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Abstract 

This paper presents a layer-structured fuzzy neural network (FNN) for learning rules of fuzzy-logic control systems. 
Initially, FNN is constructed to contain all the possible fuzzy rules. We propose a two-phase learning procedure for this 
network. The first phase is a error-backprop (EBP) training, and the second phase is a rule pruning. Since some functions 
of the nodes in the FNN have the competitive characteristics, the EBP training will converge quickly. After the training, 
a pruning process is performed to delete redundant rules for obtaining a concise fuzzy rule base. Simulation results show 
that for the truck backer-upper control problem, the training phase learns the knowledge of fuzzy rules in several dozen 
epochs with an error rate of less than 1%. Moreover, the fuzzy rule base generated by the pruning process contains only 
14% of the initial fuzzy rules and is identical to the target fuzzy rule base. 
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1. Introduction 

During the past decade, a variety of applications 
of fuzzy set theory [16] have been implemented in 
various fields. One of the most important applica- 
tions is fuzzy logic controllers [13, 7]. Meanwhile, 
interest in artificial neural networks has grown 
rapidly after two decades of eclipse. Many network 
topologies and learning methodologies have been 
explored. Among these learning methodologies, the 
backpropagation algorithm [15, 9], i.e., gradient 
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descent supervised learning, has had an enormous 
influence in research on neural networks. 

Recently, more and more research has been pub- 
lished concerning the integration of fuzzy systems 
and neural networks, with the goal of combining 
the human inference style and natural language 
description of fuzzy systems with the learning abil- 
ity and parallel processing of neural networks [1, 
3-5, 8, 14]. Most of this research has been proposed 
for or can be applied to the knowledge learning of 
a fuzzy logic controller. 

In [8], a multilayer feedforward connectionist 
model designed for fuzzy logic controllers and deci- 
sion-making systems was presented. A hybrid two- 
step learning scheme that combined self-organized 
and supervised learning algorithms for learning 
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fuzzy logic rules and membership functions was 
developed. Some heuristics for rule reduction and 
combination were provided. 

In [3, 41, adaptive fuzzy associative memories 
(AFAM) were proposed to integrate a neural net- 
work and fuzzy logic. Unsupervised differential 
competitive learning (DCL) and product-space 
clustering adaptively generated fuzzy rules from 
training samples. 

In [14], fuzzy systems were viewed as a three-layer 
feedforward dedicated network with heterogeneous 
neurons. The network was trained by backpropaga- 
tion algorithm for membership function learning. 

In [1], a fuzzy modeling method using fuzzy 
neural networks with the backpropagation algo- 
rithm was presented. Three types of fuzzy neural 
networks, 6, 7, and 10 layers, respectively, were pro- 
posed to realize three different types of fuzzy rea- 
soning. These networks can acquire fuzzy inference 
rules and tune the membership functions of nonlin- 
ear systems. 

In [5,1, a fuzzy-set-based hierarchical network for 
information fusion in computer vision was present- 
ed. The proposed scheme could be trained as a 
neural network in which parametrized families of 
operators were used as activation functions and the 
gradient descent and backpropagation learning 
procedure was performed to generate degrees of 
satisfaction of various decision criteria by adjusting 
the parameters of these operators. After training, 
the network could be interpreted as a set of rules for 
decision making. Some heuristics were described to 
eliminate redundant criteria. 

In general, most of the methodologies for learn- 
ing knowledge are in one of the following two 
categories: backpropagation type and competitive 
type. Roughly speaking, backpropagation-type 
learning algorithms learn more precisely than com- 
petitive-type algorithms because they are based on 
the gradient descent search, but they take a long 
time and numerous training epochs to converge. In 
contrast, competitive-type learning algorithms 
learn more rapidly than backpropagation-type al- 
gorithms because they are based on unsupervised 
clustering, but the knowledge learned may not be 
precise enough. Therefore, one of the goals in the 
field of knowledge learning is to learn knowledge 
both precisely and rapidly. 

