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Finite-conical-well model for vertically adsorbed diatomic molecules
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We present studies of the rotational spectra of a diatomic molecule adsorbed vertically on a
solid surface. The hindrance configuration was modeled as a rigid rotor whose spatial motion was
confined by a finite conical well. The eigenfunctions can be expressed analytically in terms of the
hypergeometric functions, and eigenvalues were solved numerically. We found that the rotational
energy levels and the confinement probabilities exhibit oscillatory behaviors when plotted as func-
tions of the hindrance angle. The solutions were used to calculate the rotational-state distribution
of the suddenly unhindered rotors and general features which agree with the previous experimental
endings were obtained.

I. INTRODUCTION

Rotational motion of an adsorbed molecule which de-
pends heavily on its interaction with the substrate is
definitely different from that of the free space rotor.
Therefore thorough study of the rotational spectra and
eigenstates is crucial to the understanding of the dy-
namics of adsorption and desorption. Recently, the ro-
tational motion of the molecule which interacts with a
solid surface has attracted increasing interest. Many
experimental studies have been carried out to measure
the rotational-state distributions of diatomic molecules
scattered, thermally desorbed, and electron- or
photon-stimulatedly desorbed &om solid surfaces.
Kleyn et aL. measured the rotational-state distributions
of NO molecules inelastically scattered from a Ag(111)
surface for various incident angles and normal kinetic
energies. The distributions they measured could be di-
vided into two portions: a low-rotational-state portion,
which was described by a Boltzmann distribution with
rotational temperature independent of surface tempera-
ture, and a high-rotational-state portion, which showed
a broad structure and was interpreted as the result of
a rotational rainbow. Cavanagh and King measured
rotational-state distributions of NO molecules thermally
desorbed from a Ru(001) surface. Their measured dis-
tribution was characterized by a Boltzmann distribu-
tion with a rotational temperature significantly lower
than the surface temperature. Recently Xu et aL,. re-
ported experimental studies of rotational-state distribu-
tions of excited CN desorbed from alkali-metal and alkali-
metal-halide surfaces by irradiating photons and elec-
trons. Rotational-state distributions were found to ex-
hibit temperature-independent non-Boltzmann features
that were uniquely correlated to the particular alkali-
metal component of the substrate. From the above
stated experimental results, the substrate temperature-
independent non-Boltzmann feature is a universal feature

of the rotational distribution in diatomic molecule surface
scattering and desorption.

For adsorbed molecules, the effect imposed by the sub-
strate surface on the rnolecules can be regarded as hin-
dering the molecular rotational motion, thus the surface
potential is angle-dependent functions. Analytical ex-
pressions for the realistic surface potentials are difficult
to derive and then usually very complicated to treat.
Therefore, in order to acquire deeper theoretical under-
standing, many simplified models for surface potentials
were proposed to simulate the hindered rotational mo-
tion. Pacey and Allen ' proposed sinusoidal functions
of the polar angle which measured from the surface nor-
mal to the molecular axis to model the surface potential.
Energy levels and thermodynamic properties of the ad-
sorbed molecule were calculated for these potentials, and
comparisons with the experimental data on entropy of
adsorption, ortho-para separation, and rates of thermal
desorption were discussed. Gadzuk and co-workers
assumed an angle-dependent hindering potential in the
form of the infinite conical well which was the spheri-
cal coordinate analog of the Cartesian-coordinate square
well and solved the problem analytically. In their model,
the rotor was allowed to rotate freely only if the polar an-
gle lies within the conical well. This infinite-conical-well
model was used together with a sudden unhindrance ap-
proximation to interpret the non-Boltzmann properties
of final rotational-state distributions. Krempl used the
linear combination of two spherical harmonics to model
the angular dependence of the surface potential. To-
gether with the spatial part expressed as an exponen-
tial function which depends on the distance between
molecule and surface, the rotational cooling effect of de-
sorbed diatomic molecules was reproduced. In addition
to the consideration of the polar-angle dependence, the
azimuthal-angle dependence of the surface potential has
also been considered. The simplest model was to assume
the surface potential bears the same symmetry as that
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of the solid surface. Both Kronig-Penney type ' and
sinusoidal modulated potentials which bear the surface
symmetry were used to study the azimuthal motion of
the hindered rotor.

