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This paper is concerned with the existence and uniqueness of the steady-state solution of hydrodynamic
model for semiconductor devices. Boundary conditions are prescribed by vorticity on inflow boundary as
well as by electron density, temperature, and normal component of electron velocity on whole boundary. If
the ambient temperature is large, and if both vorticity on inflow boundary and the variation of density on
boundary are small, a unique subsonic solution exists. © 1997 by B.G. Teubner Stuttgart-John Wiley &
Sons Ltd.
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1. Introduction

This paper is concerned with the existence and uniqueness of the steady-state
solution of hydrodynamic model for semiconductor devices. The model is derived
from moments of the Boltzmann’s equation, taken over group velocity space. When
coupled with the charge conservation equation, it describes the behaviour of small
semiconductor devices and accounts for special features such as hot electrons and
velocity overshoots. In steady-state case [6], the model consists of the following
equations:

V-(pV) =0, (1.1)
1 y
V-V +—V(pT)—Svwp=—__, (1.2)
mp m T,
2 2 dmV2 mV2 T—T
VB TpVT)+ VYT +=TV.y -2 MV °_0, (1.3)
3p 3 31, 31, Ty
(3
AY =a(p - 2), (1.4)
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1390 L.-M. Yeh

in a bounded semiconductor domain Q = R3. p denotes the electron density, V the
average electron velocity, T the temperature in energy units, ¥ the electrostatic
potential. Z (a positive function) is the prescribed ion background density. m, e, f;,
Ty, d are given positive constants. m is the effective electron mass, e the electron
charge, T, the constant ambient temperature, d the dielectric constant. 7, and 7,
represent momentum and energy relaxation times, respectively:

TT,

0 L5
T+ T, (-5

T T
Ta:ﬂ2709 TbZﬂzﬁ(:‘f‘ﬁs
for positive constants f3,, 3. Let n be the unit outward normal vector on 0Q. Define
I'y:={xedQ|V-n < 0} to be the inflow boundary, and I, := {x€dQ|V -n > 0} the
outflow boundary. The boundary conditions for system (1.1)—(1.4) are

Ploa = ppleas  Tlea = Toleas (1.6)
V'n|l"1ul“2 = VD, Curl I/|r1 = Wp. (17)

Because of (1.1), the following condition should hold:

\[ pDVDdS = 0
r,ul,

wp also need to satisfy some compatibility condition on inflow boundary, which will
be explained in section 3.

Existence of solutions for a simplified case of the hydrodynamic model, Euler—
Poisson equation, in one or two-dimensional cases have been studied by several
researchers [1, 5, 8, 137]. Here we consider the existence and uniqueness of a subsonic
solution of hydrodynamic model in the three-dimensional case. Boundary conditions
are prescribed by vorticity on inflow boundary as well as by electron density,
temperature, and normal component of electron velocity on whole boundary. We
show that if ambient temperature is large, and if both vorticity on inflow boundary
and the variation of density on boundary are small, a unique subsonic solution exists.
The strategy to show these results is to write the model in terms of density, vorticity,
potential, temperature, and electrostatic potential. That would result in four elliptic
systems and one transport equation. One can show that the new differential equations
are equivalent to original hydrodynamic model. By fixed point theorem, we prove the
new system has a unique solution, so does the hydrodynamic model. To prove the
existence of solution for the transport equation, we need to work on a domain with
edges because it allows us to reduce the transport equaion to an initial value problem,
which is not the case in a smooth domain.

This paper consists of the following sections. In section 2, notations are recalled. In
section 3, we discuss the compatibility condition for wp on the inflow boundary. In
section 4, we derive auxiliary linear systems which are equivalent to the system
(1.1)—(1.7). In section 5, useful lemmas are presented. Existence and uniqueness of
a subsonic solution for the system (1.1)—(1.7) is showed in section 6 (see Theorem 6.1).
Proofs of lemmas in section 5 are given in section 7.
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Subsonic Solutions of Hydrodynamic Model 1391
2. Notation

For convenience, we need the following variables: p =exp({), curlV =w,
T/Ty=E,and Tp/T, = Ep. In’ denotes the inverse function of ‘exp’. So p = exp({)
means In(p) = {. r.h.s. is the abbreviation of right-hand side. Summation convention is
used. c is used to denote various constants. C™ *(Q) represents the Holder space. W™ ?
denotes the Sobolev space and if p = 2, then W™?2(Q) = H™(Q). For a function ¢,
@.;:= 0@/0x;. diam Q is the diameter of Q.

In this paper, we consider the model in a non-smooth domain. More precisely,
domain Q is assumed to be simply connected with one edge L = I'; I, where I; are
the closure of T; (i = 1, 2). For any point ¢ € L, there is a positive dihedral angle 0(q)
between I'; and I',. (1.7); can be written as

V'nlr“:VD|r1<0, V’n|1—l:VD|r2>0. (21)

In a neighbourhood of I'; we introduce a curvilinear system of orthonormal
co-ordinates. By {t(x), T,(x), n(x)}, we denote the orthonormal basis corresponding
to the co-ordinate system in such a way that, for xeT'y, {r;(x), T2(x)} are vectors
tangent to I'; and n(x) is the unit outward normal vector to I'y. For fixed u, v, if we
look at the following expressions:

(1, V)1, = wati + K0,

(t,- V)1, = K\ + K0,
then one can show

Kyy = Ky, only. (2.2)

3. Compatibility condition

We now discuss the compatibility condition for wy, on the inflow boundary. First let us
assume wp-n|r, = 0 and Tp|, = constant. Taking the curl of (1.2) and using (1.5),, then

Tw — VT xV VpxVT
(V9w (V- = 0V e = pmp (3.1)
where w:= curl VV and ‘"’ is the cross product. Next we write w, V' as follows:
W= Ww,n + W,T,, (3.2)
V=Vn+Vz, (3.3

where n, 1, are the normal and tangential vectors. Summation convention is used. By
(3.2) and (3.3),

V-V)w=Vn-V)w + (V,1,-V)w
= (V- V)(wn + wyt,) + (V7 - V) (waht + w1,
=V,m-Vwy)n + V,w,(n-V)n + V,(n-Vw,)t, + V,w,(n- V)1,
+ Vit - Vwn + Vwu(t, - Vin + V,(t, - Vw,)t, + V,w,(1,- V)1,.
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1392 L.-M. Yeh

