Equivalence Checking of Integer Multipliers

Jiunn-Chern Chen Yirng-An Chen
gis87519@cis.nctu.edu.tw yachen@cis.nctu.edu.tw

Department of Computer & Information Science
National Chiao Tung University
Hsinchu, Taiwan 300, R. O. C.

Abstract— In this paper, we address on equivalence checking improved designs by using equivalence checking tools to com-
of integer multipliers, especially for the multipliers without struc- pare them against their reference designs. Many CAD vendors
ture similarity. Our approach is based on Hamaguchi's backward offer equivalence checking tools for design verification. For
substitution method with the following improvements: (1) auto- example, the popular equivalence checking tools are Formality
matic identification of components to form proper cut points and from Synopsys, Tuxedo-LEC from Verplex and Design Verify
thus dramatically improve the backward substitution process, (2) from Avati. These tools performs logic equivalence checking
a layered-backward substitution algorithm to reduce the number of two circuits based the mixed approaches of functional and
of substitutions, and (3) Multiplicative Power Hybrid Decision Di- structural methods. In general, theses tools are very successful,
agrams(*PHDDs) as our word-level representation rather than even on multipliers, as long as the implementation circuits and
*BMD in Hamaguchi’s approach. Experimental results show that the reference circuits have large structure similarity. Unfortu-
our approach can efficiently check the equivalence of two integer nately, multipliers with different architectures do not provide
multipliers. To verify the equivalence of a32 x 32 array multiplier ~ enough structure similarity to allow verification using these
versus a32 x 32 Wallace tree multiplier, our approach takes about tools. Based on our knowledge about these tools, they can not
57 CPU seconds using 11 Mbytes, while Stanion’s approach took handle large complex arithmetic circuits with very little struc-
21027 seconds using 130 MBytes. We also show that the complex-tural similarity such as multipliers with different design archi-
ity of our approach is upper bounded by O(n*), wheren is the tecture. Thus, there is an emergence need to have an approach
word size, but our experimental results show that the complexity to check the equivalence of two multipliers.

of our approach grows cubicallyO(n?). . .
PP 9 yom") Most of previous researches focused on verifying the cor-

rectness of integer multipliers based on Bit-level representa-
tions such as Binary Decision Diagrams (BDDs) [2] or word-
vel representations such as Multiplicative Binary Moment

The practical motivation for study in this area is the high angiagrams ("BMDs) [4], etc. Bryant [3] has shown that the size

increasing cost of correcting design errors in VLSI technolo- g . :
. . . f BDDs for multiplication grows exponentially with respect to
gies. Design Errors or Bugs cost money, especially the harg- . ; : ;
e number of inputs regarding to any variable ordering. Yang

to-find bugs that surface Iatg in the de;lgn cycle, that delaye% al reported that the number of BDD nodes to represent inte-
product launch, or that require a massive product recall. For

example, the Intel Pentium division bug [7] in 1994 demonJd®’ ”?“'“p“ca“or.‘ grows exponentlall at afac.tor of ‘f"b."“t 2.87
. o ; ._per bit of word size [13]. For a 16-bit multiplier, building the
strated how important it is to catch errors early in the desig

cycle. This error cost Intel $475 million to recall the chips in DDs for the output bits requires about 3.8GB memory on a

the field. This bug was not covered by the one trillion test veﬁz'b't machine (i.e. 1.9GB on a 32-bit machine). Jatial [9]

|I. INTRODUCTION

tors used for this processor [6]. On May 10, 2000, a bug in Inte ave used Inde_xgd B|_nar)_/ Decision Diagrams (IBD.DS) to ver-
; . .. Ity several multiplier circuits. They were able to verify C6288
820 chip set is reported and cost the company $200 millio . N . i
. 3 16-bit multiplier) in 22 minutes of CPU time. They were
of dollars to recall the chips [11]. These bugs demonstrat a . L . : ;
: . . . so able to verify a multiplier using Booth encoding, but this
the inadequacy of simulation or emulation approaches to fulfy
validate circuits, and the importance as well as the emergen
need of formal verification approach to verify circuits.