For a fuzzy logic controller, the principal design 
issues are fuzzification strategies, database, rule 
base, decision-making logic, and fuzzification strat- 
egies [7,1. Some items of the design issues, such as 
the membership functions of the linguistic values of 
input and output linguistic variables, the fuzzy 
rules, and the fuzzy operators, etc., might be un- 
known or uncertain prior to the construction of 
a controller. Hence, we wish to acquire more know- 
ledge of these items through learning. The pro- 
posed fuzzy neural network (FNN) is flexible and 
extendable for learning different combinations of 
these items, such as the membership functions of 
the input and output linguistic variables, the fuzzy 
rules, and the fuzzy operators [10-12,1. However, in 
this paper, we concentrate on acquiring fuzzy rules 
of a fuzzy control system in order to observe and 
analyze the nature of rule learning more thorough- 
ly and deeply. For the FNN presented in this paper, 
the working process of a fuzzy-logic control system 
is embedded in the layered structure of the network. 
The fuzzification strategies, decision-making logic, 
and defuzzification strategies chosen are for- 
mulated as the functions of the nodes in the net- 
work; and the fuzzy rules are represented by the 
learnable weights of the input links on one of the 
layers in the network. The learning strategy of 
the FNN is "start large and prune". For this strat- 
egy, the network is large initially and the training is 
performed with the large network. After the train- 
ing is finished, the network will then be reduced 
based on some criterion. Therefore, for fuzzy rule 
learning, the FNN is constructed to contain all the 
possible fuzzy rules, each with a weak strength, i.e., 
a small weight, initially according to the related 
linguistic variables and values of the system. 

The learning procedure proposed for the FNN 
consists of two phases. The first phase is an error- 

backprop (EBP) training phase, and the second 
phase is a rule-pruning phase. The EBP learning 
algorithm is based on a gradient descent search in 
the network, in which some of the node functions 
are formulated with competitive operations such as 
the min and m a x  operators, i.e., some nodes in the 
network have competitive activation functions. The 
dominant terms, i.e., the winners, of these competi- 
tive operators are determined in the forward pass of 
the learning algorithm, while in the backward pass, 
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the computation of the gradients for adjusting the 
learnable weights (see Section 3) are performed only 
on those links that are related to the dominant 
terms of the competitive operators. Therefore, the 
EBP algorithm applied on a network with competi- 
tive activation functions enables the network to 
learn both precisely and quickly, and can be viewed 
as a compromise between the advantages of back- 
propagation-type and competitive-type learning 
methodologies. After the EBP training phase, 
a rule-pruning process is executed to delete redund- 
ant fuzzy rules and obtain a rule base with much 
smaller size than the initial one. A truck backer- 
upper control problem for backing up a simulated 
truck to a loading dock in a parking lot was chosen 
as a benchmark [3]. Simulation results show that for 
this problem, the EBP training phase is completed in 
several dozen epochs with a training error of less 
than 1%. Moreover, the fuzzy rule base generated by 
the pruning process in the second phase contains 
only 14% of the initial fuzzy rules and reproduces 
the target fuzzy rule base with no error. 

This paper is organized as follows. The structure 
of the FNN and the functions of the nodes in the 
network are described in Section 2. The EBP learn- 
ing algorithm for the FNN with competitive activa- 
tion functions is stated in Section 3. A pruning 
method for deleting redundant fuzzy rules and ob- 
taining a precise (and sound) rule base is described 
in Section 4. In Section 5, the truck backer-upper 
problem is simulated and the simulation results 
are analyzed and compared with those for other 
adaptive controller systems. Finally, our con- 
clusions and plans for future research are presented 
in Section 6. 

2. The structure of the fuzzy neural network 

In the fuzzy neural network presented, the fuzzy 
logic rules considered are the state evaluation fuzzy 
control rules in linguistic I F - T H E N  form for mul- 
tiple inputs and single output [7]. The/F-part, i.e., 
the antecedent, of a rule is the conjunction of all 
input linguistic variables [ 17], each associated with 
one of its linguistic values. The THEN-part, i.e., the 
consequent, of a rule contains only one output 
linguistic variable associated with a linguistic value. 

Assume that there are M input linguistic variables, 
AI, A2 . . . . .  AM, and N output linguistic variables, 
F1, F2 . . . .  , FN. The number of linguistic values as- 
sociated with an input linguistic variable Ah is ah, 
and these (input) linguistic values are denoted by 
~/h, 1, ~h, 2, . . . ,  ~h,a~. The number of linguistic 
values associated with an output linguistic variable 
Ft is ~, and these (output) linguistic values are 
denoted by ~l ,  1, ~ , 2 ,  .-., ~-~,I,- Two exemplar 
fuzzy rules are given below: 
R1,1,1: IfA1 is ~1,1 andA2isd2,1 and ... and 

AM is dM,1 (AND1), then F1 is ~1,1, 
RQ.N, IN: I fA~is~l ,a landA2isd2, ,2and ... and 

AM is dM,~ (ANDQ), then FN is ~-~,i~, 
where the rules are numbered Ri, ~, k, indicating the 
fuzzy rule with antecedent ANDi, output linguistic 
variable Fj, and the output linguistic value ~ ,  k. 