The infinite-conical-well model proposed by Gadzuk
et al. was impressive. It could be treated with simple
mathematics while providing a good insight into the in-
teraction between the adsorbed molecule and the surface.
However, the hard conical wall precluded completely the
probability of a rotor appearing outside the conical well,
which may be important for the small conical angle situ-
ations, analogous to the narrow Rnite square well in the
Cartesian coordinate. Furthermore, it is very hard to ob-
tain the approximate strength of the interaction between
the molecule and the surface by comparing the theoret-
ical result obtained from solving the infinite-conical-well
model with the experimental data. Thus it is interesting
to investigate the hindered rotational motion with a more
realistic, let us say, 6nite hindering potential. But this
is not a straightforward modification, because we can-
not prescribe an exponentially decaying solution at the
potential barrier region as we usually do in the Carte-
sian finite potential well problems. Because the total
Hamiltonian is rotationally invariant, i.e., solutions have
to remain the same after n complete rotations, where n
is an integer, one has to study carefully the properties
of the solutions in the previously forbidden region, i.e,
n&0&vr.

In this paper, we present a simple 6nite-conical-well
model by which the hindered rotational motion of a ver-
tically adsorbed molecule is modeled [see Fig. 1(a)]. In
Sec. II, the mathematical techniques. used to solve the
model exactly are discussed in detail. Results obtained
from solving the model analytically were used to illus-
trate the variations of the eigenstates and energy spectra
for di6'erent barrier heights and conical angles are pre-
sented in Sec. III. By making use of them, we also cal-
culated the rotational-state distributions. Together with
experimental information, we can extract the inter-
action strength between the adsorbed molecule and the

substrate, and the nature of the dynamics which is re-
sponsible for the processes occurring on the surface. In
Sec. IV, brief conclusions are given. We plan to discuss
the rotational motion of a horizontally adsorbed molecule
hindered by a finite-conical-well potential [see Fig. 1(b)]
in a future paper.

II. THE MODEL

Consider a diatomic molecule vertically adsorbed by a
solid surface where the adsorption configuration is shown
in Fig. 1(a). The molecular vibrational motion along the
molecular axis is neglected by regarding the molecule
as a rigid dumbbell. The constraint imposed by the
solid surface upon the molecule is assumed to hinder the
molecular rotational motion, thus the angular part of the
Schrodinger equation for such hindered rotation is given
by

(
1 0 (. 01 1 0'—

/

sine —
/
+sin000 g Bg& sin288$2

+ —, E"' —v"'" (8, 4) )
cr"' (8, 4) = 0, jl)

where I is the molecular moment of inertia with respect
to its center of rotation. The subscripts v and m con-
tained in the eigenenergy E„' and wave function @'
represent the quantum numbers arising from the depen-
dence of hindering potential V"'" upon 0 and P.

As proposed by Gadzuk et al. , one may assume a P-
independent conical well to model the hindering poten-
tial, i.e. , free rotations of the molecule are allowed pro-
vided the polar angle lies within the region 0 & 0 & o..
However, in contrast to Gadzuk's hard-wall rotor which
appeared only in the region 0 & 0 & o. , we used a soft
wall with height VOB in the region o. & 0 & vr and the
hindered rotations are allowed in the region, i.e. ,

0 fol' 0 ( 8 ( ct'

VOB for o. & 0 & vr,

where B is the rotational constant of the molecule: B =
Q2/2I, and Vo is a dimensionless potential strength pa-
rameter.

For the P-independent hindering potential the total an-
gular part of the wave function can be simply separated
as

with

exp (imP), m = 0, +1,+2, . . . (4)

FIG. 1. (a) Schematic of the finite-conical-well hindering
potential for vertical adsorption configuration. (1) Schematic
of the Gnite-conical-well hindering potential for horizontal ad-
sorption configuration.