Cequired almost 4 hours of CPU time and generated over 1 mil-
iidn vertices in the graphs. Stanion [12] has proposed a implicit

Multipli idel di t desi h verification method for verifying structurally dissimilar arith-
uitipliers are widely used in current designs SUCh as prg, e circuits. Rather than trying to prove that two outputs are

cessors, digital signal processors (DSPs), graphic chip sets, %t&uivalent they tried to find an implication of the forn— C
A bug in a chip with multiplier designs will cause the chips tg '

. ; where the consequeft states that the outputs are equivalent.
be recall and thus cost a lot of money, similar to Intel’s CaS€3y,o antecedent is used to speed up the process of verify-

Recently, designers are more careful to validate their new aﬂgg C. The antecedent will be verified recursively using the
*This work was supported in part by Synopsys Inc. and the National Scr&M€ mManner. H!S .eXpe”memal r??““? show two 32-bit array
ence Council, R. O.C., under contract no. NSC89-2215-E009-062. and Wallace multipliers can be verified in 21027 seconds using

0-7803-6634-4/2001/$10.00 © 2001 |IEEE

169

130MBytes.

Thedrawbacksof the bit-level approachearethe BDD ex-
plosion problemand the needof complex expectedBoolean
functions,which aredifficult to be given. To overcomethese
drawbacks Multiplicative Binary MomentDiagrams(*BMD-
s) [4] areproposedto provide a compactrepresentatiorior
theseinteger encodingsand operations. A *BMD-based hi-
erarchicalapproachwasalso proposedo verify integer mul-
tipliers. Using sub-specificationfor subcomponentghis ap-
proachcanhandleextremelylarge multiplierswith reasonable
computationatequirementsHowever, it requiresusergo par
tition the circuitsinto subcomponentsTo overcomethis con-
straint,Hamaguchetal. [8] proposed backward substitution
methodto construct!BMDs directly from circuit description-
s without ary high level information. The mainideaof their
approachs to constructBMDs startingfrom the primaryout-
putswith assignedariablesandthenbackwardly substitutehe
variablein the*BMDs with thefunctionobtainedrom thecir-
cuitsfor eachlogic gateuntil the *BMDs only dependon the
primary input variables. Basedon their experimentalresults,
the compleity of their approachgrows O(n*) with respecto
theword sizen andit takesabout10263secondso complete
the constructiorof *BMDs for a 64x 64 multiplier.

In this paper we addreson equivalencecheckingof inte-
germultipliers, especiallyfor the multiplierswithout structure
similarity. Our approachis basedon Hamaguchi backward
substitutionmethod[8] with the following improvements:(1)
automaticidentification of componentsto form proper cut
points and thus dramaticallyimprove the backward substi-
tution process,(2) a layered-backward substitutionalgorith-
m to reducethe numberof substitutionsand (3) Multiplica-
tive Power Hybrid Decision Diagrams(*PHDDs)[5] as our
word-level representatiomatherthan*BMD in Hamaguchi
approach.

Experimentaresultsshav thatour approactcanefficiently
checkthe equivalenceof two integermultipliers. To verify the
equivalenceof a32 x 32 arraymultiplier versusa32 x 32 Wal-
lacetreemultiplier, our approachakesabout57 CPUseconds
using 11 Mbytes, while Stanions approachtook 21027 sec-
ondsusing130MBytes. We alsoshow thatthe compleity of
our approactis upperboundeddy O(n*), wheren is theword
size,but our experimentalresultsshav thatthe complexity of
our approactgrows cubically O (n?).

I1. INTEGER MULTIPLIER ARCHITECTURE

The integer multiplier is mainly divided into two portion-
s: partial productgenerationto generatethe partial product
vectorsfor two operands4 and B and sumof vectorsto add
up the partial productvectorasshavn in Figurel. Usually
the partial productsare generatedoy Bit-Pair or Booth Re-
coding Algorithm [1]. Giventwo operandsA and B, where
A is the multiplier word in the form: A = a,_1a,_»...ap,
and B is the multiplicandin theform: B = b,,_1b,,_2...bg ,
Bit-Pair approachgenerates n-bit vectorsasfollows: p; =
[@i - bn_1,a; - by_o,...,a;b],0 < i <n—1. Thesecond
partialproductgeneratiorapproachs the BoothRecodingAl-

gorithm[1]. Basedon theradix number thistechniquegroups
several bits in the operandA at a time togetherwith another
operandB to generatenepartial productvector To generate
all partialproductvectorstheoperandA4 will bepartitionedn-
to severalgroupsandadjacengroupsshareonecommonbit.

