
CCC 0170—4214/97/161389—22$17.50 Received 9 May 1996
( 1997 by B. G. Teubner Stuttgart—John Wiley & Sons Ltd.

Mathematical Methods in the Applied Sciences, Vol. 20, 1389—1410 (1997)
MOS subject classification: 35Q35, 35 L 60, 35M20

Subsonic Solutions of Hydrodynamic Model
for Semiconductors

Li-Ming Yeh

Department of Applied Mathematics, National Chiao Tung University, 100 Ta Hsueh Road,
Hsinchu 30030, Taiwan, R.O.C.

Communicated by B. Brosowski

This paper is concerned with the existence and uniqueness of the steady-state solution of hydrodynamic
model for semiconductor devices. Boundary conditions are prescribed by vorticity on inflow boundary as
well as by electron density, temperature, and normal component of electron velocity on whole boundary. If
the ambient temperature is large, and if both vorticity on inflow boundary and the variation of density on
boundary are small, a unique subsonic solution exists. ( 1997 by B.G. Teubner Stuttgart—John Wiley &
Sons Ltd.

Math. Meth. Appl. Sci., Vol. 20, 1389—1410 (1997)
(No. of Figures: 0 No. of Tables: 0 No. of Refs: 15)

1. Introduction

This paper is concerned with the existence and uniqueness of the steady-state
solution of hydrodynamic model for semiconductor devices. The model is derived
from moments of the Boltzmann’s equation, taken over group velocity space. When
coupled with the charge conservation equation, it describes the behaviour of small
semiconductor devices and accounts for special features such as hot electrons and
velocity overshoots. In steady-state case [6], the model consists of the following
equations:
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in a bounded semiconductor domain )LR3. o denotes the electron density, » the
average electron velocity, ¹ the temperature in energy units, ( the electrostatic
potential. Z (a positive function) is the prescribed ion background density. m, e, b

1
,

¹
0
, d are given positive constants. m is the effective electron mass, e the electron

charge, ¹
0

the constant ambient temperature, d the dielectric constant. q
a

and q
b

represent momentum and energy relaxation times, respectively:
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for positive constants b
2
, b

3
. Let n be the unit outward normal vector on ). Define

!
1
:"Mx3)D» · n(0N to be the inflow boundary, and !

2
:"Mx3)D» · n*0N the

outflow boundary. The boundary conditions for system (1.1)—(1.4) are
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Because of (1.1), the following condition should hold:

P!
1
X!

2

o
D
»
D
ds"0.

w
D

also need to satisfy some compatibility condition on inflow boundary, which will
be explained in section 3.

Existence of solutions for a simplified case of the hydrodynamic model, Euler—
Poisson equation, in one or two-dimensional cases have been studied by several
researchers [1, 5, 8, 13]. Here we consider the existence and uniqueness of a subsonic
solution of hydrodynamic model in the three-dimensional case. Boundary conditions
are prescribed by vorticity on inflow boundary as well as by electron density,
temperature, and normal component of electron velocity on whole boundary. We
show that if ambient temperature is large, and if both vorticity on inflow boundary
and the variation of density on boundary are small, a unique subsonic solution exists.
The strategy to show these results is to write the model in terms of density, vorticity,
potential, temperature, and electrostatic potential. That would result in four elliptic
systems and one transport equation. One can show that the new differential equations
are equivalent to original hydrodynamic model. By fixed point theorem, we prove the
new system has a unique solution, so does the hydrodynamic model. To prove the
existence of solution for the transport equation, we need to work on a domain with
edges because it allows us to reduce the transport equaion to an initial value problem,
which is not the case in a smooth domain.

This paper consists of the following sections. In section 2, notations are recalled. In
section 3, we discuss the compatibility condition for w

D
on the inflow boundary. In

section 4, we derive auxiliary linear systems which are equivalent to the system
(1.1)—(1.7). In section 5, useful lemmas are presented. Existence and uniqueness of
a subsonic solution for the system (1.1)—(1.7) is showed in section 6 (see Theorem 6.1).
Proofs of lemmas in section 5 are given in section 7.
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2. Notation

For convenience, we need the following variables: o"exp(f), curl»"w,
¹/¹

0
"E, and ¹

D
/¹

0
"E

D
. ‘ln’ denotes the inverse function of ‘exp’. So o"exp(f)

means ln(o)"f. r.h.s. is the abbreviation of right-hand side. Summation convention is
used. c is used to denote various constants. Cm,a()) represents the Hölder space. ¼m,p

denotes the Sobolev space and if p"2, then ¼m,2 ())"Hm()). For a function u,
u
,i
:"u/x

i
. diam) is the diameter of ).

In this paper, we consider the model in a non-smooth domain. More precisely,
domain ) is assumed to be simply connected with one edge ¸"!1

1
W!1

2
, where !1

i
are

the closure of !
i
(i"1, 2). For any point q3¸, there is a positive dihedral angle h(q)

between !
1

and !
2
. (1.7)
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In a neighbourhood of !
1

we introduce a curvilinear system of orthonormal
co-ordinates. By Ms

1
(x), s

2
(x), n (x)N, we denote the orthonormal basis corresponding

to the co-ordinate system in such a way that, for x3!
1
, Ms

1
(x), s

2
(x)N are vectors

tangent to !
1

and n (x) is the unit outward normal vector to !
1
. For fixed k, l, if we

look at the following expressions:

(sk · +) sl"iiklsi#ikln,

(sl ·+) sk"iilksi#ilkn,

then one can show

ikl"ilk on !
1
. (2.2)

3. Compatibility condition

We now discuss the compatibility condition for w
D

on the inflow boundary. First let us
assume w

D
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where w :"curl» and ‘]’ is the cross product. Next we write w, » as follows:

w"w
n
n#wksk , (3.2)

»"»
n
n#»ksk , (3.3)

where n, sk are the normal and tangential vectors. Summation convention is used. By
(3.2) and (3.3),

(» ·+)w"(»
n
n · +)w#(»ksk · +)w

"(»
n
n · +)(w

n
n#wlsl)#(»ksk · +) (w

n
n#wlsl)

"»
n
(n ·+w

n
)n#»

n
w
n
(n ·+)n#»

n
(n ·+wl)sl#»

n
wl (n ·+)sl

#»k(sk ·+w
n
)n#»kwn

(sk ·+)n#»k (sk · +wl)sl#»kwl(sk ·+)sl .
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Note w
n
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D
· n D !
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"0. If we take inner product of (» · +)w and n on !
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1
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By a similar argument we can derive, on boundary !
1
,
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1
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S(sk · +)n, nT#wk»lS(sk · +)sl , nT D!
1
.

(3.5)

Now, we take inner product of (3.1) and n on !
1
. By (2.2), (3.4) and (3.5), and that ¹

D
D !

1
is constant, we obtain, in !

1
,
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(n · +w

n
)#»
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n
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1
"0,

0"+ · w D !
1
"(+w

n
· n#+wk · sk#wk+ · sk) D !1

. (3.7)

By (3.6) and (3.7) and »
n
D !

1
(0 (because »

n
D !
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"»

D
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1
(0), we obtain

»
n
+wksk#»

n
wk+ · sk!»
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n
#wk»n
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In other words, if w
D
· n D !

