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This paper discusses a feedback iteration technique that provides the enhancement of backward 
reconstruction in acoustical imaging. Reconstruction of a vibrating surface motion from acoustic 
holographic data causes computational difficulties because the problem is ill posed. In order to deal 
with these difficulties, a method is developed based on a recursive algorithm, where the inverse 
problem is converted to a well-posed forward propagation problem. An initial guess regarding the 
source images is required to activate the iterative inversion method. Then, the tentative image is 
propagated forward to the hologram plane and the residue is determined. Next, a feedback operator 
is used to process the residue by which the image is updated. Two types of feedback operators were 
investigated: (1) a Wiener suboptimal operator, and (2) a dynamic, optimal operator (designed 
subject to minimum mean-square-error optimization criteria). The performance of these iteration 
methods was investigated by numerical simulations of the holographic reconstruction of a baffled 
piston field. Both iteration methods provided satisfactory convergence and were found to be 
relatively insensitive to the choice of initial guess and noise parameters used in the feedback 
operators. 

PACS numbers: 43.20.Ks, 43.20.Ye 

INTRODUCTION 

An increasing interest has been seen in recent years in 
the study of acoustical imaging which has become an impor- 
tant tool of analysis in acoustic research. • Among the appli- 
cations of acoustical imaging, backward reconstruction ex- 
hibits advantages over other methods for source radiation 
analysis. For instance, backward reconstruction can be used 
for noise source identification. This approach is more effec- 
tive in dealing with distributed sources than some other 
point-to-point methods (e.g., multiple input-one output spec- 
tral analysis that provides the estimate of a lumped contribu- 
tion from each source at certain known location. 2 

The main idea of backward reconstruction is to back- 

propagate the field to the source surface on the basis of the 
field measured on a surface in the vicinity of the source. 
Given the properties of the medium and the geometry of the 
source boundary, we are seeking to determine the acoustic 
field or radiation impedance on the source surface. In this 
connection, the problems relevant to this paper are different 
from the inverse problems in general where the actual physi- 
cal boundaries of the sources are not known, Backward re- 

construction per se is an inverse problem in a somewhat 
restricted sense since some prior knowledge is required. For 
the backward reconstruction considered in the study, it is 
well known that this type of problem suffers from numerical 
discontinuity despite that the existence and uniqueness of 
their solutions are fulfilled in the mathematical sense. 3-6 

More precisely, associated with the process of backward re- 
construction, the measured data reveals very little informa- 
tion about the source and its near-field. Two dramatically 
different sources are likely to be mapped into the far-field 
image within the same level of tolerance. 

In order to alleviate this numerical difficulty, a variety of 
methods have been invented. The majority of these schemes 
fall into the class of windowing usually performed in the 
wave spectrum domain, e.g., Bartlett, Blackman, Hamming, 
Hanning, Kaiser, exponential, Butterworth, and Wiener 
filtering. 7-9 Alternativelye, backward reconstruction can be 
carried out in the spatial domain through certain pseudoin- 
version procedure, e.g., s•ngular value decomposition. 8 Most 
of these methods achieve numerical stability by means of the 
attenuation of the high-frequency components corresponding 
to small eigenvalues in the reconstructed image. A more thor- 
ough survey can be found in Ref. 10. 

In contrast to the above-mentioned methods, the objec- 
tive of this paper is to propose a feedback iteration technique 
that provides the improvement of backward reconstruction in 
acoustical imaging. In the development of this method, prior 
knowledge about the source such as global bounds, smooth- 
ness conditions, statistical properties, and geometric extent is 
incorporated in the computational algorithms as the supple- 
mentary constraints in order to restrict the class of admissible 
functions. Consequently, the numerical anomalies are consid- 
erably reduced through the restoration of the solution conti- 
nuity. To this end, the proposed method employs an iterative 
deconvolution concept n'•2 that reformulates the Problem is 
such a way that the ill-posed backward reconstruction is con- 
verted to the well-posed forward propagation. In diffraction 
tomography, two similar methods have been used in the 
past. •3-•5 These techniques employ iterative algorithms for 
wave tomography that are generalizations of the ART and 
SIRT algorithms of x-ray tomography. 

This method proposed in this paper requires an initial 
guess of source image in order to activate the iteration pro- 
cess. Then, this tentative image is forward propagated to the 
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FIG. 1. Boundary-value problem in acoustical imaging. 

hologram plane, and the residue is determined. Next, a feed- 
back operator is applied to process the residue byd•hich the 
image is updated. The effectiveness of this method relies 
largely upon the choice of the feedback operator. In this 
study, we have developed two types of feedback operators: 
(1) A Wiener-type or nonoptimal operator, and (2) a 
dynamic-type or optimal operator. In addition, this method is 
further enhanced when the constraint function based on prior 
knowledge about the source, e.g., geometric extent, is incor- 
porated. 