(AT

Fig. 1. Multiplier Architecture.

Partial Product|

Generation Sum of vectors:>

Product

After the partial product vectorsare generatedthey are
addedtogetherto form thetotal productbasedon thearrange-
mentof the adders. Thereare mary variation approacheso
perform the summationof partial productvectors. In these
approachegherearecomponentomponents]-bit full adder
andhalf adderto beusedin this partof circuits. Two common
approachearearraymultiplier andWallacetree.

I11. *PHDD PRELIMINARY

Multiplicative Paver Hybrid DecisionDiagrams(*PHDDs)
[5] is proposedo representunctionsthatmapBooleanvectors
to integer or floating point values.*PHDDs usethreedecom-
positionsasexpressedn thefollowing Equationl.:

- ((Q—=x)- fz+ = - fz)(Shannon)
- (fz + x - f52)(Positive Davio)
v (fz + (1 —2)- fsz)(Negative Davio)

(w,f) =

where< w, f > denotesc” x f and fsz = fz — fz is the
partial derivative of f with respecto Z. In generalc canbe
ary integer. To verify arithmeticcircuit, ¢ is 2, becauseahe
basevalueof mostarithmeticcircuitsis 2.

Fig. 2. *PHDD representationsf four functions:(a) X, (b) X x Y, (c)
sum(za,z1,z0) and(d) carry(z2,z1,zo).

*PHDDs can representinteger functions efficiently. For
example, Figure 2.(a) and (b) showv Z?:o 2ix; and X x
Y=Y"2 2 x Yo_, 2%y;, respectiely. Edgeweighti in
*PHDDs represent@’ andunlabelecedgeshave weight0(2°).
The edgeweightscombinemultiplicatively. The dash(solid)
line representshe 0(1)-branch.*PHDDs grows linearly with
theword sizefor the differentencodingfunctionsandinteger
multiplication, and canalsorepresenBooleanfunctionseffi-
ciently. Figure2.(c)and(d) representthesumandcarryfunc-
tionsof 1-bitfull addemwith inputsz,, x; andzq, respectiely.

170

In [5], experimentafresultsshovedthat*PHDD is atleastfive
timesfasterthan*BMDs to verify integer multipliers. Read-
ersreferto) [5] for moredetailsof *PHDD, dueto the space
limitation.

IV. OUR VERIFICATION APPROACH

Let usformally definethe problem: Giventwo integermul-
tipliers with differentarchitecturesn gate-level netlistformat,
thetaskis to checkwhetherthesetwo circuitsareequialent.

[] bit-level
o I word-level
Circuit 1
ol 9 g F,
g S 3 ENC
X =?
of 2 2 ¥
3/ 32 E] ENC
~ 3
Circuit 2

Fig. 3. A sketchof ourapproach.

Figure 3 illustratesschematicallyour approactto verify t-
wo multiplier circuits whetherthey are equivalent. First, for
eachcircuit, ancomponentdentificationalgorithmis perform
to automaticallyfind expectedcomponentsuchasBoothre-
coding,1-bitadderetc. Then,thesecomponentsvill besorted
to form severalcutlinesaccordingto their connectvity. Thus,
thecircuitis partitionedinto severalportionsby thesecutlines.
After that,eachsignalin thesecutlines,includingtheprimary
outputs,areassignedo a BDD variable.Basedon the encod-
ing, *PHDDs is constructedo representhe word-level func-
tion F' of primary outputsin termsof outputvariables.Then,
Layered-backwrd substitutionalgorithmis appliedon F' re-
cursively from the outputstoward the inputs, to constructthe
*PHDDs in term of inputvariablesonly. Theabove procedure
is appliedtwice, oneonimplementatiortircuit andanothemon
the referencecircuits, to gettwo *PHDDs. Thus, the equi-
alenceof two circuits canbe checled by comparingwhether
two *PHDDs areequalor not. If not,acountergampleis gen-
eratedo point out thedifferenceof two circuits.