The fuzzy neural network is a five-layer dedi- 
cated neural network, as shown in Fig. 1, designed 
according to the working process of fuzzy control- 
ler systems [7, 8]. The adjustable weights for rule 
learning are on the input links of the nodes in Layer 
IV. Initially, it is constructed to contain all the 
possible rules of a fuzzy control system. The num- 
ber of nodes and connections of the initial network 
are summarized in Table 1. The semantic meaning 
and functions of the nodes in the proposed network 
are as follows. 

Layer I (input layer): Each node in Layer I repres- 
ents an input linguistic variable of the network and 
is used as a buffer to broadcast the input to the next 
layer, i.e., to the membership-function nodes of its 
linguistic values. The range (or space) of each input 
linguistic variable is determined by the application 
and need not be constrained to within [0, 1]. 

Layer II (membership-function layer): Each node 
in Layer II represents the membership function of 
a linguistic value associated with an input linguistic 
variable. These nodes are called MF nodes. The 
output of such an MF node is in the range [0, 1] 
and represents the membership grade of the input 
with respect to the membership function. There- 
fore, an MF node is a fuzzifier. The most commonly 
used membership functions are in the shape of 
triangle, trapezoid, and bell. The functions of the 
nodes in this layer are determined and formulated 
by applications. The weights of the input links in 
this layer are unity. 
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Fig. 1. The network structure of the fuzzy neural network. 

Table 1 
Summary of the nodes and links in the initial fuzzy neural network 

Layer For a node in the layer Total 

Index # Input links # Output links # Nodes # Input links # Output links 

I h 1 a h M M P 

II i 1 Q/ah P P MQ 
III j M R Q MQ QR, QN 
IV k Q 1 g QR, QN R 
V 1 ft 1 N R N 

Note: M, the number of the input linguistic variables; N, the number of the output linguistic variables; Ah, 
an input linguistic variable represented by node h in Layer I; ah, the number of the linguistic values of A,; F ,  
an output linguistic variable represented by node I in Layer V;f~, the number of the linguistic values of F~; 
P = ~=l(ah); Q = H h~l(ah); R = Xt=l~ (fl); QR, the number of the initial fuzzy rules; QN, the number of 
the rules in a sound fuzzy rule base. 
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Layer I I I  (AND layer): Each node in Layer III 
represents a possible/F-part for fuzzy rules. These 
nodes are called AND nodes. In fuzzy set theory, 
there are many different operators for fuzzy inter- 
section [2, 18]. We choose the most commonly 
used one, i.e., the min-operator suggested by Zadeh 
[16], as the function of an AND node. The main 
reason is that the rain-operator is simple and effec- 
tive and has strong characteristics of competition. 
Therefore, the operation performed by node j in 
Layer III is defined as follows: 

z i = min(xji) = M I N  t, (1) 
i~ej 

where Pj is the set of indices of the nodes in Layer II 
that have an output link connected to node j and 
xji = zi. The link weights w~i on the input links in 
this layer are unity. From Eq. (1) for z j, it is obvious 
that the output value of node j in Layer III is 
determined by the output of a node i in Layer II, 
which provides the minimum among all the output 
values of the nodes connected to node j. Node i is 
called a dominant node of node j. 

Layer I V  (OR layer): Each node in Layer IV rep- 
resents a possible THEN-part  for fuzzy rules. The 
nodes in this layer are called OR nodes. The opera- 
tion performed by an OR node is to combine fuzzy 
rules with the same consequent. Initially, the links 
between Layers III and IV are fully connected so that 
all the possible fuzzy rules are embedded in the struc- 
ture of the network. The weight Wkj of an input link in 
Layer IV represents the certainty factor of a fuzzy 
nile, which comprises the AND nodej in Layer III as 
the IF-part and the OR node k in Layer IV as the 
THEN-part. Hence, these weights are adjustable 
while learning the knowledge of fuzzy rules. 