Here, we express the rotational energy in the form

E' ' = v (v+ 1) H,

which makes an obvious connection with the limit of free
rotation, and define v' as
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v'(v' + 1) = v (v + 1) —Vo,

then the 8 part of Eq. (1) can be expressed in terms of
the auxiliary variable ( = cose as

Solving Eqs. (9a) and (9b) requires further investigation
of the properties of the hypergeometric functions. As we
compare them to the standard form

(1 —(') '"' . + v(v+1)—
d( d(

m2
d2R' dW

z(1 —z) +[p —(n+P+1)z] —nPW =0,
dz dz

(10)

= 0 for cosn & ( & 1 (7a) where we can easily find that, for Eq. (9a),

and

(1 (2) II, IJ, TA + g

(
g 1) 1— OI I,z,vn

n= lml —v,

P = lml+ v+1,

p = lml+1,
= 0 for —1 & ( & cosn. (7b)

Equations (7a) and (7b) are the associated Legendre
equations ' with integer order m; the degrees v and
v' are, however, not necessarily integers.

Changing variable rj = (1 —() /2 and denoting

0 (() = A„ (1 —( ) W ((),
where A„ is the normalization constant, Eqs. (7a) and
(7b) can then be reduced to

n(1 —n), +(lml+1)(1 —»)
„

d2R I dlVg

—(lm,
l

—v) (lml+ v+ 1) WI = 0

for 0 & ri & (1 —cosn) /2, (9a)

and

q(1 —g) + (lml+ 1) (1 —2q)
d2W)I dpi

d'g d9

from comparison. Then the wave function for region 0 &
0(o. is

8I (() =AI„(1—( )

xF m —v, m+v+1, m+1; 1 —()

(12)

where I' (n, P, p; z) is the hypergeometric function which
is finite when ( = 1 (0 = 0). But the solution diverges
when ( = —1 (0 = a), unless lml —v = n, where —n
is zero or a positive integer, then Eq. (12) terminates
at Bnite terms. But this corresponds to the case of a
free space rotor. On the other hand, in order to solve
Eq. (9b), we have to study the behavior of Eq. (10) at
the neighborhood of z = 1. It is more convenient to
replace z by 1 —z; Eq. (10) then changes into

d W dWz (1 —z) + [(n+ P —p+ 1) —(n+ P+ 1) z]dz2 dz

—(lml —v') (lml+ v'+1) W» —0

for (1 —cos n) /2 & g & 1. (9b)

—nPW = 0. (13)

Making use of Eqs. (11) and (12), the solution can be
found as

8», , (() = AII, , (1 —( ) E
l lml —v', lml+ v'+1, lml+ 1; (14)

We caii easily see that Eq. (14) is identical to Eq. (12) except for the case that each of them is expressed in terms of
difFerent variables. Again, Eq. (14) is finite when ( = —1 (0 = vr), but diverges at ( = 1 unless we follow the previous
scheme by setting lml —v' = n. Now, followin—g the same fashion as in the Cartesian counterpart we have constructed
solutions OI and Opp in two difFerent regions; they are both rotational invariant and well behaved around each other s
singularity. The wave function can be written as

f
+r, , (& —( ) +(llmll —o, llmll+o+ 1, l~ml~+1; r ) for coco ((( 1

A», -,-(1—t") + lml —v' lml+v'+1, lml+1;,
which is normalized by the following relation:

1

8„(&)I
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In order to determine v, we have to match the logarithmic derivatives of Oj and Oyy ~ at 0 = o.. Making use
of the difFerential formula

abI"—(a, b, c;z) = I'—(a+ 1,b+1,c+1;z),
8z c

we have arrived at the following equation which determines the eigenvalues of the soft-wall hindered rotor:

()~) —~) (l~l 1. ~ y 1) + (lml —~+ 1, 1~1+ ~ + 1 lml + 1 ', ')
(I 1+1) E(lml —v, lml+z +1, lml+1; ', 1)

(=cos cx

)(l l1. 1.1)~(l~l —"'+' l~l+"'+1 l~l+' ",')
0 l+') F (l~l —"l~)+"+1 l~l+1 '+')

(=cos n

= 0. (18)

For given m, o. , and Vo, we can determine v from solving Eq. (18) numerically. In the limit of Vo being very small,
i.e. , v ~ v, we can show that in order to satisfy Eq. (18) v has to be a positive integer and equal to or greater than
lml. If the energy is very low compared with the potential barrier, that is, v (v+ 1) & Vo —1/4, then v is a complex
number:

with

1
v = ——+ zA)

2
(19a)

A = QVO —1/4 —v(v+ 1).

