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We study the matrix equation X + A�X−1A = Q , where A is a com-

plex squarematrix andQ is complex symmetric. Special cases of this

equation appear in Green’s function calculation in nano

research and also in the vibration analysis of fast trains. In those ap-

plications, the existence of a unique complex symmetric stabilizing

solution has been proved using advanced results on linear opera-

tors. The stabilizing solution is the solution of practical interest. In

this paper we provide an elementary proof of the existence for the

general matrix equation, under an assumption that is satisfied for

the two special applications. Moreover, our new approach here re-

veals that the unique complex symmetric stabilizing solution has a

positive definite imaginary part. The unique stabilizing solution can

be computed efficiently by the doubling algorithm.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The matrix equation X + A∗X−1A = Q , where Q is Hermitian positive definite, arises in several

applications. The corresponding real case is the matrix equation X + A�X−1A = Q , where A is real

and Q is real symmetric positive definite. In both cases, wemay assumewithout loss of generality that

Q = I, the identity matrix. These equations have been studied in [1,3,5,10,13,15], for example.
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Recently, there arises the need to consider the matrix equation

X + A�X−1A = Q , (1)

where A is complex and Q is complex symmetric. First, it is explained in [6] that the computation

of the surface Green’s function in nano research [2,8,9] can be reduced to the problem of solving

the matrix equation (1), where Q = Q1 + iQ2 with Q1 real symmetric and Q2 = ηI for a pos-

itive scalar η, but the matrix A is still a real matrix. And then it is shown in [7] that a quadratic

eigenvalue problem arising from the vibration analysis of fast trains [11] can be solved efficiently

and accurately by solving a matrix equation of the form (1), where A is complex and Q is complex

symmetric.

In those two applications, the existence of a unique complex symmetric stabilizing solution has

been proved using advanced results on linear operators (see [4, Chapter XXIV, Theorem 4.1, 12]). The

stabilizing solution is the solution of practical interest. In Section 2 we provide an elementary proof

of the existence for the general matrix equation (1), under an assumption that is satisfied for the

two special applications. Moreover, our new approach reveals that the unique complex symmetric

stabilizing solution has a positive definite imaginary part. In Section 3 we make some concluding

remarks. In particular, wemention that the unique stabilizing solution can be computed efficiently by

the doubling algorithm, as for the special case studied in [7].

2. Existence of complex symmetric stabilizing solution

For Eq. (1) we write

A = A1 + iA2, Q = Q1 + iQ2 (2)

with A1, A2, Q1 = Q�
1 , Q2 = Q�

2 ∈ R
n×n. A solution X of (1) is said to be stabilizing if ρ(X−1A) < 1,

where ρ(·) denotes the spectral radius. The assumption we need to guarantee the existence of a

stabilizing solution is

Q2 + eiθA�
2 + e−iθA2 > 0, for θ ∈ [0, 2π ]. (3)

Here W > 0 denotes the positive definiteness of a Hermitian matrix W . This assumption is satis-

fied for the two applications we mentioned earlier. In particular, the assumption is trivially satisfied

for the nano application since A2 = 0 and Q2 = ηI with η > 0 there. Note that we do not need

any further assumptions on the matrices A1 and Q1. Also, if (3) has been verified for the matrices

A2 and Q2, then it also holds when any positive semi-definite matrix is added to Q2. From [3] we

also know that (3) holds if and only if the matrix equation Y + A�
2 Y−1A2 = Q2 has a real sym-

metric positive definite stabilizing solution Y . So one way to verify the assumption (3) is to use the

doubling algorithm in [10] or the equivalent cyclic reduction algorithm in [13] to find the stabilizing

solution Y .

We now assume (3) and let

M =
⎡
⎢⎣

A 0

Q −I

⎤
⎥⎦ , L =

⎡
⎢⎣

0 I

A� 0

⎤
⎥⎦ . (4)

It is easily seen that the matrix pair (M, L) satisfies the relation MJM� = LJL�, where J =
⎡
⎣ 0 I

−I 0

⎤
⎦.

The matrix pair (M, L) or the matrix pencil M − λL is called �−symplectic. It holds that λ is an

eigenvalue of (M, L) if and only if 1/λ is an eigenvalue of (M, L), with the same multiplicity. Here λ
can be 0 or ∞.

