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ABSTRACT

Adaptive interpolation with double-interpolator is used for image coding. The double-interpolator means that
two adaptive prediction stages are used. The outer ioop is an adaptive FIRpredictor. The inner ioop is an
texture based bias estimation. The bias means a content dependent estimated prediction error. By assuming
the signals to consist of polynomials of various degrees, the predictor of the outer loop is constructed by
linearly combining a set of maximally flat filters. The maximally flat filter is the filtering implementation of
the Lagrange interpolation. The prediction is done block by block. Within a block, similar with the lifting
scheme, a hierarchical multiresolution prediction is used starting from the lowest resolution 2 by 2 sub-block.
The least square prediction error criterion is used to derive the weighting coefficients of the predictor. To
further reduce the prediction error, an inner loop to estimate the prediction error is included. Within the inner
loop, the pixel to be predicted is classified into groups according to the neighborhood condition. The
accumulated mean of the prediction errors of all the pixels within the same group is considered as the bias of
the prediction error. This bias is then extracted from the actual prediction error to reduce entropy.

Keywords: Adaptive prediction, lifting scheme, multi-resolution prediction, image coding.

1. INTRODUCTION

Predictive coding has been the major approach for lossless coding. For coding efficiency, several issues are
considered in this paper. In order to reduce the prediction error, a double-predictor is used. The outer-loop is
a conventional predictor. While, a second inner loop is used to model the quantity of the prediction error. The
difference of the true prediction error and the estimated prediction error is encoded. The second issue is the
design of the predictor. By assuming a polynomial signal model, Lagrange interpolator is used. To account
for the variation of the signal, an adaptive interpolator with the linear combination of a set of Lagrange
interpolator is used. For multi-resolution purpose, a multi-rate prediction scheme is used. This signal
representation scheme is similar to that used in the lifting scheme.

In lifting, a predictor is applied to the even (or odd) samples to predict the odd (or even) samples and the
interpolated results are subtracted from the original odd (or even) samples. The lifting prediction has been
shown to be equivalent to filter bank decomposition. However, in each lifting step, the predictor output is
downward truncated for an integer to integer transform. There are usually two prediction steps associated
with a lifting scheme. The dual lifting step can be regarded as a prediction stage to predict the highpass
components and the primal lifting step can be regarded as an update stage to update the lowpass components.
In our approach, the primal lifting step used to update the lowpass components is kept fixed. In the extreme
case, if the primal lifting is omitted, the analysis lowpass filter is a delta function and the synthesis lowpass
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filter is a halfband filter.

By assuming a polynomial signal model, the optimal interpolator is then the Lagrange interpolator. The tap
length and the zero distributions of the filter are related to the order of the polynomials that are to be
interpolated. This is the so-called A . An immediate consequence of this theorem is that the
highpass components of the filter bank will be zero if the signals to be processed are polynomial of degree N-
1 and the filter has N zeros at r . In this particular case, the optimal predictor to minimize the highpass
components of the filter bank, or the prediction error, is the maximally flat (Maxflat) filter. The maximally
flat filter is the filter implementation of the Lagrange interpolation. For practical situations, adaptive filter
based on the linear combination of a set of maximally flat filters is used. The weightings of the combination
can reflect the image properties in the original pixel domain.

There is another set ofbases that can be used to represent the maximally flat filter. This is the Bernstein basis.
With the Bernstein basis, some image properties in the frequency domain can be obtained. Thus the predictor

can also be represented as a linear combination of the Bernstein . These two representations can be
related by a change of the bases that are used to represent the predictor. The Bernstein filter is a bandpass
filter. Thus the weightings can indicate the image properties in the frequency domain. Actually, any filter can
be represented as a linear combination of a set of max-flat filters or Bernstein filters. These weighting
variables can be used as content index in the subsequent inner 1oop for prediction error modeling.

