equivalenceof two multi-
pliers, both circuits passsamepathfrom parsingandflatten-
ing procedureto layered-backwardsubstitutionprocedureand
thencompareagainsteachother. If they areequivalent,thenit

173

reportthatimplementationcircuit is correct;Otherwiseit gen-
eratescounterexamplesfor modifying thedifferencesbetween
them.

Mult A Mult B Mult C
Bits CPU MEM CPU MEM CPU MEM

4 0.1 6.2 0.1 6.1 0.2 7.7
8 0.6 6.9 0.6 6.9 0.5 7.9

16 4.6 8.2 3.0 8.5 2.1 8.3
32 35.4 9.1 21.5 9.9 10.4 9.5
64 284.1 12.2 213.5 16.3 89.5 14.6

order � 4-7 8 � 297 2 �)(7 2 � 297 (� 4-7 : � 2;7 4
TABLE I RESULTS OF THREE DIFFERENT TYPES OF MULTIPLIERS.

We first measurethe efficiency of our backward *PHDD
constructionfor differentintegermultipliers.Our experiments
areperformedon SunUltraSparc60(450MHz).TableI shows
that the CPU time (second)and usedmemory(MBytes) for
the constructionof *PHDDs of multiplier circuits sizedfrom
4-bit to 64-bit usingdifferentarchitectures.Mult A is based
on bit-pair andarraymultiplier. Mult B is basedon Bit-Pair
andWallace-treemultiplier. Mult C is basedon Booth-Radix4
andWallace-treeMultiplier. Note that its CPUtime grows n-
earcubicallywith thewordsizeandits memorygrowslinearly
with the word size. Comparedwith Hamaguchi’s backward
substitution[8], our approachtook 284 secondsfor a 64-bit
multiplier, while theirapproachtook10263seconds.Notethat
theCPUtime of their approachis boundedby ��������� andours
is boundedby ���'�)(�� .

Bits CUP(Sec) MEM(MB)

4 0.2 7.7
8 1.1 8.1
16 7.5 8.6
32 56.7 10.7
64 526.3 19.5

TABLE II EQUIVALENCE CHECKING OF TWO MULTIPLIERS

Our systemis appliedto verify theequivalenceof two mul-
tipliers usingdifferentarchitectures.Table II shows our ex-
perimentalresultsfor the equivalencecheckingof array and
WallacetreemultipliersbasedonsameBit-Pair partialproduct
generation.FromTableII, wecanseethattheamountmemory
requiredtripled at mostfor eachdoublebits in themultiplier-
s. Moreover, theCPUtime is approximatelythatwe addedup
thetimesfor constructing*PHDDs of two circuitsseparately.
Comparedwith Stanion’sapproach[12], we havebeenableto
verify a !#"â !#" arraymultiplier versusa !&"	 Ü!#" Wallacetree
multiplier in 57seconds,while hisapproachtookabout21027
seconds.Note thatour approachcanverify 64-bit multipliers
in 527seconds.

VI I . CONCLUSIONS

We addressedon equivalencecheckingof integer multipli-
ers,especiallyfor the multipliers without structuresimilarity.
We presentedan approachbasedon Hamaguchi’s backward
substitutionmethodwith thefollowing improvements:(1) au-
tomaticidentificationof componentsto form propercutpoints,

(2) a layered-backwardsubstitutionalgorithm,and(3) Multi-
plicative Power Hybrid DecisionDiagramsasour word-level
representation.Experimentalresultsshow that our approach
canefficiently checkthe equivalenceof two integer multipli-
ers. We show that the complexity of our approachis upper
boundedby ���'����� , where� is theword size.Our experimen-
tal resultsshow thatthecomplexity of ourapproachgrowscu-
bically ���'�)(�� . In thefuture,we would like to our approachto
verify otherarithmeticcircuitssuchas � R* m � .

REFERENCES

[1] A. D. Booth.A signedbinarymultiplicationtechnique.In Jour-
nal of Mechanics and Applied Mathematics, pages236–240,
1951.

[2] R. E. Bryant. Graph-basedalgorithmsfor booleanfunctionma-
nipulation. In IEEE Transactions on Computers, pages8:677–
691,August1986.

[3] R. E. Bryant. On thecomplexity of VLSI implementationsand
graphrepresentationsof booleanfunctionswith applicationto
integer multiplication. In IEEE Transactions on Computers,
pages2:205–213,Feb1991.

[4] R. E. Bryant and Y.-A. Chen. Verification of arithmeticcir-
cuits with binary momentdiagrams. In Proceedings of the
32nd ACM/IEEE Design Automation Conference, pages535–
541,June1995.

[5] Y.-A. ChenandR. E. Bryant. *PHDD: An efficientgraphrepre-
sentationfor floatingpointcircuit verification.In Proceedings of
the International Conference on Computer-Aided Design, pages
2–7,November1997.

[6] Y.-A. Chen, E. M. Clarke, P.-H. Ho, Y. Hoskote, T. Kam,
M. Khaira,J. O’Leary, andX. Zhao. Verificationof all circuit-
s in a floating-pointunit usingword-level modelchecking. In
Proceedings of the Formal Methods on Computer-Aided Design,
pages19–33,November1996.

[7] T. Coe. InsidethePentiumFdiv bug. Dr. Dobbs Journal, pages
pp.129–135,April 1996.

[8] K. Hamaguchi,A. Morita, andS. Yajima. Efficient construc-
tion of binarymomentdiagramsfor verifying arithmeticcircuit-
s. In Proceedings of the International Conference on Computer-
Aided Design, pages78–82,November1995.

[9] J.Jain,J.Bitner, M. S.Abadir, J.A. Abraham,andD. S.Fussel-
l. Indexed BDDs: Algorithmic advancesin techniquesto rep-
resentandverify booleanfunctions. In IEEE Transactions on
Computers, pages11:1230–1245,November1997.

[10] M. Keim, M. Martin, R. Drechsler, andP. Moliter. Polynomail
formal verificationof multipliers. In Proceedings of 15th IEEE
VLSI Test Symposium, pages150–155,1997.

[11] T. Mainelli. Intel 820 ownerscould get free upgrade. In PC
World, May 2000.

[12] T. Stanion.Implicit verificationof structurallydissimilararith-
meticcircuits. In Proceedings of 1999 IEEE International Con-
ference on Computer Design: VLSI in Computer and Proces-
sors, pages46–50,October1999.

[13] B. Yang, Y.-A. Chen, R. E. Bryant, and D. R. O’Hallaron.
Space-andtime-efficientbddconstructionvia working setcon-
trol. In Proceedings of ASP-DAC ’98, pages423–432,Yoko-
homa,Japan,Feb. 1998.

174