Thus the function I" in Eq. (15) for region o. & 0 & vr can be expressed in terms of conical function:

r r+
I

lml —v' lml+v'+1 lml+1;cos'-
I

=S'I lml+ - —~»lml+-+~»lml+1 cos'-
I2) ( 2 2 2)

(lml+ —,')'+ A'

1!(Im, l+ 1) 2

{I I+ —,')'+~' (I I+-', )'+~
2'(lml + 1) (lml + 2)

40cos —+ o ~ ~

2
(20)

Examining Eq. (18), we can find that if Vo is very large, i.e., Vo —1/4 )) v (v + 1), the second term of Eq. (18) can
be written as

- cos —+4 cx
2

cos + o ~ ~4 n
2

(~~~+ )'+~, (~~~+-', )'+~' (~~~+-', )'+~'
(lml + -'3 + P2 (1~1+2) 2 2'(1~1+2)(l~l+s)

2/
(lml+1) ([ ~+-')'+» (1 I+-,') +~' (I I+-', ) +&'

1+ ' cos2 —+-
{/m/+Z) 2!{/~ /+ &) (/~ /+2)

As A approaches inanity, we have to set III. B.ESULTS AND DISCUSSION

F
I lml —v lml+ v+1, lml+1.

) t=cos cx

= 0.

(21)

We can easily notice that Eq. (21) is exactly the hard-wall
case stated in Ref. 16.

Rotational energy levels of a molecule can be obtained
by using the relation E' = v (v+ 1) B where B is the
rotational constant of the molecule. The values of ro-
tational quantum number v, for given azimuthal quan-
tum number m, hindrance angle o., and dimensionless
potential barrier height Vo, are determined by solving
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Eq. (18) numerically. Unlike the free space rotor, the
energies E' of the hindered rotor depend on m im-
plicitly. In Figs. 2(a)—2(c), we present the calculated
ten low-lying rotational energy levels as functions of the
hindrance angle o. for three difFerent potential barrier
heights, namely, Vo ——5, 20, and 80. The hard-wall
potential case, Vo ——oo, is presented in Fig. 2(d) for
the sake of comparison. In general, these figures exhibit
clearly the inBuence of the rotational hindrance on the
rotational energy. One can note that the oscillatory be-
havior, which occurs at small hindrance angle, disappears
as the potential barrier height increases to infinity.

As o. = 180, the rotor is &ee, the energy of the 1th
level reduces to E' = /(l + 1) B with (2l + 1)-fold de-
generacy. When the hindrance angle decreases, the spa-
tial confinement renders the increases of the rotational
energy. Thus the degeneracy between the states with
different values of ~m~ is removed for both the hard-wall
and soft-wall cases. In those cases, the rotational energies
are no longer expressed in terms of the integral orbital
quantum numbers l and, instead, they are expressed in
terms of the new quantum numbers v and m. The az-
imuthal quantum number m remains the same and re-
lates to E„' implicitly as mentioned previously, but the
rotational quantum number v is no longer an integer ex-
cept for special cases. The variations with respect to
the hindrance angle of the rotational energy levels of the
hard-wall and soft-wall hindered rotors are rather diBer-
ent. In the case of the hard-wall hindered rotor, the rota-
tional energy increases steadily as the confinement angle
decreases. However, for the soft-wall hindered rotor, the
rotational energy changes oscillatorily as the hindrance
angle decreases. This behavior is primarily caused by
the nonvanishing probability of the hindered rotor out-
side the potential well and can be realized, at first, in
terms of the perturbation calculation as follows.

If the height of the finite-conical-well potential is small
compared with the low-lying eigenenergies, its efFect can
be treated perturbatively. The energy of the hindered
rotor can be approximated to the first order in VDB as

Ef = ( (I + 1) H+ Vos f l&i, (8, 4)~ 2iisiii&d8

2 (t+m)!

x ~PP (cose)( sinode.
0

(22)

Since Eq. (22) can be evaluated analytically for each Leg-
endre polynomial I'I, the result of integration is just a
polynomial of cosn of degree (2l + 1). Thus the oscilla-
tions of the energy are governed by the orders (l, m) of
the Legendre polynomials. Figure 3 presents the pertur-
bative results of Eq. (22) for Vo ——5. Comparing Fig. 3
with Fig. 2, the similarity between the energy levels cal-
culated &om two difFerent schemes is very obvious.