The function of the inner loop is to reduce further the prediction rr4 .This technique has been applied in

the content modeling with sequential 2 The application of this technique in the multirate is
more complicated with the hierarchical structure, because the distributions of the prediction error in each
layer are different. The amount of the prediction error is estimated based on the neighboring information of
the pixel that is currently under prediction. Usually, prediction errors from pixels with similar pattern are
collected and processed to form an estimate of the prediction error for that class.

2. FILTER DESIGN

The prediction is a feed-forward type. The design of the predictor to be used in this scheme is considered in
this section. We focus on the dual step with the constraint to minimize the highpass energy based on the
known lowpass components. The implementation of the integer dual lifting scheme is illustrated in Fig. 1.
Formally, a top-down decomposition procedure can be described as, forj =1 J,

c [k] =ci'[2k1

ci[k]= d[2k +11

= c' [2k + i]— [nH2n — (2k +
1)]j

(1)

= c'[2k + 1}_[Ci[fl'[fl —k —

1]].
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where e' [k] = p[2k + i] is the 1st polyphase component ofp[k]. For reconstruction, c-' [k] can be obtained
with prediction from its lower resolution versions plus the prediction errors. A bottom-up reconstruction
procedure is, forj = 1 '-

c1[2k]= c[k1

cf_I [2k + ii =i[k] + [ [nfr[2n — (2k + 1)]j (2)

= äi[k]+[ci[nk'[n-k i]j.
In this multi-rate case, if the truncation is neglected, an associated set of biorthogonal bases exists. The
scaling function is called the interpolative scaling function. That is t(t) is cardinal, i.e. t(k) =8(k),k Z.
According to the two-scale relation,

t(t) = p{k]cD(2t — k) (3)

the values of(t) on the half-integer points can be computed by I!!) =kp[k]cb(m — k).

Consider a continuous function f(t) with derivative f(t), 0 � i � N . It can be shown that if 1(t)
satisfies the condition,

(t — k)tmc1(t — k) = 8(m),m = 0 N — 1 . (4)

then

ll;f:)
—f(t) � M2JN

1f(N) (t)11 where M is a constant and the norm lf()L = SUP(ER f(t)I . The

term
2

f(N)(t) is the upper bound of the approximation error when the basis D(t) satisfying
N! C

Equation (4) is used.

Now let us concentrate on some basic properties of the basis. With the two-scale relation, the property of the
basis shown in equation (4) can be related to the property of the filter p[k] . Thus the accuracy of the
interpolation can be determined from the property of the filter. The highest degree of the interpolated
polynomial can be determined from p[kJ or from p(e'')

Thus if cIo) satisfies the Strang-Fix condition, the corresponding requirement on the filter p[k] is that it

has Nzeros at 2t, i.e. the transfer function p[e''] can be represented as

p(eJw) = (1 +
where R(eJJr ) 0. A filter with N zeros at tv = r is a N-regular filter. With the N -regular filter, the
corresponding scaling function and its translates reproduce polynomials up to degree N —1. From the time-
domain Strang-Fix condition, this fact can also be seen. The condition in equation (4) can be rewritten in the
following discrete form as,
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— k)p[m — 2k] = 8[n],n = 0 N —1,

if t =¶ i considered. This property is the sum rule : k (1)k kp[k] = 0, n = 0 '-- N — 1, of the halfband

filter. This is the A condition indicating that there are N zeros at w =r.

The above mentioned Strang-Fix condition indicates that an N-regular halfband filter can be used to
interpolate a polynomial of degree N —1 . The minimum length of an N-regular halfband filter is 2N-1 and
is called the maximally flat filter. The above derivation shows the results that can be obtained when the
maximally flat filter is used for interpolation. The above procedure indicates how the sampled points
from f(t) can be used to interpolate the same polynomial function f(t).