A. Componentdentification

After readingand flattening the circuits, the first stepis
to performcomponenidentificationand mark the outputsof
thesecomponentscut points. Basedon our obsenation,the
propercut pointsarethe outputof partial productgeneration
andtheoutputsof 1-bit addersThus,thecomponentsve want
to identify arethe partial productgenerationand 1-bit adder
cellsin thesum-of-\vectorspartof integermultipliers.

In orderto identify a componenwhetherit implementshe
expectedfunctions,we incorporatea BDD symbolic simula-
tor to simulatecircuit andthencomparethe BDDs in the cir-

cuit with the expectedfunctionsto identify the components
we want. First, BDD variablesareassignedor specificinput-
s, which arethe input candidate®f the expectedcomponent.
Next, symbolicsimulationis performedhroughthecircuit us-
ing theseBDD variables.For expectedfunctions,their BDDs
arealsohbuilt on the sameBDD variables. After both BDDs
arebuilt, the expectedBDDs areusedto checkwhetherthere
existssomesignalswhoseBDDs arethe sameasthe expected.
If so,we find the expectedcomponentandthesesignalswill
beidentifiedandmarkedascut points.

Algorithm: Comp.ldent()

Input: n—A gate-leel combinationatircuit;

Output: cp@—identifiedcutpoints;

1 A < multplicand; B < multiplicator;
[* identify partialproductsgQ) */

2 pQ + BoothRA(A, B,n);

3 if (pQ) pQ < BoothR2(A, B,n);

4 if I(p@Q) pQ « BitPair(A, B,n);

5 if I(pQ) returnpQ;

6 cpQ < pQ;

7 while addersxist /* identify full or half adders"/

8 if (Adder < check_Full Adder(pQ,n)) then

9 else(Adder < check_Hal f Adder(pQ,n));

10 if (Adder) then

11 I «+ inputsof Adder;
13 O « outputsof Adder;
14 pQ < pQ — {1} U{O};
15 cpQ + cpQ U {0O};

16 Sortingep@ by levels;
17 returncp@

Fig. 4. Our componentdentificationalgorithm

Figure4 shav our algorithmto identify the componentsve
want. First, we identify the componentof partial produc-
t generationaccordingto the partial productrules. Current-
ly, we implementedthree algorithms, BoothR4, BoothR2
and BitPair, to identify threetypesof partial productgen-
erationcircuits, Booth recodingbasedon Radix-4, Booth re-
coding basedon Radix-2 and Bit-Pair, respectiely. Proce-
dure Booth R4 is calledto detectwhetherthecircuit useBooth
Radix-4recodingmethodto generatepartial productsandre-
turns the set of cut points, if detected. If it is not based
on Booth Radix-4recodingmethod,procedureBooth R2 and
BitPair are appliedin the order If thesethreealgorithms
cannot detectthe partial productgenerationsthe emptysetis
returnedandthe verificationprocesswill beaborted.

After the partial productsareidentified, the next taskis to
identify 1-bit full and half adders,shovn in lines7 to 15 in
Figure4. It first try to identify 1-bit full adder andthentry
to identify 1-bit half adder If both arenot found, it exits the
while loop; Otherwise,it deletesthe inputsof the adderfrom
the cut point setp@, andaddsthe outputsto the setsp() and
cp@. After the exit of the while loop, setep@ containsall of
the cut pointswe want. Then, cp@ will be sorted,according
to their levels from the primary outputsto the primary inputs.
Finally, theprocedureaeturnsthe sortedcut point setep(.

171

B. Layered-Backward SubstitutionApproach

After the propercut linesarefound, we constructthe over-
all function of the circuit by the layered-backwrd substi-
tution methodusing *PHDDs as our word-level representa-
tion. To performbackward substitutionmethodfor construct-
ing *PHDDsof integermultipliers,variables:,,,, 2, 1, ..., 20
areassignedo the outputsof integer multiplier. Basedon the
givenencoding(e.g.,unsignedencoding) *PHDDs for word-
level functionF (3", 2% x z;) is constructedn termsof these
variables.