1
"0 and ¹

D
D !

1
"constant, then wk ("w

D
· sk , k"1, 2)

have to satisfy the following equation on !
1
:

+ · (wk»D
sk)!wk»D

(S(n+)sk , nT!S(sk+) n, nT)"0. (3.8)

So wk (k"1, 2) have to depend on »
D

and the geometry of the inflow boundary !
1
.

One trivial solution such that w
D

satisfies (3.8) is 0. Also note if w
D

(O0) is a solution of
(3.8), then c · w

D
is a solution of (3.8) for any constant c.

4. Auxiliary system

In this section, we derive auxiliary linear systems for (1.1)—(1.7). One can easily see
that a solution of system (1.1)—(1.7) corresponds to a fixed point of the new linear
systems. Proof for the other direction will be given in section 6.
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where w"curl», E"¹/¹
0
. Next, taking the divergence of (1.2) and using (1.1),

(1.3)— (1.4), we obtain
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where o"exp(f), »
i,j

:"»
i
/x

j
. We then split » in the following way [4]:

»"!+t#p (4.3)

such that

+ ·p"0 in ), p · n D !
1
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2
"0. (4.4)

So boundary condition (1.7)
1

can be written as
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2
. (4.5)

Equation (1.1) then becomes

+ · (o+t)"+ · (op), x3). (4.6)

By (4.1)—(4.6), we now define a mapF(S, º)"(E, » ) as follows: Given (S, º), solve
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b
(S). Then, using f from (4.7), compute o from
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Then, by o above, we solve
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where q
b
"q

b
(S). Next, by o, E from (4.9)—(4.10), we solve the following, for w and P,

(º · +)w#(+ ·º)w!(w ·+)º#

wE

b
2

#+P"
!+E]º

b
2

#

¹
0
+o]+E
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+ ·w"0, (4.13)

w D !
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, +P · n D !
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"0, P D !
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"0. (4.14)
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Variable P and boundary conditions (4.14)
2,3

are introduced to let w be divergence
free. Next, we solve the following system for p:

curl p"w, x3), (4.15)

+ ·p"0, x3), (4.16)

p · n"0, x3!
1
X!

2
. (4.17)

Then compute t as a solution of the following system:

+ · (o+t)"+ · (op), x3), (4.18)

o+t · n"!o
D
»

D
, x3!

1
X!

2
, (4.19)

P)
t dx"0. (4.20)

Finaly, we can compute the velocity » from

»"!+t#p. (4.21)

Existence of a fixed point of the operator F will be shown in section 6. (4.7)— (4.21)
forms auxiliary linear systems for the system (1.1)—(1.7). From the derivation, we see
that a solution of system (1.1)— (1.7) corresponds to a fixed point of the linear systems
(4.7)— (4.21).

5. Auxiliary lemma

In this section, we present four lemmas (proofs are lengthy and will be given in
Section 7). They are used to prove the existence of a fixed point for systems (4.7)—(4.21).
Part of results can be found in Reference 14.

Domain ) considered in this section is a smooth simply-connected domain with
edge and )"!1

1
X!1

2
(section 2). Lemma 5.1 is a result for a linear elliptic equation

and is for solving (4.10)—(4.11). Lemma 5.2 is an existence theorem of a semilinear
elliptic equation in ), used to solve (4.7) and (4.8). Lemma 5.3 is to establish an
existence theorem for a linear elliptic equation with Neuman boundary condition for
computing a solution for (4.18)—(4.20). Lemma 5.4 is an existence theorem for a trans-
port equation in ) and is for solving (4.12)—(4.14).

Lemma 5.1. Consider the equation

G
a
ij
(x)u

,ij
#a

i
(x)u

,i
#a (x)u"f (x), x3),

g
k
u#(1!g

k
)+u · n"0, on !

k
(k"1, 2),

(5.1)

where g
k

is either 0 or 1 and g
1
#g

2
O0. If the following conditions hold:

1. a
ij
, a

i
, a, f3Cm,a ()1 ), a(x))0, 0(a(1, 0)m,

2. a
ij
"a

ji
, a

ij
(x)m

i
m
j
*j Dm D2 for m3R2 and for some positive constant j,

3. u(q)((g
1
#g

2
)n/(m#2#a) for all q3!1

1
W!1

2
(see Remark 1),
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then there exists a unique solution u3Cm`2,a()1 ) and

EuE
Cm`2,a ()1 ))c(j, Ea

ij
, a

i
, a E

Cm,a ()1 ))E f E
Cm,a ()1 ) . (5.2)

Proof. Existence of the solution is the Theorem 1 of [2]. (5.2) is obtained by tracing
the proof of Theorem 1 of [2]. K

Remark 1. u (q) of condition 3 is obtained as follows: In section 2, we assume domain
) has one edge ¸"!1

1
W!1

2
. For all q3¸, we denote by R

1
(q) and R

2
(q) the two

one-sided tangential planes which touch !1
1

and !1
2

at point q. For a fixed point q3¸

we transform to canonical form the second-order term of the system (5.1)
1

a
ij
(q)u

,ij
"0.

Since point q is fixed, this is an equation with constant coefficients. After the
transformation, the planes R

1
(q) and R

2
(q) will be transformed to other planes that

intersect at an angle u(q).

Lemma 5.2. Consider the equation

G
a
ij
(x)u

,ij
#a

i
(x)u

,i
!a (x)g (u)"!f (x), x3),

u D )"u
D
D ) . (5.3)

If the following conditions hold:

1. a
ij
, a

i
, a, f3Cm,a()1 ), 0(a(x), 0(a(1, 0)m,

2. a
ij
"a

ji
, a

ij
(x)m

i
m
j
*j Dm D2 for m3R2 and for some positive constant j,

3. g3Cm`1(R), g@'0, there are constants u, uN satisfying g (u))f/a(x))g (uN ),
4. u

D
3Cm`2,a ()1 ), u

1
)u

D
(x))u

2
for all x3),

5. u(q)(2n/(m#2#a) for all q3!1
1
W!1

2
(see Remark 1),

then there exists a unique solution u3Cm`2,a()M ) satisfying

min(u
1
, u))u (x))max(u

2
, u6 ) ∀x3),

EuE
Cm`2,a)c(jEa

ij
, a

i
, aE

Cm,a)P(Eu
D
E
Cm`2,a , E f E

Cm,a , EgE
Cm`1,(-

1
)#Eg~1E

C0(-
2
)),

where P is a polynomial with P (0, 0, 0)"0 and -
1
, -

2
denote ranges of u, f/a over ).

Lemma 5.3. Consider the equation

+ · (a (x)+u)"f in ),

G a(x)+u · n"g on !
1
X!

2
,

P)
u (x) dx"0. (5.4)

If the following conditions are satisfied:

1. a3Cm`1,a ()M ), 0)m, 0(j(a (x) for some positive constant j,

2. f3¼m,p()), g3¼m`1~1@p,p(!
i
), :) f dx#+2

i/1
:! gds"0, p*2,

3. h (q)(n/(m#2!2/p) for all q3!M
1
W!M

2
(see section 2 for h(q)),
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then there is a unique solution u3¼m`2,p()) satisfying

EuE
Wm`2,p ()))c (EaE

Cm`1,a ()1 ) , 1/j)AE f E
Wmp ())#

2
+
i/1

EgE
Wm`1~1@p,p(!1

i
)B. (5.5)

In next lemma, Mb, º, f, gN are vector functions and " is a matrix function.