Prom Fig. 2(a), we can see that for smaller barrier
height, the energy levels can still be categorized in dif-
ferent groups in accordance with the quantum numbers I,

of the &ee rotor. But for larger barriers, the levels start
to intersect with each other and those corresponding to
larger / states of &ee rotor are no longer higher than
those of the smaller l states. When the hindrance angle
approaches zero, the rotational energy of the hard-wall
hindered rotor diverges due to the infinite potential bar-
rier. But on the other hand, because of the softness of
the potential wall, the narrower conical well yields larger
probability leaking outside the conical well. Therefore
when the hindrance angle o. approaches zero, the proba-
bility of finding the rotor outside the conical well is close
to unity. The rotor becomes almost &eelike again, but
accompanied by an additional energy VDB. Therefore the
1th level of the rotor approaches E' = I (I + 1) B+VoB
with (2l + 1)-fold degeneracy.

In order to investigate further the variation of the
hindered-rotor wave function, it is more helpful to plot
the angular distributions of the hindered-rotor wave func-
tion:

for difFerent hindrance conditions. In Figs. 4—6, we show
the angular distributions of three low-lying normalized
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FIG. 2. The ten low-lying rotational levels of a hindered
rotor as functions of the hindrance angle for potential barrier
height (a) Vo = 5, (b) Vo ——20, (c) Vo ——80, and (d) Vo ——oo
(in units of B = 5 /2I).

FIG. 3. The perturbative results of the ten low-lying ro-
tational levels of a hindered rotor as functions of the hin-
drance angle for potential barrier height Vo = 5 (in units of
B = A, /2I).
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(5

FIG. 4. Angular distributions of the finite-conical-well hin-
dered-rotor wave function 4' 0 for different hindrance angles
and potential barrier height VG

——20. 4'„0——YG 0 when the
confinement potential is absent.

FIG. 6. Angular distributions of the finite-conical-well hin-
dered-rotor wave function 4'„0for different hindrance angles
and potential barrier height VG ——20. 4"„0——Yq, 0 when the
confinement potential is absent.

free rotor Y,
„

z

a=150 a=120

wave functions, 4'„,where v is not necessarily an in-
teger when 0 & o. & 180, m = 0, and Vo = 20. In
each figure, we present nine wave functions at diferent
hindrance angles; they all started &om free rotor states,
Yj 0, where l = 0, 1, and 2, when o. = 180 . From these
figures, we notice the angular distributions of the rotor
states change significantly when confined. by the conical
well. The azimuthal symmetry of the angular distribu-
tion is preserved, but the reHection symmetry with re-
spect to the o. = 90' plane is lost. For large hindrance
angle, since the rotational energy is much less than the l' = 2l + 1 —~m~,

and l' and. m satisfy the surface selection rule

l' + m = odd.

(24)

barrier height, the wave functions of the soft-wall and
hard-wall hindered rotors are similar. As the hindrance
angle decreases the wave functions are distorted due to
the compression of the potential wall. When the poten-
tial barrier is infinite, the wave function must vanish at
the boundary. Therefore, when o., the hindrance angle,
changes &om o. = 180 to o, = 90, the rotational state
of the rotor changes from the &ee rotor state Yj to the
half space rotor state Yj, where

a=90

a=20'

a=60

a= 10'

a=30'

/a/
/

X)p

a=5'

For o. & 90, the angular distribution of the hard-wall
hindered-rotor wave function is compressed further while
that of the soft-wall hindered rotor begins to leak outside
the well, particularly those higher energy states. Fig-
ures 4—6 exhibit clearly that for small o., the behavior
of the soft-wall hindered-rotor wave functions returns to
that of the &ee space rotor again.

Examining the angular distributions in Figs. 5 and 6,
we found that the confinement probability which is de-
fined as the probability of the rotor appearing inside the
conical well, i.e. ,

~(li

()

FIG. 5. Angular distributions of the finite-conical-well hin-
dered-rotor wave function 4' 0 for different hindrance angles
and potential barrier height V0 ——20. 4'„p—YQ, Q when the
confinement potential is absent.