Note w,|r, = wp-n|r, = 0. If we take inner product of (V- V)w and n on I';, then
V-VIw,np|r, = V,m-Vw,) + V,w,{(n-V)z,, 0}
+ Vuw {(t,- V)T, )| . (3.4
By a similar argument we can derive, on boundary I'y,
w-VV,n)|r, =wu(t,-VV,) + w, V., (t,-V)n,n) + w,V,{(t,-V)1,, 0> |,.
(3.5)

Now, we take inner product of (3.1) and non I';. By (2.2), (3.4) and (3.5), and that Tp |,
is constant, we obtain, in I'y,

Va(n-Vw,) + V,w,{(n-V)t,,n) —wy(t,-VV,) — w,V,{(t,-V)n,n) |, = 0.
(3.6)
Since w,|r, =0,
0=V-wlr, =(Vw,-n 4+ Vw,-1, + w,V-1,)|r,. (3.7
By (3.6) and (3.7) and V|, < 0 (because V,|r, = Vp|r, < 0), we obtain
V.vw,s, + VW, V-1, — V,w, <{(nV)t,, n> + w,t,VV, + w,V,{(t,V)n,n) = 0.
In other words, if wp-n|r, = 0 and Tp|r, = constant, then w,(= wp-1,, = 1,2)
have to satisfy the following equation on I';:
V.-w,Vpt,) — w,Vp((mV)t,, ny — {(t,V)n,n}) = 0. (3.8)

So w, (u =1, 2) have to depend on I}, and the geometry of the inflow boundary I';.
One trivial solution such that wy, satisfies (3.8) is 0. Also note if wp, (# 0) is a solution of
(3.8), then c¢-wy, is a solution of (3.8) for any constant c.

4. Auxiliary system

In this section, we derive auxiliary linear systems for (1.1)~(1.7). One can easily see
that a solution of system (1.1)—(1.7) corresponds to a fixed point of the new linear
systems. Proof for the other direction will be given in section 6.

Taking the curl of (1.2), we get

E —VExV T,pxVE
Vw4 (Ve V)w— (w-V)V + o= — LA M (4.1)
B2 B> mp
where w =curl V, E = T/T,. Next, taking the divergence of (1.2) and using (1.1),
(1.3)—(1.4), we obtain

mVV(VA() <m 1 > |A%4 e’
A - TEYEAS (m, 2 % exp(C
ToE 5, " 5) T, ToEd P
€z wmVV (E +i> VVE N mV 2
ToEd TE B 2B1) ToE ~ B1f2T§

mv?  3(E-—1)
2ﬁ1 TgETb 2ﬂ1 T()E'fb,

(4.2)
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Subsonic Solutions of Hydrodynamic Model 1393

where p = exp({), V; ;:= 0V;/0x;. We then split V in the following way [4]:

V=—Vy+a 4.3)
such that
Vie=0 in Q, g-n|rr, =0. (4.4)

So boundary condition (1.7); can be written as
Vi-n|r,or, = = Vplr,or, (4.5)
Equation (1.1) then becomes
V-(pVy)=V-(po), xeQ. (4.6)
By (4.1)—(4.6), we now define a map # (S, U) = (E, V') as follows: Given (S, U), solve

mUV(UA{ m 1\UV{ e?
g - mITERD (B ) O el
ToS B> Bi) To  ToSd
_eZ  mU,;U;, (m N 3 ) Uvs N mU? mU?
ToSd ToS B2 2B1) ToS = Pip: T3 2By T§St
3S—1)
— 1= Zu4(S, U 4.7
2ﬁ1TOSTb rhs( > )7 ( )
{laa = In(pp)lea; (4.3)
where 1, = 7,(S). Then, using { from (4.7), compute p from
p = exp(0). (4.9)

Then, by p above, we solve

VpVE 3UVE 3E

AE + — —
P 21Ty 2B1Toty
—mU?3S Uuv 3 U?
_ oMY Vg o (4.10)
BTy B1Top 21 Tot, 2B To1s
E|aQ = TD/TO|BQ> (4.11)

where 1, = 7,(S). Next, by p, E from (4.9)—(4.10), we solve the following, for w and P,

E _VExU ToVpxVE

U-V)w+(V-Upw—(w-V)U + 2E fypo ZVEXU  ToVoXVE =) 1))
B2 B2 mp

Vew =0, (4.13)

wlr, =wp, VP-n|r, =0, Pl =0. (4.14)
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1394 L.-M. Yeh

Variable P and boundary conditions (4.14), 3 are introduced to let w be divergence
free. Next, we solve the following system for o:

curle =w, xeQ, (4.15)
V-6 =0, xeQ, (4.16)
o-n=0, xel,ul,. (4.17)

Then compute Y as a solution of the following system:

V-(pVy) =V-(pas), xeQ, (4.18)
oVr-n= —ppVy, xeljuly, (4.19)
J Ydx =0. (4.20)

Finaly, we can compute the velocity V' from
V=-Vy+o. 4.21)

Existence of a fixed point of the operator # will be shown in section 6. (4.7)—(4.21)
forms auxiliary linear systems for the system (1.1)—(1.7). From the derivation, we see
that a solution of system (1.1)—(1.7) corresponds to a fixed point of the linear systems

(4.7)-(4.21).

5. Auxiliary lemma

In this section, we present four lemmas (proofs are lengthy and will be given in
Section 7). They are used to prove the existence of a fixed point for systems (4.7)—(4.21).
Part of results can be found in Reference 14.

Domain Q considered in this section is a smooth simply-connected domain with
edge and 0Q = I';uT, (section 2). Lemma 5.1 is a result for a linear elliptic equation
and is for solving (4.10)—(4.11). Lemma 5.2 is an existence theorem of a semilinear
elliptic equation in Q, used to solve (4.7) and (4.8). Lemma 5.3 is to establish an
existence theorem for a linear elliptic equation with Neuman boundary condition for
computing a solution for (4.18)—(4.20). Lemma 5.4 is an existence theorem for a trans-
port equation in Q and is for solving (4.12)—(4.14).