Lemma 5.4. Consider the system

(b · +)º#"º"f in ) ,

º"g on !
1
.

If the following conditions are satisfied:

1. b3¼
l`1,p()), b · n D !

1
(!j(0, b · n D !

2
*0, 3(p(4, 2)l,

2. ", f3¼
l,p()), g3¼

l,p (!
1
), " is a positive-definite matrix,

3. "(x)'"
m
I in ), "

m
!i (p, EbE

W
l`1,p ()) , 1/j)""

d
'0,

where i is a continuous positive function of its orguments, I is identity matrix, and j, "
m
,

"
d
are some positive constants, then there exists a unique solution º3¼

l,p()) and, for
0)s)l,

EºE p
Ws,p()))c(E"E

W
l,p()), EbE

W
l`1,p ()) , 1/j, 1/"

d
) (E f E p

Ws,p())#EgE p
Ws,p(!

1
)).

(5.6)

6. Existence and uniqueness of a subsonic solution

In this section, we prove existence and uniqueness of a subsonic solution of
(1.1)—(1.7). To do this, we first define a set A]D (see Remark 2), and show that
operatorF defined by (4.7)—(4.21) is a map from A]D to itself (see Lemmas 6.1—6.5).
Next, we show that the map F is continuous in some weaker space (see Lemma 6.6).
Then by fixed point theorem, we conclude that a fixed point of (4.7)—(4.21) exists.
Moreover, we see that if the ambient temperature is large and if the variation of
density on boundary is small, a unique fixed point exists. Then we show a fixed point
of system (4.7)— (4.21) corresponds to a solution of (1.1)—(1.7) (see Theorem 6.1). Now
let us make the following assumptions:

(A1) 3(p(4 and 0(a(1 such that ¼1,p())˝C0,a()M ) (continuous imbed-
ding),

(A2) )LR3 is a smooth simply-connected domain with edge ¸ :"!1
1
W!1

2
;

)"!1
1
X!1

2
; 0(h(q)(n/(5!2/p) and h (q)On/j for all q3¸ and j3N

(positive integer),

(A3) Z3C1,a()1 ), 0(2o
1
)Z(x))o

2
/2 for all x3),

(A4) o
D
3C3,a()1 ), 0(o

1
)o

D
(x))o

2
for all x3),

(A5) »
D
3¼3~1@p,p(!

i
), +2

i/1
:!

i
o
D
»
D
ds"0, »

D
D !

1
(!v

d
(0)»

D
D !

2
,

(A6) w
D
3¼2,p(!

1
), w

D
· n D !

1
"0 and wk :"w

D
· sk D !

1
(k"1, 2) satisfy (3.8),

(A.7) ¹
D
3C3,a()1 ), 0(E

1
)¹

D
(x)/¹

0
for all x3), ¹

D
D !

1
and ¹

0
are positive

constants.
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Remark 2. For constants c
m
('1) and º

m
, we define A and D as follows:

A"MS3C2,a()M ) D S D)"¹
D
/¹

0
D ) , E+SE

C1,a ()1 ))E
m
:"E

1
/c

m
N,

D"Mº3¼3,p()) Dº · n D !
1
X!

2
"»

D
, EºE

W3,p ()))º
m
N.

To show that operator F is a map from A]D to itsel, constant E
m
, º

m
cannot be

chosen arbitrary. As we will see below, E
m
, º

m
, +2

i/1
E»

D
E

W3~1@p,p (!
i
) , and E

1
are

related to each other. We state our main result below:

Theorem 6.1. ºnder (A1)— (A7), there exist two continuous functions i
1
, i

2
such that if

1. ¹he following hold for E
m
, º

m
, +

i
E»

D
E

W3~1@p,p(!
i
) , and E

1
:

(a) ¹here is a constant o
3

satisfying 0(o
3
)S (x) ∀x3), S3A,

(b) 0(o
1
)!¹

0
Sd/e2F

3)4
(S, º))o

2
, ∀(S, º )3A]D (see (4.7) for

F
3)4

(S, º)),
(c) i

1
(1/o

1
, E lno

D
E
C3,a , Eo

D
E
C3,a , EZE

C1,a) +2
i/1

E»
D
E

W3~1@p,p(!
i
)(º

m
,

(d) ¹here is a constant k
s
satisfying 0(k

s
(E

1
(1!diam )/c

m
)/b

2
!i

2
(º

m
, 1/v

d
),

2. 1/¹
0
#E+ ln(o

D
)E

C2,a ()1 )#Ew
D
E
W2,p(!

1
) is small, then a unique subsonic solution of

system (1.1)— (1.7) exists. In other words, there exists (¹, », o, () uniquely such
that (1) o, ¹3C3,a ()M ), », (3¼3,p()); (2) (¹, », o, () satisfies (1.1)—(1.7), and (3)
D» D2 (x))¹ (x)/m for all x3).

Note that if E
m
, º

m
, +

i
E»

D
E

W3~1@p,p(!
i
) are small, and if E

1
is large, then the four

constants satisfy 1. (a), (b), (c), (d). To show that operator F is a map from A]D to
itself, let us first consider the solvability of (4.7)— (4.9).

Lemma 6.1. ºnder (A1)—(A7), there exist constants E
m
, º

m
such that as 1/¹

0
is small

enough, (4.7)— (4.9) has a unique solution o"exp(f)3C3,a()1 ) for all (S, º)3A]D.
Moreover,

0(o
1
)o (x), ∀x3), (6.1)

EoE
C3,a()1 ))k

3AE ln(o
D
)E

C3,a , Eo
D
, ln(Z), ZE

C0 ,
EZE

C1,a

¹
0
E

1

,
º

m
¹

0
E
1

,
E

m
¹

0
E

1
B , (6.2)

KK
+o
o KK

C2,a ()1 )
)k

4Aºm
, E

m
,

1

E
1

,E ln(o
D
)E

C3,a , EZ, ln ZE
C1,a)

]A
1

¹
0

#E+ ln(o
D
)E

C2,aB , (6.3)

where k
3
, k

4
are continuous functions of its arguments.