In fuzzy set theory, there are many different oper- 
ators for fuzzy union [2, 18]. We choose the most 
commonly used one, i.e., the max-operator sugges- 
ted by Zadeh [16], as the function of an AND node 
for the same reason as that of the min-operator. 
Therefore, the operation performed by a node k in 
Layer IV is defined as follows: 

Zk = max(xkjWkj) = M A X k ,  (2) 
j~e~ 

where Pk is the set of indices of the nodes in Layer 
III that have an output link connected to node 

k and Xkj = Zj. During the training phase, the link 
weights Wkj in Layer IV are learnable nonnegative 
real numbers. 

As was the case with Eq. (1) for z~, from Eq. (2) 
for Zk, it is obvious that the output value of node 
k in Layer IV is determined by the maximum 
among the products of the output values Xkj of the 
nodes in the previous layer and the weights Wkj 
associated with the links connected to node k. Sup- 
pose that the maximal product is provided by node 
j in Layer III. Then, node j is called a dominant 
node of node k. 

Layer V (defuzzification layer): Each node in 
Layer V represents an output linguistic variable 
and performs defuzzification, taking into consid- 
eration the effects of all the membership functions 
of the linguistic values of the output. 

Suppose that the correlation-product inference 
and the fuzzy centroid defuzzification scheme [4] 
are used. Then the function of node l in Layer V is 
defined as follows: 

zt = Z k ~ P, (X,k ark Ctk) (3) 
E~ ~,(x,ka~k) ' 

where P~ is the set of indices of the nodes in Layer 
IV that have an output link connected to node l, 
Xtk = ZR, and aiR and Ctk are the area and centroid of 
the membership function of the output linguistic 
value represented by node k in Layer IV, respec- 
tively. Since it is assumed that the membership 
functions of the output linguistic values are known, 
the areas and centroids can be calculated before 
learning. The link weights of Layer V are unity. 

3. Error backpropagation (EBP) learning algorithm 
for the FNN with competitive node functions 

In conventional neural networks, most of the 
neurons perform summation and sigmoid func- 
tions. However, more and more alternatives for 
these functions have been presented while the ap- 
plications of neural networks explored recently [6]. 
In this section, we describe the derivation of the 
EBP learning algorithm for the FNN with the node 
functions defined in the previous section. 

In the training phase, the concept of error back- 
propagation is used to minimize the least mean 
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square (LMS) error function: 

1 N 
E = ~ t~=l (Tt - zt) 2, (4) 

where N is the number of nodes in Layer V and 
Tt and zt are the target and actual outputs of the 
node l in Layer V, respectively. The methods for 
adjusting the learnable weights Wki in Layer IV of the 
fuzzy rules are based on the gradient descent search. 

Let the delta value, 6, of a node in the network be 
defined as the influence of the node output with 
respect to E. The definition of the delta values 6k 
and fit for nodes in Layers IV and V, the evaluation 
of the gradients of E (VEw~j) with respect to the 
learnable weights, and the adjustments of the 
weights (A Wkj) are described as follows: 

The definition of  the Delta values: For a defuzzifi- 
cation node l in Layer V, the delta value 31 is 
defined as follows: 

dE 
fit -- dzt -- (Tt -- zt). (5) 

For an OR node k in Layer IV, the Delta value 6k is 
defined as follows: 

dE dE ~zt 
dzk dzt dz~ 

-- fit atk(ct_.___~k--_ zt) (6) 
Zk' ~p,(Xlk'atk')' 

where the output link of node k is connected to 
exactly one node l in Layer V. 

The evaluation of the 9radients of E: For the 
weight Wkj of the link connected from nodej in Layer 
III to node k in Layer IV, the definition of the 
gradient of E with respect to Wkj is defined as follows: 

dE dE dZk 
VEw~, dWkj OZ k dWkj 

6k" 
otherwise. (7) 

The two cases in Eq. (7) for VEw~j indicate that 
when the EBP training algorithm is processed, 
there will be different adjustments in the backward 
pass depending on the situation that occurs in the 
forward pass. It is obvious that only the weight of 
the link emitted from a dominant node of node 
k has a nonzero gradient, i.e., only the weight will 

be adjusted in the backward pass of the learning 
algorithm, due to the competitive characteristics of 
the function performed by the OR node. 

The adjustments o f  the learnable weights: The 
adjustments of the learnable weights Wkj, which are 
based on the gradient descent search, can be de- 
scribed as follows: 

Wkj(t + 1) = Wkj(t) + AWkj 

= wki(t) - fl 17Ew~j, (8) 

where fl is the learning rate. 
The knowledge of the fuzzy rules learned by the 

EBP algorithm is distributed over the weights of 
the links between Layers III and IV. 