Lemma 5.1. Consider the equation

aij(X)@.ij + ai(X) @ + ax)p =f(x), xeQ,
e + (1 —n)Ve-n=0, on I(k=1,2),
where 1, is either 0 or 1 and ny + n, # 0. If the following conditions hold:

L. a;j, a;, a, feC™*(Q), a(x) 0,0 << 1,0 <
2. 4= aj, aj(x)&E; = A€ for EeR? andfor some positive constant A,
3. w(q) < (ny + na)m/(m + 2 + o) for all geT;NT, (see Remark 1),
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Subsonic Solutions of Hydrodynamic Model 1395

then there exists a unique solution ¢ € C™***(Q) and
[ @l crezny < (4, | aijs @iy all era@) | f 1| cma@y- (5.2)

Proof. Existence of the solution is the Theorem 1 of [2]. (5.2) is obtained by tracing
the proof of Theorem 1 of [2]. [

Remark 1. w(q) of condition 3 is obtained as follows: In section 2, we assume domain
Q has one edge L = I';nI,. For all ge L, we denote by R,(g) and R,(g) the two
one-sided tangential planes which touch T’y and T, at point ¢. For a fixed point g€ L
we transform to canonical form the second-order term of the system (5.1),
aij(q)¢.i; = 0.

Since point ¢ is fixed, this is an equation with constant coefficients. After the
transformation, the planes R;(q) and R,(g) will be transformed to other planes that
intersect at an angle w(q).

Lemma 5.2. Consider the equation
{ai,-(xw,u + ai(x) @, —alx)g(p) = —f(x), xeQ,
®lea = @plea- (5.3)
If the following conditions hold:

L. aj, a;,a, feC™*(Q), 0 <a(x),0<a<1,0<m,
2. a;j = aj;, a;j(x) & = A1 E|? for £€R? and for some positive constant 2,
3. geC" " (R), g’ > 0, there are constants @, ¢ satisfying g(¢) < fla(x) < g(9),
4. peC""2*(Q), 1 < @p(x) < @, for all xedQ,
5. w(q) < 2nf(m + 2 + ) for all ge Ty, (see Remark 1),
then there exists a unique solution ¢ € C™*2*(Q) satisfying
min(¢;, @) < ¢(x) < max(e,, ¢) VxeQ,

@I ¢reze < (Al @ijy iy all en) P @p Il crezas | 1 cnns [ G 1 enetmyy + lg=" |l ()
where 2 is a polynomial with 2(0,0,0) = 0 and ©,, @, denote ranges of ¢, f/a over Q.

Lemma 5.3. Consider the equation

V-(a(x)Vo) =f inQ,

a(x)Vp-n=g¢g onI{Ul,,
J @(x)dx =0. (5.4)
Q

If the following conditions are satisfied:

1. aeC™" " 1%(Q), 0 < m, 0 < 1 < a(x) for some positive constant ).,
2. feWmr(Q), ge WmH1-Urr(T), [ fdx + Y7, [Lgds=0,p=>2,
3. 0(q) < nf(m + 2 — 2/p) for all ge T NI, (see section 2 for 0(q)),

© 1997 by B.G. Teubner Stuttgart-John Wiley & Sons Ltd. Math. Meth. Appl. Sci., Vol. 20, 1389-1410 (1997)



1396 L.-M. Yeh

then there is a unique solution @ € W™*2-2(Q) satisfying

2
[l wrezne < clllall enerx, 1/})<|f wrr(@) + Z lgl W"’*‘l'"‘"(l_"i)>~ (5.5)

i=1

In next lemma, {b, U, f, g} are vector functions and A is a matrix function.

Lemma 5.4. Consider the system
b-VYU+ AU =f inQ,
U=g only.
If the following conditions are satisfied:
L. beW’ " 1r(Q), ben|p, < —2<0,b-n|,>0,3<p<4,2</,
2. A, feW"P(Q), ge W"P(I'y), A is a positive-definite matrix,
3. AX) > Apl in Q, Ay, — k(. 1B || weerogy, 1/4) = Ag > 0,
where K is a continuous positive function of its orguments, I is identity matrix, and 1, A,,,

Ay are some positive constants, then there exists a unique solution U e W’?(Q) and, for
0<s </,

[U| I;V"”(Q) <c(Al W-r(Q) b W’ Lr(Q)s 1/, 1/A) (I fl IvJV’-F(Q) + gl I;V*-"(rl))-
(5.6)

6. Existence and uniqueness of a subsonic solution

In this section, we prove existence and uniqueness of a subsonic solution of
(1.1)—(1.7). To do this, we first define a set =7 x & (see Remark 2), and show that
operator % defined by (4.7)—(4.21) is a map from .7 x & to itself (see Lemmas 6.1-6.5).
Next, we show that the map # is continuous in some weaker space (see Lemma 6.6).
Then by fixed point theorem, we conclude that a fixed point of (4.7)—(4.21) exists.
Moreover, we see that if the ambient temperature is large and if the variation of
density on boundary is small, a unique fixed point exists. Then we show a fixed point
of system (4.7)—(4.21) corresponds to a solution of (1.1)—(1.7) (see Theorem 6.1). Now
let us make the following assumptions:

(A1) 3<p<4and 0 <a <1 such that W'P(Q)c, C**(Q) (continuous imbed-

ding),

(A2) Q= R® is a smooth simply-connected domain with edge L:=T;nI};
0Q =T uly; 0<0(q) <n/(5—2/p) and O(q) # =n/j for all geL and jeN
(positive integer),

(A3) ZeC'*(Q), 0 < 2p; < Z(x) < p,/2 for all xeQ,

(A4) ppeC*%(Q), 0 < p; < pp(x) < p, for all xeQ,

(AS) Vpe W3~ 1rr(D), Y7 1 ppVpds =0, Vplr, < — v, <0< Vplp,

(A6) wpe W2P(T'y), wp-n|p, =0 and w,:= wp-1,|r, (1= 1, 2) satisfy (3.8),

(A7) TpeC**(9Q),0 < E; < Tp(x)/T, for all xeQ, Tp|y, and T, are positive
constants.