P„'" = 4' 0, 2m sin Od8,

for some smaller hindrance angles is larger than that for
greater hindrance angles. To study the variation of P'"
with the hindrance angle o, , the confinement probability
P„'" as well as the energy levels E„' for the three low-

lying m = 0 rotational states are plotted in Fig. 7(a)
for the case of Vo ——20. For convenience, we denote
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30 1,0
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90

0.0

40

-d -w 0 w d

0
90

(x (deg)
180
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FIG. 7. (a) The energy level Z„'' as well as the confine-
ment probability P„'" as functions of the hindrance angle
n for the three low-lying m = 0 rotational states shown in
Figs. 4—6. For convenience, these states are denoted by (0,0),
(1,0), and (2,0), respectively. (b) The node positions Oiv of
wave functions of states (1,0) and (2,0) as functions of the
hindrance angle o..

these states by (0,0), (1,0), and (2,0), respectively. One
can find from Fig. 7(a) that P„'" displays the oscillatory
behavior as E' does. Furthermore, the numbers of
oscillations of P'" and E"'" are the same for each state.

The above mentioned oscillatory behaviors in P'" and
E' do not appear in the one-dimensional finite single
square well. In the finite single square well case the en-
ergy decreases and the confinement probability increases
steadily as the well width increases. The essential reason
for this particular feature is intimately related to the ro-
tational symmetry of the conical well problem, whereas
in the finite single square well case, the wave functions of
a particle outside the square well decay exponentially as
~x~ approaches infinity. However, the hindered-rotor wave
functions of the finite conical well do not have to vanish
anywhere. Instead, they have to be rotationally invari-
ant, i.e. , ilJ" (8+ 2nvr, P) = 4'„(0,P). Therefore the
present eigenvalue problem involves a periodic potential
of polar angle 0, and is equivalent to the case of the one-
dimensional Kronig-Penney type potential in Carte-
sian coordinate x. The analog of the periodic poten-
tial involved in the finite-conical-well hindered rotor and
Kronig-Penney type problem can be found in Figs. 8(a)
and 8(b). The requirement of the rotational invariant of
the hindered-rotor wave functions for a finite conical well

(8 + 2nvr, P) = @'„'~ (0, P) as shown in Fig. 8(a) is
equivalent to the requirement of the translational invari-
ant of the particle wave functions 4'(x+ 2nd) = 4'(x)
for a Kronig-Penney potential well as shown in Fig. 8(b).
The solutions of the Kronig-Penney type potential can
be expressed as

0
0.0 0.5 1.0

' Aii, ,„cosh[K (x + d)] for —d & x & —tp

,„(x)= t Ai, ,„cos(kx) for —u) & x & u)

Aii, ,„cosh[K (x —d)] for tp & x & d

(27a)

for even parity states and

'
Aii ~gg sinh [K (x + d)] for —d & x & —iii

iII gg (x) = & Ai

lysin�(kx)

for —m&x&m
A&& «& sinh [K (x —d)] for rv & x & d

for odd parity states, where

(2mE) '/'
(27c)

/2m(Vp —E) l
(27d)

and A is normalization constant. The eigenvalues E can
be determined by solving

k sin (ktp) cosh [ic (d —to) ]

Kcos (ktp) sinh [—lc (d —tv)] = 0 (27e)

FIG. 8. (a) The finite-conical-well potential of hindered ro-
tor in polar angle 0. (b) The Kronig-Penney type potential in
Cartesian coordinate x. (c) The low-lying energy levels (solid
curves for the even parity states and dashed curves for the
odd parity states) of a particle moving in the Kronig-Penney
potential shown in (b) as functions of ip/d for Vp = 20 (in
units of B' = n h /2md ).
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for even parity states and

v sin (kio) cosh [K (d —tu)]

(2m(E —Vo) ) '
)' (27g)

The low-lying energy levels of a particle moving in the
Kronig-Penney type potential shown in Fig. 8(b) are pre-
sented in Fig. 8(c) as functions of m/d for Vo = 20, where
2m is the well width. The energies are expressed in terms
of B' = vr252/2md2. The similarities between Fig. 8(c)
and Fig. 2 are obvious. As m/d = 1, i.e. , the potential
barriers are absent, the particle is free. However, due to
the periodic boundary condition 4 (x + 2d) = @(x), the
energy levels are discrete. The energy of the nth level is
E = n B', where n = 0, 1, 2, ~. . . Excepting the ground
state, the energy levels are twofold degenerate with even
and odd parity. As m/d approaches zero, the particle
becomes almost freelike again, but accompanied by an
additional energy VpB'. Therefore the energy of the nth
level approaches E = n B' + VpB'. In the region of
0 ( w/d ( 1, the levels are oscillatory for energies above
the square barrier. This oscillatory behavior is very sim-
ilar to that of the hindered rotor as shown in Fig. 2.