4. The rule-pruning method 

Since the knowledge of fuzzy rules learned by 
EBP algorithm is distributed over the adjustable 
weights, most of the weights after training have 
nonzero positive values. Then the fuzzy rule base 
obtained directly right after the training phase will 
contain all the rules with nonzero weight, i.e., certain- 
ty factor. This causes the size of the rule base very 
large in most cases. Therefore, a pruning process is 
required to obtain a concise rule base. At the mean- 
time, the structure of the FNN will also be reduced. 

The physical meaning of the weights on the input 
links in Layer IV is explained in the following. After 
the EBP training, the learned weights wkj on a set of 
links from an AND node j in Layer III to the OR 
nodes of an output linguistic variable Ft (see Fig. 2) 
are interpreted as the certainty factors of a set of 
fuzzy rules that have the same/F-part  and the same 
output linguistic variable but different linguistic 
values. These fuzzy rules will be referred to as 
"incompatible" rules. Fig. 2 can be interpreted as 
the following incompatible fuzzy rules: 

Rj, t , I:  I fANDj ,  then Ft is ~ t . t  (Wkt,j)" 
Rj.t.2: I fANDj ,  then Ft is o~t,2 (Wk2.j). 

z 

Rj,  l,r: 

Z 

Rj ,  l. fz: 

If AND j, then Ft is ~t. ,  (Wkr, i). 

If ANDj, then Ft is ~,s~ (wkx,.j). 
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The defuzzification node 
represents an output 
linguistic variable b) 

O R  Nodes  

The OR nodes represent 
the linguistic values of 
the output linguistic 
variable b) 

The AND node represetns 
an antecedent ANDj of 
fuzzy rules 

ZI 

Fig. 2. The diagram of the possible fuzzy rules with identical 
antecedent ANDj for an output linguistic variable Ft. 

where A N D j  is the antecedent represented by an 
AND nodej in Layer III. The effects of these rules 
are that when the antecedent A N D j  holds, each of 
the rules is activated to a certain degree represented 
by the weight value (the certainty factor) associated 
with that rule. In the previous research that related 
to the learning of fuzzy rules, only a few discussed 
about the pruning of the rules and the methods 
provided were heuristic, such as deleting the rules 
with weak strengths, i.e., small weights, or choosing 
the one with the maximum weights among the 
incompatible rules and deleting the others I-8]. 

In this paper, a method for pruning fuzzy rules is 
proposed based on the following derivation. For 
defuzzification node l, the corresponding output 
with respect to AND node j (and the set of incom- 
patible rules listed above) is denoted by z / and  is 
evaluated as follows: 

z /  = EK~ tp,~Nj)(XtkalkC,k) 

~,k ~ (e,~N,)(Xtkatk) ' 

where 

Xlk = Z k = X k j W k j  = Z j W k j .  

Thus, 

z /  = ~k~  e, (ZjWkja,kCtk) 

~k  ~ e, (ZjWkjalk) ' 

_ Ek  ~ p,(wkjaaca)  

Ek ~ e, (Wkjalk) 
(9) 

From Eq. (9), z/ is the centroid of the weighted 
linguistic values of F~, where the weights of the 
linguistic values is equal to the certainty factors of 
the set of incompatible rules listed above. Hence, 
z/ can also be called the centroid of the set of 
incompatible rules. 

From the illustration given above, it is obvious 
that the total effects of the set of incompatible rules 
on the output linguistic variable Ft is equivalent to 
the centroid of the incompatible rules. Therefore, for 
rule pruning, an evaluation equation is proposed 
based on the concept of the centroid of gravity. 

The equation for evaluating the centroid of the 
incompatible fuzzy rules represented by the links 
from an AND node j in Layer III to the OR nodes 
of an output linguistic variable F~ is defined as 
follows: 

C~j = E k  ~ p, (wkjazkc~k) (10) 
•k ~ e, (Wkjatk) 

For each linguistic value of the output linguistic 
variable F~, we define an interval in the space of F~ 
according to the membership function of the lin- 
guistic value and the requirements of the applica- 
tion. The basic criterion for defining the intervals is 
that they should cover the entire space of Ft. If the 
centroid Ctj computed for the set of incompatible 
rules listed above is in the interval of a linguistic 
value ~t.,, then the corresponding rule Rj. ~. r is not 
redundant and remains in the rule base. In the set of 
the incompatible rules, all the rules other than the 
remaining ones are eliminated. 