<
<
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Subsonic Solutions of Hydrodynamic Model 1397

Remark 2. For constants ¢,,(> 1) and U,,, we define o7 and & as follows:
o = {Secz’a(ﬁﬂ Slsa = Tp/Toloa, I VS| @ S Eyi= El/cm}a
G ={UeW>*@Q)|U-n|r,or, = Vp, | Ull wsngy < Un}-

To show that operator % is a map from .o/ x & to itsel, constant E,,, U, cannot be
chosen arbitrary. As we will see below, E,,, Um,zle | Vol ws-1wery, and E; are
related to each other. We state our main result below:

Theorem 6.1. Under (A1)—(A7), there exist two continuous functions iy, K, such that if

1. The following hold for E,,, U,y . | Vp | ws-1wery, and E;:
(@) There is a constant ps satisfying 0 < p3; < S(x) VxeQ, Se.o/,
(b) 0<p; < —ToSd/e’ 7 (S, U)< py, VS, U)eod xD (see (47) for
rhs(Sr U)):
(©) x1(1/py, I pplcasy [ pp lcaes | Z]] c“)zl Vol wa-vnory < Ups
(d) There is a constant k, satisfying 0 < ky, < E; (1 — diam Q/c /ﬂz — K3 (U, 1/0y),
2. 1/To + ||V In(pp) | c2=@ + | Wp llw2rr, is small, then a unique subsonic solution of
system (1.1)—(1.7) exists. In other words, there exists (T, V, p, V) uniquely such
that (1) p, Te C>*(Q), V, ¥ e W3>2(Q); (2) (T, V, p, ¥) satisfies (1.1)—(1.7), and (3)
[V %(x) < T(x)/m for all xeQ.

Note that if E,,, U, Y ;|| Vp | ws-1esr, are small, and if E; is large, then the four
constants satisfy 1. (a), (b), (c), (d). To show that operator & is a map from .o/ x & to
itself, let us first consider the solvability of (4.7)—(4.9).

Lemma 6.1. Under (A1)—(A7), there exist constants E,,, U,, such that as 1/T is small
enough, (4.7)—(4.9) has a unique solution p = exp({)e C>*(Q) for all (S, U)e.o/ x .
Moreover,

0<pi <plx), VxeQ, (6.1)

340 < k 1 3y 5 1 Z 5 Z 0y 5 5 5 62
Ipllca 3<| (o)l | o In(Z) Z oo S o 22 ) (62)

where ks, k, are continuous functions of its arguments.

(Um, E,, —,H In(pp) [ s 1 Z,In Z | ¢1)
E,

fod (9

1
<To + [ VIn(pp) [ ¢= > (6.3)

Proof. Let us take constants E,,, U,, such that the following hold:
1. There exists a constant p; satisfying 0 < p3 < S(x) VxeQ, Se .o, (6.4)
2. 0 < py <(— ToSd/e?) Zns(S, U) < p1, V(S,U)e s X D
(see (4.7) for F4). (6.5)

© 1997 by B.G. Teubner Stuttgart-John Wiley & Sons Ltd. Math. Meth. Appl. Sci., Vol. 20, 1389-1410 (1997)



1398 L.-M. Yeh

Next, we look at the second-order terms of (4.7). Setting 4;; = 6;; — mU;U;/T,S, then
the eigenvalues of (4;) are 1, 1, 1 — m|U|?/T,S. If 1/T, is small enough, then

1 —m|U|2(x)/(ToS) = ps>0for (,U)e.o/ x 2 and some constant p,.  (6.6)

Also if 1/T is small enough, by (A1) and (A2) and Remark 1, w(q) < 27/(3 + «) for
gelul,. By Lemma 5.2, (4.7) and (4.8) has a unique solution {eC3**(Q) and
{ satisfies

In(p;) < {(x) < In(pa), (6.7)

HZHC"’ Um Em
Sl < e 1nipoll o ) 21 20 Do B )

(6.7) and (6.8) imply (6.1) and (6.2), respectively. Since Vp/p = V{, we obtain (6.3) by
(6.8) and Lemma 5.2. []

Next, we consider the solvability of (4.10) and (4.11).

Lemma 6.2. Under the same assumptions as Lemma 6.1, (4.10) and (4.11) has a unique
solution Ee C**(Q) for all (S, U)e o/ x Z and p from (4.9). Moreover,

IVE| c2o@ < ks( Vo/pllcrss Uns | Epllev) (| VEp [l ¢2x + 1/T), (6.9)

where ks is continuous function of its arguments.

Proof. By (A1)-(A2) and Lemma 5.1, (4.10) and (4.11) has a unique solution
EeC**(Q) and

IE = Epllcs«@ < c3(IIVp/pllc2es Um, | Epller+) (I VEp || ¢2x 4 1/T o),
which implies (6.9). []
By U €2 and p, E from above two lemmas, we are ready to solve (4.12)—(4.14). Let
us also define an operator M (W) = w as follows: Given W, solve the following for P;
AP = —VE-W/p, —V-(VExU/B,), xeQ, (6.10)
VP-n|, =0. P|,=0 (6.11)
By P from (6.10) and (6.11), compute from

E VExU ToVpxVE
(U-V)W+(V-U)W—(W-V)U+ﬁ_wz_Vp_ xU | ToVpX

, (6.12
2 B2 mp ( )

Wlr, = wp. (6.13)

Lemma 6.3. Besides the assumptions of Lemma 6.1, if V- U/2 + Ew/f, > 0 in Q, then
a solution of (4.12)—(4.14) is a fixed point of (6.10)—(6.13) and vice versa.
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Subsonic Solutions of Hydrodynamic Model 1399

Proof. This lemma only shows the equivalence between a solution of (4.12)—(4.14) and
a fixed point of (6.10)—(6.13). Existence of a fixed point of (6.10)—(6.13) is in next
lemma.

Taking the divergence of (4.12), we get (6.10). So one side is done. The other side is
equivalent to show that V-w = 0 in Q. Taking inner product of (6.12) and n on I'y, we
obtain (by (A6)—(A7), (6.11), and using a similar argument in section 3)

U,mn-Vw,) + Uw,{(n-V)t,,ny —w,(t,-VU,) —w,U,{(t,-V)n,n> | =0,

where U,:= U -n. By (A6) (i.e. (3.8)), we see V-w|r, = 0. Taking the divergence of
(6.12), we obtain, by (6.10),

UV(V-w) +(V-U + E/B,)V-w=0 inQ, (6.14)
V-w|r, =0. (6.15)

Multiplying (6.14) by V-w and doing integration by parts, we see that (6.14)—(6.15)
implies V.w = 01in Q because V- U/2 + Ew/f3, > 0. So a fixed point of (6.10)—(6.13) is
a solution of system (4.12)—(4.14). [

We now prove the solvability of the system (4.12)—(4.14).

Lemma 6.4. Under (A1)—(A7), there is a continuous function k, such that if
0 <k, < —diamQ/c,)E/f> — k5(U,, 1/v,) for some constant Ky (6.16)

(E,,, U™ are chosen as Lemma 6.1 and ¢, is defined in Remark 2) and if 1/T  is small,
then (4.12)—(4.14) has a unique solution we W2 ?(Q) and

11 1
[ w HW“(Q) <kg|Up»—,—, | Ep,Inpp HC“(Q): [In(Z), Z || cre, —, IVTp HC“(Q)
(%] kd El

x(1/To + [ VIn(pp) | c2o@y + | Wp [ wrr,)s (6.17)

where kg is a continuous function of its arguments.