Proof. Let us take constants E
m
, º

m
such that the following hold:

1. There exists a constant o
3

satisfying 0(o
3
)S(x) ∀x3), S3A, (6.4)

2. 0(o
1
)(!¹

0
Sd/e2)F

3)4
(S, º))o

2
, ∀(S, º)3A]D

(see (4.7) for F
3)4

) . (6.5)
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Next, we look at the second-order terms of (4.7). Setting A
ij
"d

ij
!mº

i
º

j
/¹

0
S , then

the eigenvalues of (A
ij
) are 1, 1, 1!m Dº D2/¹

0
S . If 1/¹

0
is small enough, then

1!m Dº D2(x)/(¹
0
S)*o

s
'0 for (, º)3A]D and some constant o

s
. (6.6)

Also if 1/¹
0

is small enough, by (A1) and (A2) and Remark 1, u(q)(2n/(3#a) for
q3!M

1
X!M

2
. By Lemma 5.2, (4.7) and (4.8) has a unique solution f3C3,a()1 ) and

f satisfies

ln(o
1
))f (x))ln(o

2
), (6.7)

EfE
C3,a ()1 ))c

1AE ln(o
D
)E

C3,a , Eo
D
, ln(Z), ZE

C0 ,
EZE

C1,a

¹
0
E

1

,
º

m
¹

0
E
1

,
E
m

¹
0
E
1
B . (6.8)

(6.7) and (6.8) imply (6.1) and (6.2), respectively. Since +o/o"+f, we obtain (6.3) by
(6.8) and Lemma 5.2. K

Next, we consider the solvability of (4.10) and (4.11).

Lemma 6.2. ºnder the same assumptions as ¸emma 6.1, (4.10) and (4.11) has a unique
solution E3C3,a ()1 ) for all (S, º)3A]D and o from (4.9). Moreover,

E+EE
C2,a ()1 ))k

5
(E+o/oE

C1,a , ºm
, EE

D
E
C1,a) (E+E

D
E
C2,a#1/¹

0
), (6.9)

where k
5

is continuous function of its arguments.

Proof. By (A1)— (A2) and Lemma 5.1, (4.10) and (4.11) has a unique solution
E3C3,a ()M ) and

EE!E
D
E
C3,a()M ))c

3
(E+o/oE

C2,a , ºm
, EE

D
E
C1,a) (E+E

D
E
C2,a#1/¹

0
),

which implies (6.9). K

By º3D and o, E from above two lemmas, we are ready to solve (4.12)—(4.14). Let
us also define an operator M (wJ )"w as follows: Given wJ , solve the following for P;

*P"!+E ·wJ /b2
!+ · (+E]º/b

2
), x3), (6.10)

+P · n D !
1
"0. P D !

2
"0 (6.11)

By P from (6.10) and (6.11), compute from

(º · +)w#(+ ·º )w!(w · +)º#

Ew

b
2

"!+P!

+E]º

b
2

#

¹
0
+o]+E

mo
, (6.12)

w D !
1
"w

D
. (6.13)

Lemma 6.3. Besides the assumptions of Lemma 6.1, if + ·º/2#Ew/b
2
'0 in ), then

a solution of (4.12)—(4.14) is a fixed point of (6.10)— (6.13) and vice versa.

1398 L.-M. Yeh

Math. Meth. Appl. Sci., Vol. 20, 1389—1410 (1997) ( 1997 by B.G. Teubner Stuttgart—John Wiley & Sons Ltd.



Proof. This lemma only shows the equivalence between a solution of (4.12)— (4.14) and
a fixed point of (6.10)— (6.13). Existence of a fixed point of (6.10)— (6.13) is in next
lemma.

Taking the divergence of (4.12), we get (6.10). So one side is done. The other side is
equivalent to show that + ·w"0 in ). Taking inner product of (6.12) and n on !

1
, we

obtain (by (A6)— (A7), (6.11), and using a similar argument in section 3)

º
n
(n · +w

n
)#º

n
wkS(n ·+)sk, nT!wk (sk · +º

n
)!wkºn

S(sk · +)n, nTD !
1
"0,

where º
n
:"º · n. By (A6) (i.e. (3.8)), we see + · w D !

1
"0. Taking the divergence of

(6.12), we obtain, by (6.10),

º+(+ · w)#(+ ·º#E/b
2
)+ · w"0 in ), (6.14)

+ ·w D !
1
"0. (6.15)

Multiplying (6.14) by + · w and doing integration by parts, we see that (6.14)— (6.15)
implies + · w"0 in ) because + ·º/2#Ew/b

2
'0. So a fixed point of (6.10)—(6.13) is

a solution of system (4.12)— (4.14). K

We now prove the solvability of the system (4.12)—(4.14).

Lemma 6.4. ºnder (A1)— (A7), there is a continuous function i
2

such that if

0(k
s
((1!diam)/c

m
)E

1
/b

2
!i

2
(º

m
1/v

d
) for some constant k

s
(6.16)

(E
m
, ºm are chosen as Lemma 6.1 and c

m
is defined in Remark 2) and if 1/¹

0
is small,

then (4.12)— (4.14) has a unique solution w3¼2,p()) and

EwE
W2,p()))k

6Aºm
,
1

v
d

,
1

k
d

, EE
D
, lno

D
E
C3,a ()1 ) , E ln(Z), ZE

C1,a ,
1

E
1

, E+¹
D
E
C2,a()M )B

](1/¹
0
#E+ ln(o

D
)E

C2,a ()1 )#Ew
D
E
W2,p (!

1
)), (6.17)

where k
6

is a continuous function of its arguments.

Proof. By Lemma 6.3, it is equivalent to proving the existence of a fixed point of
system (6.10)— (6.13). Given wJ 3¼2,p()), by (A1)— (A2) and Lemma 5.1 (6.10) and (6.11)
is uniquely solvable, and

EPE
C3,a)c

4
E+EE

C2,a (EwJ E
W2,p#EºE

W3,p). (6.18)

By Lemma 5.4, (A5) and (6.16), we see (6.12) and (6.13) has a unique solution
w3¼2,p()) and

EwE
W2,p()))c

5
(EEE

W2,p , ºm
, 1/v

d
, 1/k

s
) (E r.h.s. of (6.12)E

W2,p()1 )#Ew
D
E
W2,p(!

1
)).

(6.19)

So we can define a map M :¼2,p())P¼2,p ()) by M(wJ )"w.
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Next, we claim M is a contractive map. If w*
1
, w*

2
are given and if

M(w*
1
)"w

1
, M(w*

2
)"w

2
, then by (6.10) and (6.11).

EP
1
!P

2
E
C3,a)c

6
E+EE

C2,aEw*
1
!w*

2
E
W2,p . (6.20)

By (6.12), (6.13) and (6.20),

Ew
1
!w

2
E
W2,p)c

7
(EEE

W2,p , ºm
, 1/v

d
, 1/k

s
)E+EE

C2,aEw*
1
!w*

2
E
W2,p .

Because 1/¹
0

is small, M is a contractive map.
Therefore, the fixed point of (6.10)— (6.13) exists uniquely. If w is the fixed point of

(6.10)— (6.13), by (6.19), we see w satisfies (6.17). K

Next, we prove operator F is a map from A]D to itself.

Lemma 6.5. ºnder (A1)—(A7), there exist two continuous functions i
1
, i

2
such that if

1. E
m
, º

m
(chosen as Lemma 6.1) +2

i/1
E»

D
E
W3~1@p,p(!

i
) and E

1
satisfy

(a) i
1
(1/o

1
,E lno

D
E
C3,a , Eo

D
E
C3,a, EZE

C1,a) +2
i/1

E»
D
E
W3~1@p,p(!

i
)(º

m
,

(b) (6.16) hold,
2. 1/¹

0
#E+ ln(o

D
)E

C2,a ()1 )#Ew
D
E
W2,p (!