From the comparison between the Kronig-Penney type
potential and the finite conical well of the hindered-rotor
problem, the physical origin of the oscillatory behavior
of E' as functions of the confinement angle o. as shown
in Fig. 2 can be easily understood. The oscillatory be-
havior of E as functions of m/d in the Kronig-Penney
type potential is ascribed to the phenomenon of the res-
onance transmission. In our case, for larger hindrance
angle o., the rotational energy is less than the barrier
height and the state is bounded. As the hindrance angle
decreases, the rotational energy of the rotor increases due
to the uncertainty relation. When o. decreases further,
the energies of higher excited states increase further until
they are larger than the barrier height. In this situation,
the higher excited states become unbounded, however,
due to the periodic boundary condition, their energies
are still discrete. Contrary to the level energy, the prob-
abilities P'" for these states of the rotor appearing in
the conical well decrease as o. decreases. When o. equals
some particular value 0~ so that the potential wall is
located on the node position of the wave function [i.e.,
8 (ON ) = 0], the wave function vanishes at this partic-
ular angle n = 0~. Therefore the waves (re8ected and
incident) inside the well interfere destructively with each
other, and the resonance transmission occurs. Thus P'"
in the case of n = g~ is minimum as shown in Fig. 7(a).
As o. decreases further, the node of the wave function
does not coincide with the potential wall again. The res-
onance transmission disappears, thus P'" increases until
the location of the potential waL approaches the next
node. In Fig. 7(b), the node positions 8~ of wave func-

+k cos (km) sinh [v (d —m)] = 0 (27f)

for odd parity states. The above equations are still valid
for the case of E & Vp providing that K is replaced by iK, '

with

1P (I) = ) exp [ Bv (v+ 1)—/kT]
~hin

V )m)7A

x/(Yi, /
@'„, ) /, (28)

where T is the ambient temperature, k is the Boltzmann
constant, and Zh;„ is the partition function of the hin-
dered rotor.

In Fig. 9, the calculated rotational-state distributions
based on Eq. (28) with various potential barrier heights
and B/kT = 1 are shown. From these figures, we can see
that the rotational-state distributions are significantly in-
Huenced by the potential barrier height and hindrance
angle. At low enough temperature, the hindered ro-
tor is primarily located at low-lying states. Thus the
population of the final high-l states depends mainly on
their overlaps with the low-lying v states. However, for
small potential barrier height and small confinement an-
gle, the rotational-state distribution behaves very simi-
larly to that of the free rotor. For example, when Vp = 5,
all of the curves are alike [Fig. 9(a)], but as Vo increases
to 20, only the n = 10 curve is similar to that of the
free rotor [Fig. 9(b)]. This can be easily understood by
investigating the wave functions of the finite-well rotors
(Figs. 4—6). We can see that the hindrance angle as
well as the finite potential act together to confine the ro-
tor. Unlike the infinite potential barrier, the probability
of the rotor confined within the finite conical well may
sometimes be smaller than that outside the well. This
can be understood as the interplay between the poten-

tions of states (1,0) and (2,0) are plotted as functions of
the hindrance angle o.. From Fig. 7, one can note that
P'" approaches minimum at 0~ = n 30' for state (1,0)
and at 0~ = n 30' and 70' for state (2,0). The num-
ber of oscillations of P'" is equal to the number of nodes
of 4'" between 0 & 0 & 180'. The rotational energy
E' oscillates as P'" oscillates. When P'" is around its
minimum, E' is less sensitive to the change of o., thus
E' increases very gently as o. decreases. On the other
hand, when P'" is around its maximum, E' is more
sensitive to the change of o., thus E' increases rapidly
as o. decreases. This relation between E' and P'" can
be noted from Fig. 7(a). Thus we may conclude that the
particular oscillatory behavior of P'" and E' can be re-
garded as the manifestation of the rotational invariance
of the hindered-rotor problem.