Algorithm: LB_Subst(L,P,F)
Input: L—Numberof levels;
P-Setsof cutpoints;
F—-*PHDDsin termsof outputvariables.
Output: Result—*PHDDsof thecircuitin termsof inputvariables;
1 Result < F,
2 for (=L — 1;i >=0; i++)
3 C» « setof cutpointsatlevel s + 1;
C «+ setof cutpointsatlevel ¢;
assignvariablesto eachcut pointin C;
SimulateC4, C2);
for eachcut pointp in Cs
getvariablef of p;
getthe evaluatedfunction g of p from the simulation;
10 Result < Substitute(Result, f, g);
11 return Result;

Fig. 5. Thealgorithmof Layered-Backward Substitution.

© 00 ~NO O

Then, algorithm L B_Subst, shavn in Figure5, is applied
to perform backward substitutionon word-level function F'.
Assumethatthe circuits have L+1 levels of cut points,where
level 0 is the primaryinputs,level 1 is the partial production-
s andlevel L is the primary outputs. The algorithm repeats
the following processL times startingfrom level L-1. First,
it getsthe setsof cut points,C; andC-, atlevel i andi + 1,
respectiely. BDD variablesareassignedo the cut pointsin
C1. After that,a symbolicsimulatoris calledto simulatethe
circuits with BDD variablesin C; asinputsand build BDD
functionsfor the cut pointsin Cy. Now, every cut pointin Cs
is associatetb avariablef andaBooleanfunctiong, whichis
afunctionof BDD variablesn C;. SinceResult is depended
onvariable f, variable f in Result is substitutedoy Boolean
functiong, for every cutpointin C,. After repeatingheabove
processL times, function Result dependn input variables
only. Obsenethatonly two setsof variablesareneededsimul-
tanouslyin thesubstitutiorprocessThus,BDDsvariablescan
bereused.

V. COMPLEXITY OF OUR APPROACH

To analyzethe complexity of our approachwe begin with
the complexity of Comp_Ident algorithmandthenthe com-
plexity of layeredbackward substitutionalgorithm.

Theorem 4.1 The compleity of Comp_Ident algorithmis
boundedby O(n?), wheren is theword size.

Proof: Thealgorithmis composeaf partialproductandadder
cell identification. For the partial productidentification,there
are at most O(n?) products(i.e., using BitPair approach)o

beidentified. Theidentificationprocesof eachproducttakes
contanttime. Thus,the compleity of partial productidentifi-
cationis boundedoy O(n?).

For the addercell identification,therewill be O(n?) adders
to addO(n?) partial productsinto thefinal result. Theidenti-
fication procesf anaddercell takesconstantime. Thus,the
compleity of addercell identificationis boundedby O(n?).
Sincethereare O(n?) cut points, sorting them accordingto
their levelsareboundedby O(n?). Therefore the complexity
of Comp_Ident algorithmis boundecby O (n?).

To represenéncodingunctions,*PHDD is a specificstruc-
ture,calledSum Of weighted Variables (SOV) [10]. For exam-
ple, *PHDD for unsignedencodingfunction f = Z?:_Ol a; X
2!, showvn in Figure2.(a)with n=4, is a SOV/-structure By ex-
tendingtheLemmad4.1and4.2in [10] for *BMDs, we analyze
the costsof constructinghe *PHDD for the adderpartof the
multiplier. First, we analyzethe substitutioncostsfor a single
full adderto getthe overall costs.

Lemma4.1Let F bea*PHDD andlet X denoteghe setof

variableof F'. Let z;,z; be two variablesin X, represent-
ing the sum- and carry-outputof the samefull adder The

inputsto the full adderare representedy zy,z;, zm ¢ X.