1
) is small,

3. E+¹
D
E
C2,a()1 ) is bounded,

the operator F of (4.7)— (4.21) is a map from A]D to itself.

Proof. For any (S, º)3A]D, if 1/¹
0

is small by Lemma 6.1, (4.7)— (4.9) has a unique
solution o3C3,a()1 ) and (6.1)—(6.3) hold. If 1/¹

0
is small and if E+¹

D
E
C2,a ()1 ) is

bounded, by Lemma 6.2, (4.10)— (4.11) has a unique solution and

E+EE
C2,a ()1 ))E

m
, E'0, (6.21)

i.e. E3A. By Lemma 6.4, system (4.12)— (4.14) has a unique solution w3¼2,p()) and
w satisfies (6.17). With w from (4.12)— (4.14), by Theorem 10.3 of [15] and (A2), the
system (4.15)— (4.17) is uniquely solvable, p3¼3,p()), and

EpE
W3,p()))c

8
EwE

W3,p ()) . (6.22)

Next, we consider (4.18)— (4.20). By (A5), Lemmas 5.3, 6.1, and let 1/¹
0

small, we
obtain

EtE
W4,p()))c

9
(1/o

1
, EoE

C3,a) (E+opE
W2,p ())#+

i

Eo
D
»

D
E
W3~1@p,p(!

i
)). (6.23)

Let »"!+t#p. By (6.22)—(6.23), if 1/¹
0

is small enough,

E»E
W3,p)k

1
(1/o

1
, E ln o

D
E
C3,a , Eo

D
E
C3,a, EZE

C1,a) (EwE
W2,p

#+
i

E»
D
E
W3~1@p,p (!

i
)).
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By (6.17) and above assumptions, as long as 1/¹
0
#E+ ln(o

D
)E

C2,a ()1 )#Ew
D
E
W2,p (!

1
) is

small enough,

E»E
W3,p)º

m
. (6.24)

So »3D. By (6.21) and (6.24), we conclude that F maps A]D to itself. K

Next we show F is a continuous map in C1,a]¼2,p. If it is true, by Schauder fixed
point theorem we know the operator F has a fixed point in A]D.

Lemma 6.6. By assumptions of Lemma 6.5, F is a continuous map in C1,a]¼2,p. F is
a contractive map if 1/¹

0
#E+ ln(o

D
)E

C2,a()1 ) is even smaller.

Proof. This is shown by a straightforward way, so we only sketch the proof. First let
us given a notation:

c
11
"1/¹

0
#E+ ln(o

D
)E

C2,a ()1 ) ,

c
12

is a constant which depending on Eo
D
, E

D
E
C3,a ()1 ) , º

m
, 1/o

1
, 1/E

1
, EZE

C1,a()1 ) ,
1/v

d
, 1/k

s
.

Given (S
a
, º

a
), (S

b
, º

b
), by solving (4.7)— (4.21), we obtain (f

a
, o

a
, E

a
, w

a
, p

a
, t

a
, »

a
)

and (f
b
, o

b
, E

b
, w

b
, p

b
, t

b
, »

b
) . F(S

a
, º

a
)"(E

a
, »

a
), F(S

b
, º

b
)"(E

b
, »

b
) . By

(4.7)— (4.9), we can derive

Ef
a
!f

b
E
C2,a)

c
12
¹

0

[ES
a
!S

b
E
C1,a#Eº

a
!º

b
E
C1,a]. (6.25)

By (4.10)— (4.11) and (6.25), we obtain

EE
a
!E

b
E
C2,a)

c
12
¹

0

[ ES
a
!S

b
E
C1,a#Eº

a
!º

b
E
C1,a]. (6.26)

By Lemmas 5.4, 6.1, 6.2, 6.4, and (6.25)— (6.26), we have

Ew
a
!w

b
E
W1,p)c

11
c
12

[ES
a
!S

b
E
C1,a#Eº

a
!º

b
E
W2,p]. (6.27)

By Reference 15 and (4.15)—(4.17),

Ep
a
!p

b
E
W2,p)c

13
Ew

a
!w

b
E
W1,p . (6.28)

By Eq. (4.18) and Lemma 5.3, we get the estimate

E+ (t
a
!t

b
)E

W2,p)c
14

(1/o
1
, o

D
) [Ep

a
!p

b
E
C1,a#Eo

a
!o

b
E
C2,a]. (6.29)

By (6.27)— (6.29),

E»
a
!»

b
E
W2,p)c

11
c
12

[ES
a
!S

b
E
C1,a#Eº

a
!º

b
E
W2,p]. (6.30)

By (6.29) and (6.30), we see that F is a continuous map in C1,a]¼2,p. If c
11

is even
smaller, F is a contractive map. K

Finally, we prove our main result.
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Proof of ¹heorem 6.1. By Lemmas 6.5, 6.6, we know that F maps A]D to itself and
that F is continuous in C1,a]¼2,p. Since A]D is a compact, convex subset of
C1,a]¼2,p, by Schauder fixed point theorem, a fixed point exists. If 1/¹

0
#

E+ ln(o
D
E
C2,a ()1 ) is small enough, fixed point of F exists uniquelybecauseF is contrac-

tive map.
Next, we show a solution of (1.1)— (1.7) corresponds to a fixed point of (4.7)— (4.21)

and vice versa. Suppose (o, », ¹, () is a solution of the system (1.1)— (1.7), by tracing
the derivation of (4.7)—(4.21), it is easy to see that (¹/¹

0
, ») is a fixed point of the

system (4.7)— (4.21). On the other hand, let us assume that (E, ») is a fixed point of
(4.7)— (4.21). Define ¹"E¹

0
'0. By (4.9) and (4.21), we obtain (o, V, T). (o, », ¹)

satisfy equations (1.1), (1.3), (1.6)
2
, (1.7)

1
, (1.7)

2
by (4.18), (4.10), (4.11), (4.19), (4.14)

1
respectively. By (4.15) and (4.21), (4.12) can be written as

curlC(» ·+)»#

1

mo
+(o¹ )#

¹»

b
2
¹

0
D"!+P. (6.31)

By (4.14)
2,3

, we see (6.31) implies P"0 in (4.12). Since domain is simply connected,
(6.31) implies there is a function ( such that

(» ·+)»#

1

mo
+ (o¹ )!

e

m
+(#

¹»

b
2
¹

0

"0, (6.32)

i.e. (1.2). Next taking divergence of equaton (6.32), and comparing with (4.7), we obtain
equations (1.4) and (1.6)

1
. Therefore, we conclude a fixed point (¹/¹

0
, ») of

(4.7)— (4.21) also corresponds to a solution (o, », ¹, () of (1.1)— (1.7). Uniqueness of the
fixed point of (4.7)— (4.21) is equivalent to uniqueness of the solution of (1.1)— (1.7).

Because of the fixed point (¹/¹
0
, » )3A]D, solution (o, », ¹, () of (1.1)— (1.7)

satisfy o, ¹3C3,a()M ), », (3¼3,p()). Because of (6.6), we see that solutin (o, », ¹, ()
satisfy D» D2 (x))¹ (x)/m for all x3), i.e. the solution (o, », ¹, () is a subsonic
solution. So we complete the proof.