Proof. By Lemma 6.3, it is equivalent to proving the existence of a fixed point of
system (6.10)—(6.13). Given w e W27(Q), by (A1)—(A2) and Lemma 5.1 (6.10) and (6.11)
is uniquely solvable, and

I Pllcs= < ca| VE |2 ( [ W T wrzr 4+ [1U [ rsr)- (6.18)

By Lemma 5.4, (AS5) and (6.16), we see (6.12) and (6.13) has a unique solution
we W2P(Q) and

[w warg) S cs( Elwzr, Up, 1/vg, 1/kg) ([ 1.hs. of (6.12) | wrr@ + [wp W“(r]))‘
(6.19)

So we can define a map M: W 2:2(Q) » W22(Q) by M(W) = w.
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Next, we claim M is a contractive map. If w},wi are given and if
M(wY) = wy, M(w%) = w,, then by (6.10) and (6.11).

[Py — Pyllcss < o | VE || c2x | WT - W>2k [ s (6.20)
By (6.12), (6.13) and (6.20),
[wi —wa w2 < (1 E [l wors U, v, 1Kg) | VE | 2 [ WE — W3 || .

Because 1/T is small, M is a contractive map.
Therefore, the fixed point of (6.10)—(6.13) exists uniquely. If w is the fixed point of
(6.10)—(6.13), by (6.19), we see w satisfies (6.17). []

Next, we prove operator & is a map from .o x & to itself.

Lemma 6.5. Under (A1)—(A7), there exist two continuous functions Ky, K, such that if

1. E,, U, (chosen as Lemma 6.1) Zil |V | ws-rweqy and E; satisfy

(@) x1(1/p1, [Inpp s ppllcss | Z Hcm)Zf:l [V lws-1moqy < Upm,
(b) (6.16) hold,

2 1/To + [|VIn(pp) | c2x@) + | Wp Il wrr,) is small,
. IVTp || c2e@) is bounded,

the operator F of (4.7)—(4.21) is a map from o/ X & to itself.

Proof. Forany (S, U)e.o/ x Z,if 1/T is small by Lemma 6.1, (4.7)—(4.9) has a unique
solution peC>*(Q) and (6.1)~(6.3) hold. If 1/T, is small and if |VTp | 2 is
bounded, by Lemma 6.2, (4.10)—(4.11) has a unique solution and

| VE | ooy < Ens E >0, (6.21)

ie. Eco/. By Lemma 6.4, system (4.12)—(4.14) has a unique solution we W ?2-?(Q) and
w satisfies (6.17). With w from (4.12)—(4.14), by Theorem 10.3 of [15] and (A2), the
system (4.15)—(4.17) is uniquely solvable, ¢ € W 3:P(Q), and

[ollwong < cslwlwrg: (6.22)

Next, we consider (4.18)—(4.20). By (AS5), Lemmas 5.3, 6.1, and let 1/T, small, we
obtain

1Y wenay < co(Uprs 191 e2) (IVPO [wnay + 2 [ 00V s meiry)- (6.23)
Let V = — V{ + 0. By (6.22)—(6.23), if 1/T, is small enough,
IV e < ki(Lpy, 1 pp [ eoss [T pp lcos 1 Z 1 ers) Clw [ wras

+ Z I Vil ws-me(ry)-
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By (6.17) and above assumptions, as long as 1/T + || VIn(pp) | c2=@ + | Wp [l w2er,) 18
small enough,

[V Iwsr < Up. (6.24)
So Ve%. By (6.21) and (6.24), we conclude that # maps .7 x & to itself. []

Next we show Z is a continuous map in C!* x W27, If it is true, by Schauder fixed
point theorem we know the operator & has a fixed point in .o X Z.

Fi

Lemma 6.6. By assumptions of Lemma 6.5, F is a continuous map in C1* x W2?, F is
@

a contractive map if 1/To + ||V In(pp) || c2xq) is even smaller.

Proof. This is shown by a straightforward way, so we only sketch the proof. First let
us given a notation:

¢y =1/To + | VIn(pp) | c2@»

c;» is a constant which depending on | pp, Epllc«@> Um> 1/P1, VVEL | Z || ¢
1/vg4, 1/k,.

Given (S,, U,), (Sy, Uy), by solving (4.7)—(4.21), we obtain ({,, pa, Ea, Wa, Gas Wa, V)
and (s o> Eps Wos 05, Wi, Vo). F (Sa, Ua) = (Es Va)s F (Sp, Up) = (Ep, V). By
(4.7)—(4.9), we can derive

c
16— Gl ST LISa= Syl + | Ua = Uyl (6.25)
0
By (4.10)—(4.11) and (6.25), we obtain
c
| Eq — Epll c2- <ﬁ[\|5 = Spllcrs + | Us — Up|l cr-]- (6.26)

By Lemmas 5.4, 6.1, 6.2, 6.4, and (6.25)—(6.26), we have

[wa —wp [wrr < €pi€12[[Ss = Spllers + | Us — Up [ o] (6.27)
By Reference 15 and (4.15)—(4.17),

60— apllwer < i3l We — Wy || ror- (6.28)
By Eq. (4.18) and Lemma 5.3, we get the estimate

IV(Wa = V) w2 < crall/p1, po) LIl 6o — 0l cre + 11 pa — po Il 2] (6.29)

y (6.27)—(6.29),
1Va—= Villwer < €11€12[ 1180 = Spllcre + [ U — Up [l w]. (6.30)

By (6. 29) and (6.30), we see that # is a continuous map in C1**x W27 If ¢;, is even
smaller, & is a contractive map. []

Finally, we prove our main result.
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Proof of Theorem 6.1. By Lemmas 6.5, 6.6, we know that % maps ./ x & to itself and
that . is continuous in C!*x W2, Since ./ x & is a compact, convex subset of
C'*x W??, by Schauder fixed point theorem, a fixed point exists. If 1/T, +
| VIn(pp |l c2+@ 1s small enough, fixed point of # exists uniquelybecause # is contrac-
tive map.