For each AND node in Layer III, the pruning 
process is performed to delete its redundant output 
links connected to the OR nodes associated with 
each output linguistic variable. After the pruning 
phase, a rule base with much smaller size can be 
obtained. 

In practice, after an fuzzy rule learning, a sound 
fuzzy rule base is expected to be obtained for many 
applications. A sound fuzzy rule base is defined as: 
for each output linguistic variable, there exists 
exactly one consequent for each possible anteced- 
ent in the rule base. In an application, the fuzzy rule 
base obtained after the pruning phase can be sound 
if the intervals defined for the linguistic values of 
each output linguistic variable are nonoverlapped. 
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Fig. 3. The effects of the set of incompatible rules with respect to the output linguistic variable 0. The space of 0 is divided into seven 
nonoverlapped intervals. The centroid calculated by Eq. (10) for this set of incompatible rules is in the interval of linguistic value PS. 

After rule pruning, the fuzzy rule base obtained 
may be either sound or containing incompatible 
rules. For a sound fuzzy rule base, the certainty 
factors of the rules are set to unity. For a fuzzy rule 
base containing incompatible rules, the certainty 
factors of the rules can be determined by processing 
the EBP training once more. 

An example is given below for illustrating the 
rule pruning. From the simulation results of the 
truck backer-upper problem (see Section 5), one of 
the sets of incompatible fuzzy rules obtained after 
the EBP training phase is listed as follows: 

If x is LE and ~b is RB, then 0 is NB, (0.18337). 

If x is LE and ~ is RB, then 0 is NM, (0.42997). 

If x is LE and ~b is RB, then 0 is NS, (0.33736). 

If x is LE and ~b is RB, then 0 is ZE, (0.52446). 

If x is LE and ~b is RB, then 0 is PS, (0.23184). 

If x is LE and q~ is RB, then 0 is PM, (0.00379). 

If x is LE and q~ is RB, then 0 is PB, (0.84130). 

The values of the certainty factors shown in the 
parentheses are the simulation results of the prob- 
lem when the space of the output linguistic variable 
0 was normalized to [0, 1]. When the antecedent of 
the set of incompatible rules holds, the relative 

effects of the rules on the consequent are shown in 
Fig. 3. In this figure, the dashed lines represent the 
membership functions of the seven linguistic values 
for the output linguistic variable 0 as the same as 
that shown in Fig. 4(b), and the shaded area repres- 
ents the relative effect of these incompatible rules 
with respect to 0. The seven intervals defined for the 
output linguistic values of 0 are nonoverlapped and 
cover the entire space of 0 as shown in Figs. 3 and 
4(b). The centroid calculated for this set of incom- 
patible rules is in the interval of linguistic value PS. 
Therefore, only the rule 

If x is LE and ~b is RB, then 0 is PS 

remains after the rule-pruning phase. The remain- 
ing rule is identical to the one specified at the left 
top square of the target fuzzy rule base shown in 
Fig. 5. 

5. System simulation and evaluation 

A general purpose simulator of the proposed 
fuzzy neural network was implemented on a Sun 
SPARC station. The truck backer-upper control 
problem [3] was used as a benchmark to evaluate 
the performance of the proposed network. In this 
fuzzy control system, the truck x-position coordinate 
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Fig. 4. Fuzzy membership functions of the linguistic values associated with (a) input linguistic variables x and ~b and (b) output linguistic 
variable 0 for the truck backer-upper problem. The space of 0 is divided into seven nonoverlapped intervals. 

X 

LE LC CE RC RI 

RB PS PM PM PB PB 

RU NS PS PM PB PB 

Rv NM NS PS PM PB 

vE NM NM ZE PM PM 

LV NB NM NS PS PM 

LU NB NB NM NS PS 

LB NB NB NM NM NS 

Fig. 5. The target FAM-bank matrix for the truck backer-upper 
controller. 