7. Proof of auxillary lemmas

In this section, we prove Lemmas 5.2—5.4. Lemma 5.2 is proved by employing the
Leray—Schauder fixed point theorem [7] and Lemma 5.1, Lemma 5.3 is proved by
results in [11] and method of continuity [7]. Lemma 5.4 is proved based on Lemmas
7.1—7.3. Lemma 7.1 is an extension theorem, and its proof is similar to that of Theorem
7.25 in [7]. By energy method, Lemma 7.2 gives a priori estimate for a transport
equation in a bounded smooth domain. Then an existence result of a transport
equation in a bounded smooth domain is shown in Lemma 7.3. Finally, by Lemma
7.3, we prove Lemma 5.4.

Proof of ¸emma 5.2. Set 0(c)a, K
m
"max( Du D , DuN D), K

M
"sup) Du

D
D#K

m
,

y
KM

(x) :"G
K

M
y(x)

if Dy(x) D'K
M

,

if Dy(x) D)K
M

.
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Next, define a map M : C0,c()M )][0, 1]PC0,c ()M ) by M(y, t)"z, where z is the
solution of

L(z) :"a
ij
z
,ij
#a

i
z
,i
"t (a(x)g (y

KM
)!f (x)) in ),

z D )"tu
D
D ) .

Observe that if y
n
convergences to y in C0,c, then y

n,KM
also converges to yK

M
in C0,c.

By Lemma 5.1, we set that

EzE
C2,c)tc(j, Ea

ij
, a

i
E
C0,a) (Eu

D
E
C2,c#Ea (x)g (yK

M
)E

C0,c#E f (x)E
C0,c).

So M is a continuous and compact operator. If z
t
is a fixed point of the following

system:

L(z
t
)"t(a (x)g(yK

M
)!f (x)),

z
t
D )"tu

D
D ) ,

then z
t
3C2,c()1 ) [2]. By De Giorgi—Nash theorem [7], there is a positive number

l such that Ez
l
E
C0,l is bounded, and the bound is independent of y, t. Note l is

independent of c, so we may assume c"l. Therefore by Leray—Schauder fixed point
theorem [7], a fixed point, u, of M( · , 1) exists.

Suppose the fixed point u satisfies Du (x) D)K
M

in ), then u is a solution of (5.3).
Next we prove Du(x) D)K

M
in ).

(a) Claim. If u is a fixed point of M( · , 1) then Du (x) D)K
M

in ).

Proof. The set )
`
-) of points at which u (x)'K

m
holds is open in ), and the

boundary of )
`

consists of points x at which either u(x)"K
m

or the point is
contained on ). We assume that )

`
is non-empty. Let x*3)

`
. We denote the

maximal connected component of )
`

containing x* by )*
`
. Define

u
Km,KM

(x) :"







K
M

if u(x)'K
M

,

u (x) if K
m
)u (x))K

M
,

K
m

if u(x)(K
m
.

Then, u D)*
`

satisfies

L(u)"a(x)g(uK
m
, K

M
)!f (x) in )*

`
,

u D)*
`
"u

D
D ) or K

m
.

Note a (x)g (K
m
)*f (x), so L(u)*0. We obtain sup)*

`
u (x))sup )*

`
u (x) by maximal

principle [7]. Therefore sup)*
`
u(x))K

M
, which implies u (x))K

M
in ). A similar

argument can be used to prove the other side, i.e. u (x)*!K
M

in ). Therefore, we
conclude that EuE

L=())
)K

M
.

(b) By Claim (a), the fixed point u is a solution of (5.3) and is in C2,l ()1 ). So
g(u

KM
)"g (u)3C0,a ()1 ) by Theorem 7.26 of [7]. By iteration we see u3Cm`2,a()1 ).
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Uniqueness of solution is obtained by the maximal principle [7]. The upper and lower
bounds of u (x) are obtained as follows: Define I :"min(u

1
, u), so

a
ij
(x) (u!I )

,ij
#a

i
(u!I )

,i
!a (x)(g (u)!g (I))"!f (x)#a (x)g (I),

u!I D )*0.

Since !f (x)#a (x)g (I))0 for all x3), min(u
1
, u))u (x) by the maximal principle.

By a similar argument, we can prove u (x))max(u
2
, u6 ) for all x3).

By (5.2), we see that solution u satisfies

EuE
Cm`2,a)c (j, Ea

ij
, a

i
, aE

Cm,a) (Eu
D
E
Cm`2,a#E f E

Cm,a#Eg (u)E
Cm`1). (7.1)

By interpolation inequality [7, p. 176] and (7.1), one can derive

EuE
Cm`2,a)c (j, Ea

ij
, a

i
, aE

Cm,a)P(Eu
D
E
Cm`2,a E f E

Cm,a , EgE
Cm`1 (-

1
)

#Eg~1E
C0(-

2
)). K

Proof of ¸emma 5.3. This lemma will be proved by method of continuity [7].
We first consider the case g"0. Define

B"Gu3¼m`2,p()) K P)
udx"0, +u · n D !

1
X!

2
"0H ,

V"G f3¼m,p ()) K P)
f (x) dx"0H.

Then B and V are Banach spaces. Let L
0
u :"*u and L

1
u :"+ · (a(x)+u). Then L

0
and L

1
are bounded linear operators from B to V. Define L

t
, t3[0, 1], as follows:

L
t
u :"(1!t)*u#t+ · (a(x)+u).

By [11], L
0

is a one-to-one and onto map. Suppose EuE
Wm`2,p)cEL

t
uE

Wm,p , by
method of continuity, L

1
is also one-to-one and onto. Then the theorem holds true.

To show that EuE
Wm`2,p)cEL

t
uE

Wm,p for all u3B, we note

*u"

L
t
u

(1!t)#ta(x)
!

t+a(x)

(1!t)#ta(x)
+u.

By [11] and interpolation theorem [7],

EuE
Wm`2,p)c (EaE

Cm`1,a , 1/j) (EL
t
uE

Wm,p#EuE
Lp). (7.2)

Next, we want to show EuE
¸p)cEL

t
uE

Wm,p for all u3B. If not, then there exists
a sequence Mu

n, tn
NLB such that Eu

n,tn
E

¸p"1 and EL
tn
u
n, tn

E
Wm,pP0. By (7.2),

Eu
n, tn

E
Wm`2,p)c (EaE

Cm`1,a , 1/j) (EL
tn
u
n, tn

E
Wm,p#Eu

n, tn
E

Lp ),

i.e. Eu
n, tn

E
Wm`2,p is bounded. Since t

n
3[0, 1], we assume t

n
Pt*. Because ¼m`2,p is

a reflexive Banach space [3], there exists a subsequence Mu@
n, tn

N of Mu
n, tn

N such that
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u@
n, tn

Pu*3¼m`2,p()) weakly. One can see Eu*E
Lp"1. However,

L
t*
u*"0 in ),

+u* · n"0 on !
1
X!