Numerical simulations were condhcted to compare the 
iteration techniques with conventional direct inversion meth- 
ods. In the simulation, various iterative inversion methods 
developed in this study were applied to the reconstruction of 
the near-field of a vibrating piston of finite size in a rigid 
baffle. Results of these simulations sho TM the potential for 
improvement of the backward reconstruction of acoustical 
imaging with the use of the iterative inversion technique. 

I. THEORY 

A. Inverse problem in acoustics 

The inverse problem in acoustics is schematically shown 
in Fig. 1. A planar acoustic source embedded in a rigid piston 
radiates energy away from its surface. Assume that only 
monochromatic fields are of concern and the sound-pressure 
samples can be measured only in the vicinity instead of di- 
rectly on the surface of the source. The objective is to calcu- 
late the sound-pressure samples on the source surface, called 
here the image plane. This calculation is based upon the 
sound pressure measured on the hologram plane. In this case, 
spatial transformation between two planes separated by a 
source-free region can be e•pressed with a Fredholm integral 
equation of the first kind 

P(x,Y,Z) =/sGo(x-xo,y-yo,z-zo)p(xo,Yo,zo)ds, 
where p(x,y,z) and p(xo,Yo,Zo) a TM the pressure on the ho- 
logram plane and source plane S, respectively, 

p(xo ,Y o ,Zo) • S, G o= (z,/2•T) (1- ikr)exp( ikr)/r 3 
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FIG. 2. Illustration of the holographic imaging and ill posed nature of the 
inverse problem (after Ref. 1). 

is the transfer function of the planar half-space Dirichlet 
problem, r=[(X-Xo)2+(y+yo)2+(Z-Zo)2] •/2, and k is 
the wave number. The source field p(xo,Yo,Zo) can be 
solved by performing the deconvolution of Eq. (1) via the 
two-dimensional Fourier transform. 

P'(kx,ky,Zo) 

, 2 k2)1/2 k 2>•kx 2+ 2 p (kx,ky,zo)e-icl(l•2-t•x - y , ky, 
= 2 t,2)u2 k 2 2 k 2 (2) , p' (kx ,ky ,zo)ea(•x: +•y- , < kx + y, 

, 

where d=z-zo>•O is the distance of transformation and 
p'(kx,ky,zo) is the two-dimensional Fourier transform of 
p(x,y,z) with respect to the Cartesian coordinates x and y. 
Hence, the deconvolution basically reverses the phase shift 
without altering the magnitude for the propagation compo- 
nents inside the radiation circle (k2>•kx 2 + ky2). On the other 
hand, for the evanescent components outside the radiation 
circle (k 2 <kx 2-F ky2), the deconvolution restores the exponen- 
tially decayed magnitude without changing the phase and in 
effect amplifies the measurement, modeling, and processing 
errors that eventually smear the image results (see Fig. 2). 
Thus sortie filtering is required to reduce the distortions; 
however, at the same time, high-frequency components that 
contain a certain amount of real information are lost (see Fig. 
3). 

In summary, numerical solutions of the acoustic inverse 
problem are generally nonunique and unstable. This is be- 
cause convolution represents a smoothing process that causes 
the near-field details to become obscured as the field propa- 
gates away from the source. Conversely, in backward recon- 
struction, the input may be exceedingly sensitive to small 
changes in the output. Small errors in the output are magni- 
fied and eventually the accuracy becomes very poor. 

I(G,)-Xl = le-ikz (z - zo)l 

• /UNFILTERED I1 

,•/ • FILTERED 
0•' / \ 

k 0 k • .,/ k x 2 + ky 2 

FIG. 3. Filtering of evanescent waves in the transformed domain. 
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FIG. 4. Control analogy for the iterative inversion concept. 

B. Iterative inversion techniques for acoustical 
imaging 

1. Basic formulation of the nonoptimized algorithm 

An iteration method is developed such that the ill-posed 
nature of the backward reconstruction can be alleviated by 
converting the inverse problem into a forward one. Referring 
to Fig. 1, the field transformation in Eq. (1) can be written 
more succinctly in the form of convolution: 

o*x=Y, (3) 

where X=p(xo,Yo,Zo) is source field to be reconstructed, 
Y-p(x,y,z) is the sound field measured on the hologram 
plane, and G=Go(x-xo,y-yo,z-zo) is the transfer func- 
tion relating the fields X and Y. The idea proposed in this 
paper of getting the source field X is to, instead of doing the 
deconvolution of Eq. (3) directly, recursively modify X such 
that the error between the propagated and the measured im- 
age fields of Y is negligibly small. That is, in the iteration k, 
the trial source filed Xt½ is updated on the basis of the residual 
field R t½ = Y-G*Xk through the introduction of a feedback 
operator St½: 

X•+•=X•+S•*R•. (4) 

In doing so, the ill posedness can be alleviated since the 
inverse problem has been converted into a forward one. 
Here, a control analogy for this iterative concept can be 
drawn as in Fig. 4. The task involved can be defined as to 
properly adjust the feedback operator St½ such that numerical 
stability and convergence of backward reconstruction is im- 
proved. 