x and the t ruck angle ~b were chosen as the input  
linguistic variables and the steering-angle control  
signal 0 was chosen as the ou tpu t  linguistic vari-  
able. The  input  linguistic variable x had five 
linguistic values: LE, LC, CE, RC, and RI; the input  
linguistic variable tk had  seven linguistic values: 
RB, RU, RV, VE, LV, LU, and LB; and the ou tpu t  
linguistic var iable  0 had  seven linguistic values: NB, 
NM, NS, ZE, PS, PM, and PB. The membersh ip  
functions of  the linguistic values of  these linguistic 
variables are given in Fig. 4. There  were 245 
( =  5 x 7 x 7) possible fuzzy rules. A target  fuzzy 
rule base, referred to as the F A M - b a n k  matr ix ,  is 
specified in Fig, 5. In  the s imulat ion of the different 
adapt ive  control ler  systems, the t ruck trajectories 
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x 

LE LC CE RC RI 

RB PS * PB * PB PB PB 

RU *NM * ZE PM PB PB 

RV NM * N M  *NS *PS PB 

VE NM NM * N M  *ZE *PB 

LV *NM NM ~ NM *NS *PB 

LU *NM *NM NM *NM *PM 

La *NM !* NM NM NM * NM 

• : a fuzzy rule that is different from the target one 

(a) 

x 

LE LC CE RC RI 

RB PS PM PM PB PB 

RU *ZE *PM PM PB PB 

RV *NS *ZE PS PM PB 

VE NM NM ZE PM PM 

LV NB *NB NS PS *PS 

LU NB NB * NB NS PS 

LB NB NB NM NM NS 

(b) 

Fig. 6. (a) The FAM bank generated by the neural control 
system. (b) The DCL-estimated FAM bank. 

produced according to the membership functions 
and the target fuzzy rule base shown in Figs. 4 and 
5, respectively, were regarded as the ideal trajecto- 
ries and were used as the training samples [3]. 
Besides, the target FAM-bank matrix was used as 
a basis for comparing the performance of different 
adaptive controller systems. 

In [3], two adaptive controller systems with 
different learning methodologies were analyzed. 
One was a neural system, which consisted of 
a multilayer feedforward neural network with the 
conventional backpropagation gradient-descent al- 
gorithm. The neural system was trained by ap- 
plying 35 sample vectors to the network, and more 
than 100000 iterations (epochs) were required to 
complete the training process. The second system 

was the adaptive fuzzy truck backer-upper, which 
consisted of a laterally inhibitive differential com- 
petitive learning (DCL) network trained with the 
DCL algorithm. The adaptive fuzzy system was 
trained by applying 2230 sample vectors to it. In 
order to generate the fuzzy rules, i.e., the FAM 
banks, product-space clustering was applied to the 
training results of the neural system and the adap- 
tive fuzzy system. The FAM banks generated by 
these two different adaptive controller systems, are 
shown in Fig. 6. 

To illustrate briefly the performance of these two 
adaptive controller systems, a set of random input 
vectors were tested to estimate the retrieving error 
rates of the FAM banks generated by these two 
systems in comparison with the target FAM bank 
in Fig. 5. The error rates of the neural system and 
the adaptive fuzzy system were 11.42% and 3.74%, 
respectively. 

In the simulations for our fuzzy neural network, 
the fuzzy membership functions and the FAM- 
bank matrix shown in Figs. 4 and 5, respectively, 
were used to generate the sample vectors for train- 
ing. A total of 350 training samples were generated 
randomly, about 10 samples in the product space of 
each antecedent. The network contained 2 neurons 
in Layer I, 12 ( = 5 + 7) neurons in Layer II, 35 
( = 5 × 7) neurons in Layer III, 7 neurons in Layer 
IV, and 1 neuron in Layer V. Initially, there were 
245 ( = 5 x 7 × 7) links between Layers III and IV; 
each link represented a possible fuzzy rule. 

During the EBP training of fuzzy rules in the first 
phase of the proposed learning procedure, the 
training error was reduced very quickly in each 
epoch iteration and the learning was completed in 
a small number of epochs. Simulation results for 
the EBP training with random initial weights on 
the input links of Layer IV are shown in Fig. 7. The 
training iteration was terminated after the error 
rate was reduced to 1%. 