2
,

P)
u*(x) dx"0. (7.3)

Equation (7.3) implies u*"0 [9], which is a contradiction. So EuE
Lp)cEL

t
uE

Wm,p .
Therefore, by (7.2), we have

EuE
Wm`2,p)c(EaE

Cm`1,a , 1/j)EL
t
uE

Wm,p , ∀u3B. (7.4)

So L
1
:BPV is an one-to-one and onto map, that is, solution of (5.4) exists uniquely

for g"0. By (7.4), (5.5) holds for the case g"0.
We now consider the case gO0. By [11], one can find G3¼m`2,p ()) such that

+G · n D !
i
"g/a, i"1, 2, EGE

Wm`2,p ()))c (+ Eg/aE
Wm`1~1@p,p (!

i
)). (7.5)

Consider the following

+ · (a (x)+uL )"f!+ · (a(x)+G), in ),

a(x)+uL · n"0, on !
1
X!

2
,

P)
uL (x) dx"0. (7.6)

By the result of previous case g"0, (7.6) has a unique solution û3¼m`2,p()) and by
(7.4) and (7.5),

E ûE
Wm`2,p)c (EaE

Cm`1,a , 1/j) (E f E
Wm,p#+ EgE

Wm`1~1@p,p(!
i
)E). (7.7)

Let us define

u"û#G!

1

D) D P)
G dx,

where D) D is the volume of ). Then u3¼m`2,p()) is the unique solution of (5.4), and
it is easy to check, by (7.7), (5.5) holds. Thus the conclusion of this lemma follows. K

Remark 3. Next, we give an extension theorem for a domain with edge. Let )LR3 be
a Ck~1,1 domain with an edge ¸ (see Remark 1). Then we can find a bounded smooth
domain )@ such that (1) )L)@; (2) !

1
L)@; (3) for all q3¸"!1

1
W!1

2
, there exists

a neighborhood N (q) of q such that N(q)W) is smoothly (Ck~1,1) homomorphic to the
intersection between a unit ball and a quadrant R3/4 :"M(x

1
, x

2
, x

3
) Dx

1
'0, x

3
'0N;

(4) N(q)W)@ is smoothly (Ck~1,1) homomorphic to the intersection of a unit ball and
the half-space R3

`
:"M(x

1
, x

2
, x

3
) Dx

1
'0N.
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Lemma 7.1. For any ) and )@ in Remark 3, there exists a bounded linear operator
E :¼k,p ())P¼k,p()@) such that E (º)(x)"º(x) for x3) and

EE (º)E
Wk,p ()@))cEºE

Wk,p()) , ∀º3¼k,p()),

c"c(k, ), )@).

Proof (see Theorem 7.25 [7]). As in (7.56) of [7], we define an extension in half-space
as follows:

E
0
º(x)"







º (x),

k
+
i/1

c
i
º(x@,!x

3
/i),

x
3
'0,

x
3
(0,

where x"(x@, x
3
) and c

1
, x

2
,2 , c

k
are constants determined by the system

k
+
i/1

c
i
(!1/i)m"1, m"0, 1,2 , (k!1).

If º3C=(R3/4)W¼k,p (R3/4), then

E
0
º3Ck~1,1 (R3

`
)W¼k,p(R3

`
) and EE

0
ºE

Wk,p(R3
`)
)cEºE

Wk,p (R3/4) .

By approximation, one see that the domain of E
0

can be extended to ¼k,p(R3/4), i.e.

E
0
:¼k,p (R3/4)P¼k,p (R3

`
) and EE

0
ºE

Wk,p(R3
`)
)cEºE

Wk,p (R3/4) .

Then, by partition of unity and following the argument of Theorem 7.25 [7], we can
show this lemma true. K

Next, we derive a priori estimate for a transport equation. Domain ) considered in
the next two lemmas are smooth domains, !

~
is a closed subset of ), Mb, º, f, gN are

vector functions, and " is a matrix function.

Lemma 7.2. Consider the system

(b · +)º#"º"f, ),

º"g, !
~

, (7.8)

where !
~

:"Mx3)Db · n(0N. If the following conditions are satisfied

1. ) is a bounded smooth domain, H1())˝¸p()), ¼1,p())˝¸= ()),
2. b3¼

l`1,p()), 2)l, b · n(!j(0 on !
~

,
3. f, "3¼

l,p()), g3¼
l,p (!

~
), º3Hl`1()),

4. "(x)'"
m
I in ), "

m
!i

1
(p, EbE

W
l`1,p()) , 1/j)""

d
'0,

where j, "
m
, "

d
are constants, I is identity matrix, and i

1
is a continuous function of its

arguments, then the following estimate holds, 0)s(l :

EºEp
Ws,p ()))c (p, E"E

W
l,p , EbE

W
l`1,p , 1/j, 1/"

d
) (E f E p

Ws,p())#E fEp
Ws,p(!

~
)). (7.9)

1406 L.-M. Yeh

Math. Meth. Appl. Sci., Vol. 20, 1389—1410 (1997) ( 1997 by B.G. Teubner Stuttgart—John Wiley & Sons Ltd.



Proof. By means of a partition of unity, a local co-ordinate change, and Lemma 1.1.1
in [10], it is sufficient to prove (7.9) in a half-space. Estimate in a half-plane is obtained
by differentiating the equation (7.8)

1
to estimate tangential derivatives and then, using

b · nO0 on !
~

to solve for the normal variables in terms of the tangential ones. For
convenience, we assume assumptions of this lemma hold in a half place and )"!

~
.

We use the following notations: b"(b
1
, b@)"(b

1
, b

2
, b

3
), )"Mx Dx"(x

1
, x@)"

(x
1
, x

2
, x

3
), x

1
*0N,

s
x@º" +

D c D)s

c2
xc

2
2

c
3

xc
3
3

º, sx
1
,x@º" +

D c D)s

c2
xc

2
1

c
3

x@c3
º, Dc D"c

2
#c

3
, c

i
*0.

Consider the following in a half-space;

Lº :"(b ·+)º#"º"f,

º D
x1/0

"g. (7.10)

We prove the inequality (7.9) by method of induction.
Case s"0: Multiply (7.10)

1
by Dº Dp~2º and integrate over ):

P)
(b ·+)º Dº D p~2ºdx#P)

" Dº Dpdx"P)
f Dº Dp~2º dx. (7.11)

Note

P)
(b ·+)º Dº Dp~2ºdx*1/p P!

1

b · n Dº Dpdx@!1/p P)
(+ · b) Dº Dpdx. (7.12)

By (7.11) and (7.12) and Hölder’s inequality,

P)
("!(+ · b)/p!(p!1)/p) Dº Dpdx)1/p E f Ep

Lp#1/p P!
~

Db · n Eg Dpdx@.