If the practical signal is treated as a combination of various-order polynomials, the predictor is to be
composed of many maxflat halfband filters. In the beginning of this section, we have mentioned the design of
a non-Maxflat filter by linear combination of a set of Maxflat filters. The polyphase matrix consisting of the
first polyphase components of a set of Maxflat filters with different lengths is defined as

eN[N] 0 0 0

eN[N+11 eN.1[N+11 0 0

Em iii
e[—1]

eN[N21 eNl[N21 0 0

eN[N11 0 0 0

where E' denotes the N x N upper-half matrix of Em and E'1 denotes the N x N lower-half matrix

of Em . So, the design of a non-Maxflat filter can be described as

e' =eN+Emfi,
where / = [flNfiN-1' ' 181 ]T the weighting vector of the combination.

3. SIMULATION RESULTS

The context modeling consists of two techniques in this implementation. The first is the way how the entropy
coding is used to encode the prediction error. In this implementation, the set partitioning is used. The second
issue is the bias cancellation in the prediction. The bias cancellation means that for each pixel an extra
prediction is used to predict the prediction error that will be generated with the adaptive predictor. This bias
is then extracted from the generated prediction error to further reduce the quantity of the prediction error that
is to be encoded. If the bias is a constant, it can be simply included in the predictor. The real situation is that
it is usually content dependent. Although an adaptive predictor has been used in our implementation to
address the content dependence in the prediction. The adaptation algorithm to adjust the predictor coefficient
is still very local and the texture relation among the neighboring pixels is still not considered in order to limit
the complexity of the adaptation algorithm and the prediction process. Thus, an adaptive bias cancellation is
considered. The bias is considered to be texture dependent to complement the task of the adaptive predictor.
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Thus, based on the texture information, a set of groups is constructed. For each group, a bias is estimated.
This bias is the accumulated mean of the prediction error of all the pixels in the group.

In our simulations, the adaptive prediction is the outer ioop and the bias estimation is the inner loop. The
adaptive lifting scheme performs better than the non-adaptive S and S+P transform and is comparable with

the -1 with the median edge detector (MED) and the 2 with the gradient adjusted
6

(GAP). However, LOCO-I and CALIC are single-resolution predictive coding scheme without progressive
decoding capability. We focus on the dual step with the constraint to minimize the highpass energy based on
the known lowpass components.

To obtain the prediction errors, the interpolation process is executed hierarchically with a pyramid structure.
The block size is 32*32 corresponding to four decomposition levels. The resultant representation for each
block consists of the prediction errors hierarchically from 2*2 to 4*4, from 4*4 to 8*8, etc. The results with
only the outer loop are listed in Table 1 . The prediction error is encoded with the set partitioning algorithm.
Within the inner loop, the contexts to model the prediction errors consist of the texture contexts and the
energy contexts. The prediction errors with the similar context are grouped together and the mean of the
prediction errors is used as the output of the inner loop. In CALIC, the GAP prediction error is compared
with this content information to generate an improved prediction error. For the multirate case, the contexts or
neighborhood conditions depend on the pyramid levels.

The texture information is the pixel distribution of the neighboring pixels. To form the texture information,
the values of these pixels that are used with the predictor are compared with the prediction output. If the pixel
value is larger than the prediction output, it is labeled as I . Otherwise, it is labeled as 0. This indicates the
relations among the pixels that are used to predict the current pixel. Thus, for each pixel, the neighborhood
information will consist of a sequence of binary digits. These binary sequences are used as a part of the
texture information: In multirate prediction, the prediction is done from lower resolution toward higher
resolution, the neighborhood characteristics are different in each level. Thus, the content information in each
level is formed separately. Since the neighborhood relation is tighter in the upper level, the prediction errors
decrease as prediction goes from the lower resolution toward the higher resolution. The necessity to
separately form content information in each level is a drawback of this multirate prediction. Because the
sample size in each level is made smaller such that the variation of the content mean is larger than that of the
sequential case. This is the reason why the contribution of the inner loop in the multirate case is not as good
as that in the sequential case.