After the EBP training, the rule-pruning process 
was performed in the second phase of the learning 
procedure. The space of the output linguistic vari- 
able 0, - 3 0  ~< 0 ~< 30, was divided into seven 
nonoverlapped intervals, shown in Fig. 4(b), corres- 
ponding to the seven linguistic values of 0. Only 35 
of the 245 initial fuzzy rules remained after pruning. 
For analysis, a FAM bank was generated by the 
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Fig. 7. Training error rates of the EBP learning algorithm for the truck backer-upper problem: training error versus EBP training 
epochs. The number  of the random training samples is 350. 
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Fig. 8. Retrieving error rates of the fuzzy neural network after the EBP training and after the rule pruning, respectively, for the truck 
backer-upper problem: retrieving error versus EBP training epochs. 

pruning process after each EBP training epoch. The 
sets of random input vectors that were generated to 
test the performance of the other two adaptive 
controller systems mentioned previously were tes- 
ted to estimate the retrieving error rates of the 
FAM banks. Fig. 8 shows the retrieving error rates 
of the fuzzy neural networks after the EBP training 
and after the rule pruning, respectively. From this 
figure, we can see that the retrieving error of the 
fuzzy neural network after the rule pruning is small- 

er than that just after the EBP training. It means 
that the truck trajectories produced by an FNN 
with EBP training and rule pruning are closer to 
the ideal trajectories than that produced by an 
FNN with EBP training only. 

Fig. 9 shows (a) the resulting FAM bank gener- 
ated by the pruning phase after only one EBP 
training epoch, (b) the corresponding control surfa- 
ces of the FAM bank, and (c) the absolute difference 
of the control surface and the target FAM surface. 
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x 

LE LC CE RC RI 

gs PS PM PM PB PB 

RU NS PS PM PB PB 

Rv NM NS PS PM PB 

VE NM NM ZE PM PM 

LV NB NM NS PS PM 

LO NB NB NM NS PS 
* 

LB NB NB NB NM NS 

(a) 

(b) 

(c) 

Fig. 9. (a) FAM bank generated by the rule-pruning process 
when the EBP training was terminated after the first epoch in 
Fig. 7. (b) The corresponding control surface of the FAM bank 
in (a). (c) The absolute difference of the control surface in (b) and 
the target FAM surface. 

We can see that the FAM bank in Fig. 9(a) mis- 
matches the target FAM bank in Fig. 5 at only one 
rule with a slightly different output linguistic value. 
Moreover, the retrieving error after the pruning 
phase for seven EBP training epochs is 0%, i.e., the 
FAM bank generated then is identical to the target 
FAM bank. Therefore, the target FAM bank can 
be reproduced by the fuzzy neural network with no 
error. In other words, the fuzzy neural network 
can produce the ideal trajectories for the truck 
backer-upper controller problem after the training 
and pruning processes. 

For different numbers of training samples, the 
retrieving errors after pruning with different EBP 
training epochs are shown in Fig. 10. When 35 
random training samples are applied to the net- 
work, the pruning phase can generate a FAM bank 
with an error rate of 10.93% after the first EBP 
training epoch and with an error rate of 5.81% after 
the 13th training epoch. In addition, when 2230 
random training samples were applied to the net- 
work, the pruning phase can reproduce the target 
FAM bank with no error after only one EBP train- 
ing epoch. 

6. C o n c l u s i o n s  

A fuzzy neural network for acquiring rules 
of a fuzzy-logic rule-based control system has 
been presented. The learning procedure of the 
network is divided into two phases. The first 
one is an error backpropagation (EBP) training 
phase, and the second one is a rule-pruning phase. 
In the first phase, the EBP learning algorithm en- 
ables the network to acquire the knowledge of 
fuzzy rules precisely and quickly. The main reason 
for these results is that the gradient descent search 
approach in the EBP algorithm enables the net- 
work to learn more precisely than typical competi- 
tive learning algorithms, while the dedicated struc- 
ture of the network and the competitive character- 
istics of the functions for OR nodes in the network 
enable the network to converge much more rapidly 
than conventional backpropagation learning algo- 
rithms. The knowledge of fuzzy rules learned in the 
EBP training phase is distributed over the learn- 
able weights of the network. Therefore, in the sec- 
ond phase of the learning procedure, a pruning 
process is performed to convert the distributed 
knowledge of fuzzy rules learned by the EBP train- 
ing into a precise and sound (or much smaller size) 
rule base. 

In the near future, we plan to analyze the conver- 
gence for the learnable items of the design issues for 
fuzzy control systems, such as the fuzzy rules, the 
membership functions of the linguistic values, and 
the fuzzy operators. Furthermore, we plan to ex- 
tend the layer-structured fuzzy neural network to 
event-driven acyclic networks [6]. 
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Fig. 10. Retrieving error rates of the proposed fuzzy neural network after the pruning phase for different numbers of training samples in 
the EBP training phase: retrieving error after pruning versus EBP training epochs. 
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