Independentf the orderon the variablesetsof the *PHDDs

involvedin the substitutionprocessijt holdsthat substituting
z;, z; in F' by the*PHDDs for thefunctionssum(zy, 1, Tm),

carry(xy, z;, T,) generatesm *PHDD F’ with variable set
(X — {=i,z;}) U{xp, 21,2} and:

1. F'isin SOV.

2. Theterminalvalueof thehigh-successorsf thenodedor
Tk, Ty, T, iN F' isthesameasthatfor the high-successor
of thenodefor z; in F.

Proof: For the sum-andcarry-outputbasedon functionalar-
gumentwe getthefollowing functions:

sum(Ty, T, Tm) Tp DT DT

= I+ X+ Ty — 2207 — 2T Ty,
2T T + 4T T T,
(xr ANx) V(T Ax) V (T A T07)

= ZpT;+ TpTm + Ty — 2TKT; Ty,

carry(T, Ty, Tm)

by expressingthe booleanoperationsd and A, Vv by integer
addition,subtractiorandmultiplication,i.e.,z®y =z +y —
2zy, x Ny =zy,zVy=2x+y — z¥.

Assumez; andz; variableshave weights2¥ and2%+*, re-
spectvely. Thesubstitutiorof x;, z; in f by sum(zg, 21, 2m),
carry(zy, xy, Ty,) yieldsthefollowing function F'.

F' = ... +2%. sum(zk, T, Tm)

+24 - carry(zy, T, Tm) + ...
= ...+2%- 2, +2% - +2% -y + ...
ascaneasilybeverified. Sincezy,, z;, z,, ¢ X andtheweight-

edvariablesr;, z; appeawnly oncein F', therestof the vari-
ablesin F' arenot affected. Thereforethe *PHDD of F' must

172

bein SOV again. Furthermoreall threehigh-edgeof the n-
odesfor zy, 2;, ., in F' point to an edgeweight nodewith
valuew [

With Lemma4.1 we canbe surethe SOV-structureof the

*PHDD is maintained,if we substitutethe variablescorre-
spondingto bothoutputsof a particularfull adderdirectly one
after another Furthermoreat eachpoint of the substitution
processthe size of *PHDD is increasedyy one after having
processethenext full adder
Lemma 4.2 Let F' be a *PHDD in SOV with size |F|. Let
X, 2, Tj, Ty, Tty T, SUM(Th, Ty, Tpy) @NAcarry(zx, Ty, Tpy)
be definedasin Lemma4.1. Substitutingz;,z; in F by
sum(zg, Ty, Tm) andearry(zy, 1, T,) iIsboundedy O(| F|)
with respecto time, independentf thevariableorderor order
of substitutions.
Proof: We denotethe *PHDDs for sum/(zy,x;,) and
carry(zy,z, T,,) by S andC. For consideringfirst the sub-
stitution of x; by S, the substitutionprocesscanvisualizedin
Figure6. The substitutealgorithmcallsitself recursiely un-
til it reacheghe nodein F' labeledwith z;. Obviously, the
numberof recursve callsis boundedby O(|F|). At the node
labeledwith z;, the operationFy ., (5;) + S - Fhign(s;) hasto
be carriedout, where Fy,(z.), Fhrigh(z;) denotethe *PHDDs
to which thelow- andhigh-edgeof nodez; point. SinceF' is
in SOV, Fign(z;) is aterminalnodeandthecall to multiplica-
tion operatiorendsimmediately SinceFj ;) isin SOV, too,
and S is of constantsize,the additionis boundedby O(|F).
The*PHDD afterthis substitutioncanbe seenin Figure7 for
avariableorderz, < ... <z < ... < Tp,.

Fig. 6. Representatioof substitutingz; by S andz; by C.

For the substitutionof z; by C, analogousugumentshold.
The*PHDD afterthis substitutioncanbeseerin Figure7.bfor
avariableorderzy, < ... < x; < ... < x,,. Thereforesince
the resulting*PHDD is of size|F| + 1 accordingto Lemma
4.1, we getatime boundof O(|F|) for the substitutionof =;

by S andz; by C and(X — {z;,%;}) U {zk, 21, Tm }]

Fig. 7. (a) *PHDD aftersubstitutionof variablez; only. (b) *PHDD after
substitutionof variablex; andz;.