(7.13)

Case s"1: Differentiate (7.10)
1

with respect to 
x@ , we have

(b · +)
x@º#"

x@º"
x@ f!(

x@b ·+)º!(
x@")º. (7.14)

Applying (7.13) to (7.14), we obtain

P)
("!(+ · b)/p!(p!1)/p) D

x@º Dpdx

)1/p P!
~

Db · n D D
x@g Dpdx@#c(p) E

x@ f Ep
Lp

#c(p)E (
x@b · +)ºEp

Lp#c (p)E (
x@")ºEp

Lp . (7.15)

By (7.10)
1
,

E
x1
ºE

Lp)c/j(E f E
Lp#Eb@ E

L=E
x@ºE

Lp#E"E
L=EºE

Lp). (7.16)
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By (7.15) and (7.16), we obtain

("
m
!i

1
(p, 1/j, EbE

W1,=())))E
x@ºEp

Lp)P!
~

Db · n D D
x@g Dpdx@

#c (p, 1/j, E+bE
L=) E f E p

W1,p#c (p, E"E
W1,=, 1/j, E+bE

L=) EºEp
Lp . (7.17)

By (7.16) and (7.17),

"
d
E

x
ºEp

Lp)c(p, E"E
W1,= , 1/j, EbE

W1,=)AE f Ep
W1,p#EºEp

Lp#P!
~

D
x@g DpdsB.

(7.18)

By (7.13), (7.18),

EºEp
W1,p)c (p, E"E

W1,= , 1/j, EbE
W1,=, 1/"

d
) (E f E p

¼1,p#EgEp
¼1,p (!

~
)). (7.19)

So we prove (7.9) for cases s"0, 1.
Suppose (7.9) holds for k"0,2 , s!1, we plan to show (7.9) holds for k"s, s)l.

Differentiate (7.10)
1

with respect to s
x@ , then

(b · +)s
x@º#"s

x{
º"s

x@ f#[L, s
x@]º,

where

[L, s
x@]º :"(b · +)s

x@º#"s
x{
º!s

x@((b · +)º#"º ).

By (7.13),

P)
("!(+ · b)/p!(p!1)/p) Ds

x@º Dp dx

)1/p P!
~

Db · n D Ds
x@g Dp dx@#c(p)Es

x@ f E p
Lp#c(p)E[L, s

x@]ºEp
Lp ,

which implies

("
m
!c(p, 1/j, EbE

W
l`1,p)) Es

x@ºEp
Lp

)c (p) P!
~

Db · n D Ds
x@g Dp dx@#c (p)Es

x@ f E p
Lp

#c(p, EbE
W

l`1,p , E"E
W

l,p)EºEp
Ws~1,p#c(p, EbE

W
l`1,p)Es

x1x@ºE p
Lp . (7.20)

By (7.10)
1
, we have

s~1
x


x1
º"s~1

x@ ( f!b@
x@º!"º)/b

1
. (7.21)

So

Es~1
x@ 

x1
ºE

Lp)c(1/j, EbE
W

l`1,p , E"E
W

l,p) (EºE
Ws~1,p#E f E

Ws~1,p)

#c(1/j, EbE
W

l`1,p)Es
x@ºE

Lp .
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Moreover, one can show

Es
x1

,x@ºE
Lp)c(1/j, EbE

W
l`1,p , E"E

W
l,p) (EºE

Ws~1,p#E f E
Ws~1,p)

#c (1/j, EbE
W

l`1,p)Es
x@ºE

Lp . (7.22)

By (7.20), (7.22), and assumption of method of induction,

"dEs
x@ºE p

Lp)c(p, EbE
W

l`1,p , E"E
W

l,p , 1/j, 1/"
d
) (E f Ep

Ws,p#EgEp
Ws,p(!

~
)).

(7.23)

By (7.22) and (7.23),

EºE p
Ws,p)c(p, E"E

W
l,p , EbE

W
l`1,p , 1/j, 1/"

d
) (E f Ep

Ws,p#EgEp
Ws,p(!

~
)).

So we prove (7.9). K

Lemma 7.3. Besides assumptions 1, 2, 4 of Lemma 7.2, if
1. f, "3¼

l,p()), g3¼
l,p (!

~
),

then the system (7.8) has a unique solution º3¼
l,p ()) and

EºE p
W

l,p()))c(p, E"E
W

l,p , EbE
W

l`1,p , 1/j, 1/"
d
) (E f Ep

Ws,p())#EgEp
Ws,p(!

~
)).

(7.24)

Proof. By density theorem [7], we can choose the sequences Mb
k
, "

k
, f

k
NLC=()1 ),

Mg
k
NLC= (!

~
) such that

b
k
Pb in ¼

l`1,p ()), "
k
, f

k
P", f in ¼

l,p()), g
k
Pg in ¼

l,p (!
~

) as kPR.

Let k be large enough such that Mb
k
, "

k
, f

k
N satisfy the assumptions of Lemma 7.3.

Then for each k, the system

(b
k
· +)º

k
#"

k
º

k
"f

k
in ),

º
k
"g

k
on !

~
,

has a unique weak solution º
k
3Hl`1()) [12]. By Lemma 7.2, the following holds:

Eº
k
E p
W

l,p)c(p, E"
k
E
W

l,p , Eb
k
E
W

l`1,p , 1/j, 1/"
d
) (E f

k
Ep
W

l,p#Eg
k
Ep
W

l,p(!
~
)).

Since MEb
k
E
W

l`1,p , E"
k
E
W

l,p , E f
k
E
W

l,p , Eg
k
E
W

l,pN are bounded, Eº
k
E
W

l,p()) is
bounded. Because ¼

l,p is a reflexive Banach space [3], there is a subsequence Mº @
k
N

of Mº
k
N such that º @

k
Pº* weakly in ¼

l,p, which implies Eº*E
W

l,p)

lim inf
k?=

Eº
k
E
W

l,p . Passing k to R, we see that º* is a classical solution of (7.8) and
satisfies (7.24). K

Based on the results of Lemmas 7.1—7.3, we now prove Lemma 5.4.

Proof of Lemma 5.4. First, we extend the domain ) to a smooth simply connected
domain )@ (see Remark 3) such that !

1
L!@

1
L)@. For function b, we extend it to b*

in )@, by Lemma 7.1, such that !@
1
"Mx3)@ Db* (x) · n(0N,

Eb*E
W

l`1,p ()@))cEbE
W

l`1,p ()), b* · n D !@
1
(x)(!j(0,
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We also extend f, " to f *, "* in )@ and g to g* on )@ such that

E f *E
W

l,p()@))cE f E
W

l,p()) , Eg*E
W

l,p(!@
1
))cEgE

W
l,p(!

1
) ,

E"*E
W

l,p()@))cE"E
W

l,p()) , "*(x)'"
m
'0, ∀x3).

Furthermore, b*, f *, "*, g* satisfy the assumptions of Lemma 7.3. Consider the
following

(b* · +)º*#"*º*"f * in )@,

º*"g* on !@
1
.

Then, by Lemma 7.3, there exists a solution º*3¼
l,p ()@) in the above equation and

Eº*Ep
W

l,p()@))c(p, E"*E
W

l,p, Eb*E
W

l`1,p , 1/j, 1/"d
) (E f *Ep

W
l,p()@)#Eg*Ep

W
l,p(!@

1
)).

Then º"º* D) is the required solution. Note that Eº*E p
W

l,p()@))Eº*E p
W

l,p()@) . Next
by adjusting the coefficients of the above inequality, we obtain estimate (5.6) for s"l
case. Other cases of estimate (5.6) can then be obtained by tracing the proof of Lemma
7.2. Uniqueness can be proved simply by energy method. K
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