Next, we show a solution of (1.1)—(1.7) corresponds to a fixed point of (4.7)—(4.21)
and vice versa. Suppose (p, V, T, V) is a solution of the system (1.1)—(1.7), by tracing
the derivation of (4.7)—(4.21), it is easy to see that (T/T,, V') is a fixed point of the
system (4.7)—(4.21). On the other hand, let us assume that (E, V) is a fixed point of
(4.7)—(4.21). Define T = ET, > 0. By (4.9) and (4.21), we obtain (p, V, T). (p, V, T)
satisfy equations (1.1), (1.3), (1.6),, (1.7)1, (1.7), by (4.18), (4.10), (4.11), (4.19), (4.14),
respectively. By (4.15) and (4.21), (4.12) can be written as

1 TV

curl [(V-V)V +—V(pT) + ] = — VP (6.31)
mp BaTo

By (4.14), 5, we see (6.31) implies P = 0 in (4.12). Since domain is simply connected,

(6.31) implies there is a function ¥ such that

VYV + V(T - Eve + 1V g (6.32)
mp m B2To
i.e. (1.2). Next taking divergence of equaton (6.32), and comparing with (4.7), we obtain
equations (1.4) and (1.6);. Therefore, we conclude a fixed point (T/T,, V) of
(4.7)—(4.21) also corresponds to a solution (p, V, T, ¥) of (1.1)—(1.7). Uniqueness of the
fixed point of (4.7)—(4.21) is equivalent to uniqueness of the solution of (1.1)—(1.7).
Because of the fixed point (T/Ty, V)e .o/ x &, solution (p, V, T, V) of (1.1)—(1.7)
satisfy p, Te C**(Q), V, ¥ e W*7(Q). Because of (6.6), we see that solutin (p, V, T, \P)
satisfy |V |*(x) < T(x)/m for all xeQ, ie. the solution (p, V, T, V) is a subsonic
solution. So we complete the proof.

7. Proof of auxillary lemmas

In this section, we prove Lemmas 5.2-5.4. Lemma 5.2 is proved by employing the
Leray—Schauder fixed point theorem [7] and Lemma 5.1, Lemma 5.3 is proved by
results in [ 11] and method of continuity [7]. Lemma 5.4 is proved based on Lemmas
7.1-7.3. Lemma 7.1 is an extension theorem, and its proof is similar to that of Theorem
7.25 in [7]. By energy method, Lemma 7.2 gives a priori estimate for a transport
equation in a bounded smooth domain. Then an existence result of a transport
equation in a bounded smooth domain is shown in Lemma 7.3. Finally, by Lemma
7.3, we prove Lemma 5.4.

Proof of Lemma 5.2. Set 0 <y <o, K,, = max(|¢|[,[¢|), Ky = supea |@p| + K,

Ky if [y(x)] > Ky,

VidX):= {y(x) if (0] < K.
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Next, define a map M:C%?’(Q)x[0,1]— C%7(Q) by M(y,t) =z, where z is the
solution of

L(2):= ajjz; + aiz; = t(a(x)g(yk,) —f(x)) inQ,

Zloa = t@p|oq-
Observe that if y, convergences to y in C%7, then y, x, also converges to yg, in C7.
By Lemma 5.1, we set that

Izl c2r < te(Z, [ aijy aillcos) (1l @p Nl 2o + [ a(x)g(yi, )l cor + | f(X) [| o)

So M is a continuous and compact operator. If z, is a fixed point of the following
system:

L(z) = t(a(x)g(yk,) — f (X))
Z|s0 = t®ploas

then z,e C*7(Q) [2]. By De Giorgi-Nash theorem [7], there is a positive number
¢ such that | z; | co.r is bounded, and the bound is independent of y, t. Note / is
independent of y, so we may assume y = /. Therefore by Leray—Schauder fixed point
theorem [7], a fixed point, ¢, of M(-, 1) exists.

Suppose the fixed point ¢ satisfies | @ (x)| < Ky in Q, then ¢ is a solution of (5.3).
Next we prove |@(x)| < K,y in Q.

(a) Claim. If ¢ is a fixed point of M (-, 1) then |p(x)| < K, in Q.

Proof. The set Q. = Q of points at which ¢(x) > K,, holds is open in Q, and the
boundary of Q. consists of points x at which either ¢(x) = K,, or the point is
contained on 0Q. We assume that Q. is non-empty. Let x*€Q,. We denote the
maximal connected component of Q, containing x* by Q% . Define
Ky if o(x) > Ky,
Px,.k,(X) =) @(x) if K, < (x) <Ky,
K, if o(x) <K,.

Then, @ | satisfies
ZL(p) = a(x)g(9x, x,) —f(x) in QF,
§0|aﬂ’: = @ploq OF K,,.

Note a(x)g(K,,) = f(x), s0 Z(¢) = 0. We obtain sup o« ¢(x) < sup o+ ¢(x) by maximal
principle [7]. Therefore supg: ¢(x) < K,,, which implies ¢(x) < Ky, in Q. A similar
argument can be used to prove the other side, i.e. p(x) = — K, in Q. Therefore, we
conclude that || ¢ || .~ < K.

(b) By Claim (a), the fixed point ¢ is a solution of (5.3) and is in C>/(Q). So
g(pk,) = g(@)e C**(Q) by Theorem 7.26 of [7]. By iteration we see p e C"">*(Q).
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Uniqueness of solution is obtained by the maximal principle [7]. The upper and lower
bounds of ¢(x) are obtained as follows: Define I:= min(¢;, @), so

aij(x)(p —1)ij + ailp — I); — a(x)(g(@) — g(I)) = —f(x) + a(x)g(I),
@ —1I|y=0.

Since — f(x) + a(x)g(I) < Ofor all xe Q, min(¢@,, ) < ¢(x) by the maximal principle.
By a similar argument, we can prove ¢(x) < max(¢,, @) for all xeQ.
By (5.2), we see that solution ¢ satisfies

[@lleneze < €4, | aijy aiy @l ena) (l @plleneze + LS [Teme 4+ g (@) [ ). (7.1)
By interpolation inequality [7, p. 176] and (7.1), one can derive
[l cneas < (4, [ aijs ai, allen) P @plleneae | f I enss 19 v oy
+ g ! | coo,)- |

Proof of Lemma 5.3. This lemma will be proved by method of continuity [7].
We first consider the case g = 0. Define

B = {q)e Wmt2.p(Q)

J‘ QDdX :O,V@'nh",url = 0}9
Q

L f(x)dx = o}.