Theorem4.2Constructinghe*PHDD for theaddefpartusing
substitutionis boundeddy O(n*).

Proof: For the proof we first count the number of adder
components. Dependingon the realization, the exact num-
ber of theseelementdiffers. Asymptoticallytherearem; =

O(n?) adderdorming the adderpartof arny multiplier. There-
fore the numberof execution stepshas an upper bound of

SN Fy| 4 4) = O(nt), where|Fy| = O(n) is the size
of theinitial *PHDD.;

We analyzedthe compleity of layered-backwrd substitu-
tion for the part of the multiplier circuit that addsthe partial
productsto obtainthe resultof the multiplication above. In
the sequencave analyzethe costsof substitutingthe partial
productsinto the *PHDD. Our startingpoint is the *PHDD
constructedup to the outputsof the AND gates. It hassize
m' = O(n?), sincetherearen? partial productbits.

Theorem 4.3 Let F' bethe *PHDD constructedor the adder
part. Substitutionof the variablesof F' by the *PHDDs for
partial productsa; - b; is boundedby O(n*) with respectto
time with componensortingfor the AND gates.

Proof: Sincethe numberof substitutiondor partial products
is boundedby O(n?) andthe sizeof the*PHDD F aftersub-
stitutingthe partof summingup partialproductsis O(n?) , we
getanoveralltime boundof Z;’;’l O(n?) =0(n*) g

CombiningTheorem4.1,4.2 and4.3, we concludethatthe
compleity of ourapproactis boundedoy O (n?).

V1. EXPERIMENTAL RESULTS

We have implementedour approachin C usingCUDD and
*PHDD packages. To checkthe equivalenceof two multi-
pliers, both circuits passsamepath from parsingand flatten-
ing procedureo layered-backwrdsubstitutionprocedureand
thencompareagainsteachother If they areequialent,thenit

173

reportthatimplementatiorcircuit is correct;Otherwiseit gen-
eratecountergampledor modifying the differencedetween
them.

_ Mult A Mult B Mult C
Bits | 'cpu| MEM | cPU[MEM | cPU [MEM
4 01| 62] o01] 61] 02| 7.7
8] 06| 69| 06| 69| 05| 7.9
16| 46| 82| 30| 85| 21| 83
32| 354 91| 215] 99| 104 095
64 [284.1| 1222135 16.3| 89.5| 146
order n2.8 nl.l n3.1 n1.3 n2.9 n1.2

TABLE | RESULTS OF THREE DIFFERENT TYPES OF MULTIPLIERS.

We first measurethe efficiency of our backward *PHDD
constructiorfor differentintegermultipliers. Our experiments
areperformedon SunUltraSparc6q450MHz). Tablel shows
that the CPU time (second)and usedmemory (MBytes) for
the constructionof *PHDDs of multiplier circuits sizedfrom
4-bit to 64-bit using differentarchitectures.Mult A is based
on bit-pair and array multiplier. Mult B is basedon Bit-Pair
andWallace-treamultiplier. Mult C is basedon Booth-Radix4
andWallace-treeMultiplier. Notethatits CPUtime grows n-
earcubicallywith theword sizeandits memorygrowslinearly
with the word size. Comparedwith Hamaguchis backward
substitution[8], our approachtook 284 seconddor a 64-bit
multiplier, while theirapproachiook 10263secondsNotethat
the CPUtime of their approactis boundedoy O(n*) andours
is boundedoy O(n?).

| Bits [| CUP(Sec)| MEM(MB) |

4 0.2 7.7
8 11 8.1
16 7.5 8.6
32 56.7 10.7
64 526.3 19.5

TABLE Il EQUIVALENCE CHECKING OF TWO MULTIPLIERS

Our systemis appliedto verify the equivalenceof two mul-
tipliers using differentarchitectures.Table Il shows our ex-
perimentalresultsfor the equivalencecheckingof array and
Wallacetreemultipliersbasedn sameBit-Pair partialproduct
generationFromTablell, we canseethattheamountmemory
requiredtripled at mostfor eachdoublebits in the multiplier-
s. Moreover, the CPUtime is approximatelythatwe addedup
thetimesfor constructing'PHDDs of two circuits separately
Comparedvith Stanions approach12], we have beenableto
verify a32 x 32 arraymultiplier versusa32 x 32 Wallacetree
multiplier in 57 secondswhile his approachook about21027
seconds.Note that our approachcanverify 64-bit multipliers
in 527 seconds.