Let us denote these pixels that are used for prediction as x k • The prediction is then = PkXk . Let

t k denote the state of pixel x k Then t k =L if x k > otherwise t k =• The sequence t k is the content

information. The energy can be defined as s = Wk(xk — £)2 . The error amount is also quantized into L

levels and denoted with log2 L bits. The total context information is the combination of the tk sequence and

the log2 L bits. The quantized contexts are denoted as C( e, tk). The inner loop is to estimate

e(e, tk) = E[elc(e, tk)], with e= (x- ). The final prediction is then =i+ tk). The actual
transmitted error is x-

Another consideration of the content information is the energy for each pixel. The energy content is the sum
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of prediction errors of some related pixels. The spatial relation of pixels for this energy context is shown in
Fig.2. For the LH (low-high) band and the HL (high-low) band, the energy is formed with the four
neighboring prediction errors and the error of the parent pixel. For the HH (high-high) band, the two
corresponding coefficients in the LH band and HL band are used. Prediction errors within the context are
then quantized into five levels. Energy contexts are formed by quantizing the error energy in LH, ilL and HH
bands, respectively, as

ALH S + a(hnn)+ bmpI;
L IlL a1 fww + bh, IPw ;

A1111 S + ahh Clh I + bhh Chit

where p,1 and p are the parent prediction errors to the north and west, Cm and Chi are the brother

prediction errors of the current pixels. S represents the amount from the pixels that are all considered in all
the three bands. We chose a , a,1 ahh blh bh/ and bhh all to be 1 . Energy contexts are quantized to 8

levels. Then, the error modeling is done by using 55 texture contexts and 8 energy contexts. A total of 25000
compound contexts. With the context-based error modeling, the entropy of the prediction errors for different
images is listed in the third column in Table 2. The improvement is about 1 .62% from 4.33 bpp to 4.26 bpp.

There can be many reasons that the improvement in the multirate case is less than that in the sequential case.
Several possible reasons are 1) the setting of the threshold values, 2) the selection of context information, 3)
the neighborhood relationship is weaker in the multirate environment (especially in the lower resolution
levels), etc. The error modeling has no effect in the lower resolution levels. Since most ofthe large prediction
errors are found in these levels, how to utilize the error modeling at these levels becomes an interesting
problem. The entropy improvement of the prediction errors at different resolution levels are shown in Table 3.
It can be seen that the entropy reduction by the error modeling is only significant at the fine resolution level.
The coding results for these various images are shown in Table 4. To encode the prediction error, the set
partitioning in hierarchical trees (SPIHT) method is used.
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Table 1: ENTROPY OF PREDICTION ERRORS OF TEST IMAGES

Images MED GAP Adaptive IDPCM pyramid
couple 2.74 3.00 2.80

face 4.79 4.65 4.61

girl 4.17 4.08 4.09
hat 4.50 4.41 4.40
jet 3.93 4.25 4.28
lena 4.55 4.39 4.35

london 3.78 3.93 3.77
baboon 5.77 6.26 6.04
MIU1 4.44 4.40 4.24
MRI2 4.74 4.68 4.58
MRI3 4.40 4.34 4.29
MRI4 4.58 4.54 4.53
MRI5 4.45 4.41 4.37

Average 4.37 4.41 4.33

Table 2: ENTROPY OF PREDICTION ERRORS OF TEST IMAGES

Images CALIC Adaptive IDPCM pyramid + error modeling
couple 2.57 2.79

face 4.58 4.59

girl 3.97 4.08
hat 4.31 4.18

jet 4.17 4.02
lena 4.29 4.25

london 3.74 3.75
baboon 6.16 6.09
Mml 4.17 4.24
MRI2 4.47 4.43
MRI3 4.15 4.18
MRI4 4.34 4.51
MRT5 4.21 4.32

Average 4.24 4.26

Table 3: AVERAGE ENTROPY AT DIFFERENT RESOLUTION LEVELS

_______ I d'[kjjd2[k} I d3[kJ I 4[kJ
No error modeling 4.18

Have error modeling 4.10
4.62
4.61

5.38 6.00
5.38 6.00
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