Then % and 7~ are Banach spaces. Let %y := Ap and % ¢ := V- (a(x)Ve). Then %,
and %, are bounded linear operators from 4 to 7. Define .%,, t [0, 1], as follows:

V= {fe Wmr(Q)

Zo:=(1—1t)Ap + tV-(a(x)Vo).

By [11], %, is a one-to-one and onto map. Suppose || ¢ || wn+2r < ¢ || L@ || wnr, DY
method of continuity, .%; is also one-to-one and onto. Then the theorem holds true.
To show that || @ || yn2r < ¢ || L || wnr for all ¢ € Z, we note

_ L tVa(x)
0=+ (1—10+ta) ”

Aop

By [11] and interpolation theorem [7],

Il ez < cCll @l cnerey LAY ZLip [ wmr + 1| @ 2)- (7.2)

Next, we want to show || ¢ || .» < ¢ || Lo | wnr for all ¢ € 4. If not, then there exists
a sequence {¢,,} = % such that || ¢,, |.» =1 and | %, @, | wn»— 0. By (7.2),

I @us, llwnezr < cCl @l enores A L@, T wme + 1 @uce, |l 1),

ie. | @u. || wne2r is bounded. Since 1,€[0, 1], we assume 1, — t*. Because W™ 27 is
a reflexive Banach space [3], there exists a subsequence {¢} .} of {¢, .} such that
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Qi — @Fe WM 2P(Q) weakly. One can see | ¢* |, = 1. However,
z*(p* =0 in Q,

Vo*.n=0 on ;Ul},

f ¢*(x) dx = 0. 73)

Equation (7.3) implies ¢* = 0 [9], which is a contradiction. So || @ || 1» < ¢ || L@ || wnr-
Therefore, by (7.2), we have
[ wnezr < cCllallensr, YA ZLip lwmr, V@ €B. (7.4)

So % : 4 — 7" is an one-to-one and onto map, that is, solution of (5.4) exists uniquely
for g = 0. By (7.4), (5.5) holds for the case g = 0.
We now consider the case g # 0. By [11], one can find ¥ W™*2:?(Q) such that

Vfﬁ-nlri =g/a, i=12, |[¥9]| wnrzoQ) S C(Z lg/all W"‘“’"’"’"(I‘;))~ (7.5)
Consider the following
V-(a(x)Vp) =f—V-(a(x)V¥), inQ,

a(x)Vp-n=0, on Iyul,,

j ¢(x)dx =0. (7.6)

By the result of previous case g = 0, (7.6) has a unique solution $p € W™*2-7(Q) and by
(7.4) and (7.5),

1@ lwmezr < cCllallemry YAYCLS Twmr + 2011 | wmss-mry - (7.7)

Let us define

1
0=0+9Y—— | %dx,
12 Jo
where | Q| is the volume of Q. Then ¢ € W™*2:7(Q) is the unique solution of (5.4), and
it is easy to check, by (7.7), (5.5) holds. Thus the conclusion of this lemma follows. []

Remark 3. Next, we give an extension theorem for a domain with edge. Let Q = R? be
a C*~ 11 domain with an edge L (see Remark 1). Then we can find a bounded smooth
domain Q' such that (1) Q = Q; (2) I'; = 0Q'; (3) for all ge L = I';I,, there exists
aneighborhood N(q) of g such that N(q)nQ is smoothly (C*~!*!) homomorphic to the
intersection between a unit ball and a quadrant R*/4:= {(x;, x,, x3)|x; > 0, x3 > 0};
(4) N(g)n€Q' is smoothly (C*~ ') homomorphic to the intersection of a unit ball and
the half-space R := {(xy, x,, x3)| x; > 0}.
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Lemma 7.1. For any Q and Q' in Remark 3, there exists a bounded linear operator
E:WhP(Q) - Wk P(Q') such that &(U)(x) = U(x) for xeQ and

|6 U) | wer@y < | Ullweng, YUeWEP(Q),

c=ck,Q,Q).

Proof (see Theorem 7.25 [7]). Asin (7.56) of [7], we define an extension in half-space
as follows:

U(X), X3 > 0,
(g]()U(x) = k
Z cU(X, — x3/i), x3<0,

i=1

where x = (X', x3) and ¢y, X,, ... ,¢; are constants determined by the system
k
Yoe(—1/iy"=1, m=0,1,..,(k—1).
i=1

If UeC*(R3/4)nW*r(R3/4), then
EUeCF MY R)AWEP(RY) and || U || wermyy < ¢ || U || wermeyay-

By approximation, one see that the domain of &, can be extended to W*?(R3/4), i.e.
Eo:WEP(R?/4) > WEP(RY) and | U || wermy < ¢l U [l wergoa.

Then, by partition of unity and following the argument of Theorem 7.25 [7], we can

show this lemma true. []

Next, we derive a priori estimate for a transport equation. Domain Q considered in
the next two lemmas are smooth domains, I'_ is a closed subset of 0Q, {b, U, f, g} are
vector functions, and A is a matrix function.

Lemma 7.2. Consider the system
b-VU + AU =f, Q,
U=g, I, (7.3)
where I'_:= {x€0Q|b-n < 0}. If the following conditions are satisfied

1. Q is a bounded smooth domain, H*(Q)c— LF(Q), W -?(Q)c— L*(Q),

2. beW L), 2</, bon<—A<0onT_,

3. LAeW P(Q), ge WHP(T_), Ue H " 1(Q),

4. Ax) > Al in Q Ay — k1(P, | b | weerngy, 1/4) = Ag >0,
where A, A,,, Ay are constants, I is identity matrix, and i is a continuous function of its
arguments, then the following estimate holds, 0 < s < /{:

1T [wer@ < (P, [ A Tweos 1D llwens /2, YA LS Tweney + 1L o). (7.9)
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Proof. By means of a partition of unity, a local co-ordinate change, and Lemma 1.1.1
in [10], it is sufficient to prove (7.9) in a half-space. Estimate in a half-plane is obtained
by differentiating the equation (7.8); to estimate tangential derivatives and then, using
b-n # 0 on I'_ to solve for the normal variables in terms of the tangential ones. For
convenience, we assume assumptions of this lemma hold in a half place and 0Q =T"_.
We use the following notations: b = (by, b’) = (by, by, b3), Q = {x|x = (x1,x) =
(X1, X2, X3), X1 = 0},

U=y

1= s Ox% OX%

o2 Qs L
U

>

U) Yi=) + 7"1'20-
|,‘<x6x16x’“ IPl=724 73, 7

Consider the following in a half-space;
=b-V)U + AU =,
Ulio=g¢. (7.10)

We prove the inequality (7.9) by method of induction.
Case s = 0: Multiply (7.10); by |U|?~2U and integrate over Q:

j (b-V)UlUI"_Zde-i-J AIUIdezjflUlp‘szx. (7.11)
Q Q Q
Note

j(b VIU|U|P"?Udx > l/pj

r,

b-n|U|?Pdx — l/pf (V-b)|U|Pdx. (7.12)
Q
By (7.11) and (7.12) and Holder’s inequality,

L(/\—(V-b)/l7 (p = D/pIUIPdx < 1/P|fu+1/l7j |b-ng]”dx".