VIl. CONCLUSIONS

We addressean equivalencecheckingof integer multipli-
ers, especiallyfor the multipliers without structuresimilarity.
We presentedan approachbasedon Hamaguchi backward
substitutionmethodwith the following improvements:(1) au-
tomaticidentificationof componentso form propercut points,

(2) alayered-backwrd substitutionalgorithm, and(3) Multi-
plicative Power Hybrid DecisionDiagramsas our word-level
representation Experimentalresultsshowv that our approach
can efficiently checkthe equivalenceof two integer multipli-
ers. We show that the compleity of our approachis upper
boundedoy O(n*), wheren is theword size. Our experimen-
tal resultsshav thatthe complexity of our approachgrows cu-
bically O(n?). In thefuture,we would like to our approacho
verify otherarithmeticcircuitssuchasA x B + C.

REFERENCES

[1] A. D.Booth.A signedbinarymultiplicationtechniqueln Jour-
nal of Mechanics and Applied Mathematics, pages236-240,
1951.

R. E. Bryant. Graph-basedlgorithmsfor boolearfunctionma-
nipulation. In IEEE Transactions on Computers, pages8:677—
691,August1986.

R. E. Bryant. Onthe compleity of VLSI implementationsind
graphrepresentationsf booleanfunctionswith applicationto
integer multiplication. In IEEE Transactions on Computers,
page2:205-213Feb1991.

R. E. Bryantand Y.-A. Chen. Verification of arithmeticcir-
cuits with binary momentdiagrams. In Proceedings of the
32nd ACM/IEEE Design Automation Conference, pages535—
541,Junel995.

Y.-A. ChenandR. E. Bryant.*PHDD: An efficientgraphrepre-
sentatiorfor floatingpointcircuit verification.In Proceedings of

the International Conference on Computer-Aided Design, pages
2—7,Novemberl997.

Y.-A. Chen, E. M. Clarke, P-H. Ho, Y. Hoslote, T. Kam,
M. Khaira,J. O’'Leary, andX. Zhao. Verificationof all circuit-
s in a floating-pointunit usingword-level modelchecking. In
Proceedings of the Formal Methods on Computer-Aided Design,
pagesl9-33,Novemberl996.

T. Coe. Insidethe PentiumFdiv bug. Dr. Dobbs Journal, pages
pp.129-135April 1996.

K. Hamaguchi,A. Morita, and S. Yajima. Efficient construc-
tion of binarymomentdiagramdor verifying arithmeticcircuit-

s. In Proceedings of the International Conference on Computer-

Aided Design, pages’8—82,Novemberl995.

J.Jain,J.Bitner, M. S. Abadir, J.A. AbrahamandD. S.Fussel-
|. Indexed BDDs: Algorithmic advancesin techniquego rep-
resentand verify booleanfunctions. In IEEE Transactions on
Computers, pagesl1:1230-1245November1997.

M. Keim, M. Martin, R. DrechslerandP. Moliter. Polynomail
formal verificationof multipliers. In Proceedings of 15th IEEE
VLS Test Symposium, pagesl50-155,1997.

[11] T. Mainelli. Intel 820 ownerscould get free upgrade. In PC
World, May 2000.

[12] T. Stanion.Implicit verificationof structurallydissimilararith-
meticcircuits. In Proceedings of 1999 |EEE International Con-
ference on Computer Design: VLS in Computer and Proces-
sors, pagest6-50,0ctober1999.

[13] B. Yang, Y.-A. Chen, R. E. Bryant, and D. R. O’Hallaron.
Space-andtime-eficientbdd constructiornvia working setcon-
trol. In Proceedings of ASP-DAC '98, pages423-432,Yoko-
homa,Japarf;eh 1998.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

174