The eigenvalues and eigenfunctions of the soft-wall hin-
dered rotor were utilized to calculate the rotational-state
distributions of molecules desorbed from a solid surface.
We applied the sudden unhindrance approximation used
in the works of Gadzuk and co-workers. This ap-
proximation is based on the argument that if the desorp-
tion is induced by a fast process, the hindering potential
is suddenly switched o8' and pure hindered-to-free rota-
tional transition with no wave function alteration takes
place. The free rotation is described by a set of spherical
harmonics: (Yj (0, P)), thus the rotational-state distri-
bution is given by a sum of rotational Franck-Condon
factors between Y~ ~ and 4„' weighted by appropriate
thermal factors, that is,
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FIG. 9. Rotational-state distributions of a suddenly unhin-
dered rotor as function of the free-rotor rotational quantum
number for diFerent hindrance angles with B/kT = 1 and
potential barrier heights (a) Vo = 5, (b) Vo ——20, (c) Vo = 80,
and (d) Vo ——oo. The n = 10 curve in (a) is coincident with
that of the free rotor in this case.

IV. CONCLUSIONS

We have studied the hindered rotational motion of a
molecule adsorbed vertically by a solid surface. Here )

we modeled the surface potential by a finite conical well
which confines the rotational motion of the rotor so that
the rotor is free inside the well but hindered outside.
Since the Hamiltonian of the hindered rotor is invariant
under rotation, i.e. , 0 —+ 0+ 2nvr, we cannot prescribe
an exponentially decaying function in the finite barrier
region as in the situation of its Cartesian analog. After

tial energy caused by the potential barrier and the un-
certainty principle which primarily relates to the kinetic
energy due to confinement. That is, when we gradually
increase the height of the conical wall and reduce the hin-
drance angle, energies of the low-lying v states start to
increase and the overlaps of the low-lying v states with
the high-l states become more prominent. This explains
why the final-state distributions turn wider or "hotter"
when the conical wells become narrower. In addition
we also found that the distribution is independent of the
ambient temperature. ~ From Figs. 9(b) and 9(c), we
witness the progression of such change as we vary the
potential barrier height and hindrance angle. Therefore,
when the potential barrier height is suKciently large or
the conical well is not too narrow, the rotational-state
distributions display characteristics similar to those of
the hard-wall rotors [Figs. 9(c) and 9(d)].

proper transformation, we found that there are two sin-
gularities, namely, 0 = 0' and 180, respectively. Due
to the presence of the finite potential barrier, each of
them is located at separate regions. Wave functions in
both regions can be expressed in terms of the hyperge-
ometric functions. The quantization condition for the
eigenvalues can be obtained by matching the derivatives
of. diferent solutions in each region at the boundary. For
given values of the hindrance angle and potential barrier
height, the matching equations can be solved numerically
and the entire rotational energy spectra and eigenfunc-
tions are thus obtained. Our results showed that the
rotational energy levels increase as the hindrance angle
decreases. The main difference between the rotational
energy levels of the infinite- and finite-conical-well model
is that, in the case of the infinite conical well, the levels
increase monotonically as the hindrance angle decreases.
But for the finite-conical-well model, the levels increase
oscillatorily as the hindrance angle decreases and eventu-
ally approach the rotational levels of the free space rotor
with a constant background potential energy, which is
the height of the potential barrier. The angular distribu-
tions of the soft-wall hindered rotor were plotted for the
low-lying three m = 0 rotational states. These figures
clearly display that the shapes of the angular wave func-
tions of the hindered rotor are significantly influenced by
the compression of the hindrance wall. We also presented
the confinement probabilities of the hindered rotor; sim-
ilar oscillatory behaviors were found. The oscillatory be-
havior of energy levels and confinement probabilities are
due to the occurrence of resonance transmission of wave
functions at some hindrance angle, and can be regarded
as the manifestation of the rotational invariance of the
hindered-rotor problem.

By employing the sudden unhindrance approximation,
the solutions of the hindered rotor were used to cal-
culate the rotational-state distribution of molecules de-
sorbed from a solid surface. In the calculated results,
we showed that, similar to the hard-wall case, for sufFi-
ciently high potential barrier and low temperature, the
final-state distributions are hotter when the conical well
is narrower, independent of the ambient temperature. On
the other hand, for low enough potential barrier and nar-
row conical well, due to the fact that the hindered rotor
is almost freelike, the final-state distributions are not dif-
ferent from those of Boltzmann type.
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