(7.13)
Case s = 1: Differentiate (7.10); with respect to 0., we have
b-V)o,U + Ad U =0, f — (0,b-V)U — (0.A)U. (7.14)
Applying (7.13) to (7.14), we obtain
[, = @00~ (= .Ul
Q
<Up | lbenlioaglnax + e lauf 1
T
+ (P @b-VU L+ c(p) [ @A) U | L. (7.15)
By (7.10);,
10, U ller < ¢/2(I f T er + 16" (1= 18U [ o + [ Al | U || o). (7.16)
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By (7.15) and (7.16), we obtain

(Am = 1(p, 12 [ b wr@) 10U Il < J |b-n[0xg|”dx’
T_
+c(p, /2, | VB L f s + e(py [ Allwrss /2, [ VOIL) NU [ L. (7.17)

By (7.16) and (7.17),

A0 U 1T < e(p, | Allwre, 1/2, ||b |W‘-“°)< If W+ 1U N5+ L Iax'gl"dS)-
7 (7.18)
By (7.13), (7.18),
1U e < e(py [ A lwres 12, (1B [ wres YA LS e + 1L g irine). (7.19)

So we prove (7.9) for cases s =0, 1.
Suppose (7.9) holds for k =0, ... ,s — 1, we plan to show (7.9) holds for k = 5, s < 7.
Differentiate (7.10); with respect to 0%, then

b-V)OLU + AU =05 f+ [£,03]U,
where

[Z,05]U:=(b-V)O,U + AU —05((b-V)U + AU).
By (7.13),

L (A= (V-B)/p — (p — 1)p)| 32U |7 dx

< l/pf [b-n||0%g|"dx" + c(p) |05 f Il 1r + c(P) I [ZL, 0T U || 1,
Ir_

which implies

(A — e(ps 1 [ eess) | 5T |12
<c(p)f Ibon]|35g17dx + e(p) |05/ |2
Tr_

+c(p b llwrsrs | Alwen) [ U s + c(po (1) | 05, U || 2o (7.20)
By (7.10);, we have
057 '0,,U =05 "(f— b0,U — AU)/b;. (7.21)
So
18510, U Il e < e/ 1B lwesons | A wen) (NU [ s+ 11 f 1)
+ (/2 [ b weern) [O2U | 1o
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Moreover, one can show
105, xU Il oo < (/2 1B [ wessos [ Al wen) (NU oo+ LS 1 wrr0)
+ c(1/2, | bl werrn) || 02U || o (7.22)
By (7.20), (7.22), and assumption of method of induction,
AU L < e(ps bl wesns T A lwrrs 12, VAN LS er + 11 g e )-
(7.23)
By (7.22) and (7.23),
HU [1%r < Py | A wens |15 wrsrs 124, YA ULf Iwrer + 1 g o)
So we prove (7.9). [
Lemma 7.3. Besides assumptions 1, 2, 4 of Lemma 7.2, if

1. f,AeW"P(Q), ge W"P(I'_),
then the system (7.8) has a unique solution Ue W’ ?(Q) and

[ U | weney < c(ps | AT wers 1B lweeros 1/2, VA) L f 1rene) + g o)
(7.24)

Proof. By density theorem [7], we can choose the sequences {b;, Ay, fi} = C*(Q),
{gx} = C*(I'-) such that
by—bin W/*tP(Q), A, fi = A, fin WP(Q), g, > g in W/P(I'_) as k — 0.

Let k be large enough such that {b, A, fi} satisfy the assumptions of Lemma 7.3.
Then for each k, the system

b VU + AU =f, 1nQ,
Ui=g, onl_,
has a unique weak solution U, e H’*1(Q) [12]. By Lemma 7.2, the following holds:
1k wer < c(py [ Akllwers 1 bicllwes e, 12, LAD U fi er + 1L gicll e ).

Since {1 bk [l we=vrs | Aicllwers L fic llwen, | @illwes}  are  bounded, || Ul wrng is
bounded. Because W*? is a reflexive Banach space [3], there is a subsequence {U;}
of {U,} such that U;—>U* weakly in W?"? which implies [|U* |y <
lim infy - o, || Uy || wer. Passing k to oo, we see that U* is a classical solution of (7.8) and
satisfies (7.24). [

Based on the results of Lemmas 7.1-7.3, we now prove Lemma 5.4.
Proof of Lemma 5.4. First, we extend the domain Q to a smooth simply connected

domain Q' (see Remark 3) such that I'; = I'; < 0Q'. For function b, we extend it to b*
in ', by Lemma 7.1, such that I'} = {x€9Q'|b*(x)-n < 0},

16* [lwerngy S cllb | weerogy  b*-mlr(x) < —4 <0,
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We also extend f, A to f*, A* in Q" and g to g* on 0Q’ such that

I f* HW/“"(Q’) <c|fl W r(Q)s [g* | wenry) < € lgl W/,
| A* HW/,p(m <c||A] Wer)s A*(x) > A, >0,VxeQ.

Furthermore, b*, f*, A*, g* satisfy the assumptions of Lemma 7.3. Consider the
following

b*-V)U* + A*U* =f* in Q,
U*=g* onlIj.
Then, by Lemma 7.3, there exists a solution U* e W*?(Q¥) in the above equation and

| U* Hﬁ”""{ﬂ') < c(p, [ A* | weo, 1DF lypreere, 12, /A CLf* ] €V/’~P(Q’) + [g*| €vav(r;))-

Then U = U *|q is the required solution. Note that || U* || /) < || U* || fprr@) - Next
by adjusting the coefficients of the above inequality, we obtain estimate (5.6) for s = /
case. Other cases of estimate (5.6) can then be obtained by tracing the proof of Lemma
7.2. Uniqueness can be proved simply by energy method. []
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