Lemma 1. The �−symplectic pencil M − λL has no eigenvalues on the unit circle.
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Proof. We show that M − eiθ L is nonsingular for all θ ∈ [0, 2π ]. Suppose there are a θ0 ∈ [0, 2π ]
and a nonzero vector x = (

x�
1 , x�

2

)�
with x1, x2 ∈ C

n such that (M − eiθ0L)x = 0. This implies that

Ax1 = eiθ0x2, Qx1 − x2 = eiθ0A�x1. (5)

By eliminating x2 in (5) we have

Hx1 ≡
(
eiθ0A� − Q + e−iθ0A

)
x1 = 0. (6)

Write H = H1 + iH2, where H1 = eiθ0A�
1 − Q1 + e−iθ0A1 and H2 = eiθ0A�

2 − Q2 + e−iθ0A2. It is easily

seen that H1 and H2 are Hermitian. From assumption (3) it holds that H2 is negative definite. By the

classical Bendixson theorem (see [14] for example) H1 + iH2 is invertible. From (6) and (5) it follows

that x1 = 0 and x2 = 0. Thus,M − eiθ L is nonsingular for all θ ∈ [0, 2π ]. �

FromLemma1wesee that there is amatrix

⎡
⎣ U

V

⎤
⎦ ∈ C

2n×n of full rank spanning the stable invariant

subspace of M − λL corresponding to the stable eigenvalue matrix S ∈ C
n×n, i.e.,⎡

⎣ A 0

Q −I

⎤
⎦

⎡
⎣ U

V

⎤
⎦ =

⎡
⎣ 0 I

A� 0

⎤
⎦

⎡
⎣ U

V

⎤
⎦ S, (7)

where ρ(S) < 1. From (7) we get

AU = VS, (8)

QU − V = A�US. (9)

Multiplying (9) by U∗ from the left we get

U∗QU − U∗V = U∗A�US = U∗ (
A∗ + 2iA�

2

)
US. (10)

Substituting (8) into (10), we have

U∗QU − U∗V = S∗V∗US + 2iU∗A�
2 US. (11)

Taking conjugate transposes in (11) and subtracting the result from (11) we obtain

2iU∗Q2U + (V∗U − U∗V) = S∗(V∗U − U∗V)S + 2i
(
U∗A�

2 US + S∗U∗A2U
)
. (12)

Let

K = i(V∗U − U∗V). (13)

Then K is Hermitian. From (12) it follows that K satisfies the equation

K − S∗KS = 2
(
U∗Q2U − U∗A�

2 US − S∗U∗A2U
)
. (14)

Lemma 2. The matrix K in (13) is positive definite.

Proof. From (14), for any positive integer � we have

K − (S∗)�KS� =(K − S∗KS) + S∗(K − S∗KS)S + · · ·
+ (S∗)�−1(K − S∗KS)S�−1 (15)

=2
[
U∗Q2U + S∗U∗Q2US + · · · + (S∗)�−1U∗Q2US

�−1

− U∗A�
2 US − S∗U∗A�

2 US2 − · · · − (S∗)�−1U∗A�
2 US�

−S∗U∗A2U − (S∗)2U∗A2US − · · · − (S∗)�U∗A2US
�−1

]
. (16)
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Since ρ(S) < 1, S� → 0 as � → ∞. Hence from (16) we have

K = 2
(
Q̃2 − Ã∗

2S − S∗Ã2

)
, (17)

where

Q̃2 =
∞∑

�=0

(S∗)�U∗Q2US
�, Ã2 =

∞∑
�=0

(S∗)�U∗A2US
�. (18)

Note that Q2 + eiθA�
2 + e−iθA2 > 0 for all θ ∈ [0, 2π ] is equivalent to that

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q2 −A�
2

−A2 Q2 −A�
2

. . .
. . .

. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

is positive definite. From (17) and (18) it is easy to check that

K = 2
[
U∗, S∗U∗, · · · ]A2

⎡
⎢⎢⎢⎢⎣

U

US

...

⎤
⎥⎥⎥⎥⎦ . (20)

We need to show that z∗Kz > 0 for all z �= 0. Since A2 is positive definite, it is enough to show

Wz �= 0 for all z �= 0, where W is the rightmost block matrix in (20). Suppose Wz = 0. Then Uz = 0

and USz = 0. It follows from (9) that Vz = QUz − A�USz = 0. Thus

⎡
⎣ U

V

⎤
⎦ z = 0 and then z = 0 since

⎡
⎣ U

V

⎤
⎦ is of full rank. �

The next result follows readily.

Theorem 3. The matrix U in (7) is invertible.

Proof. Suppose Ux = 0 with x ∈ C
n. From (13) we have

x∗Kx = x∗ [
i
(
V∗U − U∗V

)]
x = 0.

So x = 0 since K is positive definite by Lemma 2. Thus U is invertible. �

Since U is invertible, we can define X = VU−1.

Theorem 4. Let X = VU−1. Then

(a) X is complex symmetric;

(b) X is invertible;

(c) X is a stabilizing solution of (1);

(d) X2 ≡ Im(X) is positive definite.

Proof. (a) Multiplying (9) by U� from the left we get

U�QU − U�V = U�A�US. (21)



C.-H. Guo et al. / Linear Algebra and its Applications 435 (2011) 1187–1192 1191

Subtracting the transpose of (21) from (21) and using (8) we have

U�V − V�U = S�U�AU − U�A�US

= S�U�VS − S�V�US = S� (
U�V − V�U

)
S. (22)

Since ρ(S) < 1, U�V = V�U. Then X = VU−1 = U−�(U�V)U−1 is a complex symmetric matrix.

(b) From (8) and (9), and noting that U�V = V�U, we have

λ2A� − λQ + A

=λ2
(
U−�S�U�VU−1

)
− λ

(
VU−1 + U−�S�U�VSU−1

)
+ VSU−1

=
(
I − λUSU−1

)�
VU−1

(
−λI + USU−1

)
. (23)

Since det(λ2A� − λQ + A) = det(M − λL) �= 0 for every unimodular λ (by Lemma 1), we know that

X = VU−1 is nonsingular.

(c) From (8) and (9) we have

A = X(USU−1), Q − X = A�(USU−1). (24)

EliminatingUSU−1 in (24) givesX+A�X−1A=Q andwealsohaveρ(X−1A)= ρ(USU−1)= ρ(S) < 1.

(d) From (13) it follows that

U−∗KU−1 = i
(
X∗ − X

) = 2Im(X). (25)

So X2 ≡ Im(X) is positive definite by Lemma 2. �

We have shown that the (unique) stabilizing solution of (1) must be complex symmetric, and that

it has a positive definite imaginary part. When A is not a real matrix, it is quite possible that some

other complex symmetric solutions of the Eq. (1) also have a positive definite imaginary part. In fact,

for a real matrix A2 and a real symmetric positive definite matrix Q2 satisfying the assumption (3), the

equation Y + AT
2Y

−1A2 = Q2 may have many positive definite solutions Y (see [3]). So for each such

Y , X = iY is a solution of X + (iA2)X
−1(iA2) = iQ2 with a positive definite imaginary part.

We can also provide an elementary proof for the following statement proved in [3] using advanced

results in operator theory: for a real matrix A2 and a real symmetric positive definitematrixQ2 satisfy-

ing the assumption (3), the equation Y + AT
2Y

−1A2 = Q2 has a positive definite stabilizing solution Y .

In fact, we have already proved that the equation X + (iA2)
TX−1(iA2) = iQ2 has a complex symmetric

stabilizing solution X with a positive definite imaginary part. We only need to show that the real part

of X must be zero. Since A = iA2 and Q = iQ2 now, we have from (10) and (8) that

U∗QU − U∗V = −U∗A∗US = −S∗V∗US. (26)

Taking conjugate transpose on (26) gives

−U∗QU − V∗U = −S∗U∗VS. (27)

It follows from (26) and (27) that

(U∗V + V∗U) − S∗(U∗V + V∗U)S = 0. (28)

So U∗V + V∗U = 0 since ρ(S) < 1. Now 2Re(X) = X + X∗ = U−∗(U∗V + V∗U)U−1 = 0.

3. Conclusions

Wehave provided an elementary proof of the existence of a (unique) complex symmetric stabilizing

solution X for the nonlinear matrix equation (1) with assumption (3). Our new approach here has

revealed that the imaginary part of X is positive definite. We also mention that the solution X can be
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found efficiently by a doubling algorithm, as presented in [7, Algorithm 4.1]. A convergence result for

the algorithm is given in [7, Theorem 4.1] for the Eq. (1) with thematrices A andQ having special block

structures. However, those special structures were not used in the proof of convergence in [7]. So the

statements in that theorem are also valid for our general Eq. (1) with assumption (3).
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