The terms of convergence need to be commented. As- 
sume that the feedback operator is constant for each iteration, 
say St½= S. By performing the 2-D Fourier transformation on 
the iteration formula, it can be verified that the necessary and 
sufficient condition for convergence is 

where I I denotes the complex norm and prime (') denotes 
each transformed quantity in the (k x ,ky ,z) domain. In addi- 
tion, when the condition of Eq. (5) is satisfied, the iteration 
method in the limit is equivalent to the direct inverse filter, 
i.e., 

lim X• = G ' - • Y ' . (6) 
k--•o• 

It should be noted that Eq. (6) does not imply that direct 
inverse filtering is superior to the iteration method because 
G '-• is in general ill posed and difficult to implement in 
numerical computations. 

The next step in our development is to choose the feed- 
back operator that satisfies the condition of convergence 
stated in Eq. (5). The Wiener filter was chosen for its 
simplicity: 8 

(7) 

where O•1•0 and /3 •>0 are constant parameters. Note that 
the evanescent components will result in slower convet- 
gence. 

2. Optimized algorithm and the constraint function 

Up to this point, no special condition has been imposed 
on the choice of the feedback operator except that conver- 
gence is guaranteed. However, we can improve the conver- 
gence by taking into account some optimization criteria, 
which is the crux of the following proposed technique. 

Referring to a general system shown in Fig. 5, the gov- 
erning equation (in the transformed domain) takes the form: 

Y'=G'(X'+M')+N', (8) 

where X' is the input, Y' is the output, G' is the transfer 
function, and M',N' are the statistically uncorrelated noise 
at the input and output, respectively. By writing the residual 
term explicitly, the recursive formulas of Eq. (4) can be ex- 
pressed as 

f f f f 

-X' (Y'-G ). (9) X•,- •,_• +S•,_• X•,_• 

Combining Eqs. (8) and (9) yields 
! 

X•=X•:_• +S•: •[G'(X' +M')+N'-G'X' . - k-l] (10) 

Next, we define the error in the source field X' during the kth 
iteration as 

ea=X' -X; . (11) 

Hence, the optimal feedback operator for the iterative recon- 
struction process can be obtained by minimizing the follow- 
ing square error in the calculated image X': 

Vx,•,=(e•,e•), (12) 
where "( )" denotes mean value. From Eqs. (10)-(12), this 
mean-square error can be written explicitly as 

' ' ' *G'* V•d,= Vx,•:_ • (1- S •:_ • G ) (1- S •:_ • ) 

+ -4-5;_15;_ 1 , 

where (M'M'*) and (N'N' *) are the mean-square input and 
output noise, respectively. With some algebraic manipula- 
tions, the optimal feedback operator is found to be 

2659 d. Acoust. Soc. Am., Vol. 97, No. 5, Pt. 1, May 1995 Mingsian R. Bai: Acoustical source characterization 2659 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  140.113.38.11 On: Wed, 30 Apr 2014 06:42:45



*INPUT PARAMETERS 
AND DATA 

*INITIATE HOLOGRAPHIC 
TRANSFORMATION 

*START ITERATION 

*IMPOSE CONSTRAINT 

YES 
ITERATION 

NO 

%P = •zz' e ikz(Z ' zø) 
1 

T = •) + 

1 1 

S•-- G-•p'p ' 1+ •k T 

*EXIT ITERATION 

*COMPUTE GREEN'S 
FUNCTION 

*UPDATE 
FEEDBACK 
OPERATOR 

*FEEDBACK 
RESIDUE TO 
UPDATE 
IMAGE 

*WANT OPTIMIZATION? 

*UPDATE 
NOISE PARAMETER 

*UPDATE VELOCITY 

*OUTPUT IMAGE 

FIG. 6. Iterative inversion method-flow chart. 

S;._O t ,gx,kEO t O t ,(gx,k + <mtm t ,))+ <WiN t ,)]- 1. 
(14) 

However, the following parameters must be introduced be- 
cause the extraneous noise terms M' and N' are generally 
unknown a priori: 

•=<•v'•v'*)/Vx,•, (15) 

fi=<M'M' *)/<N'N'*), (16) 

(17) 

As a result, the iteration formulas can be simplified into 

S•,=[O'(i+a•:T)] -1, 

O•k+l = O•k + r -1, 
f f f f f f 

Xk+i=Xk+Sk(Y -G X•,). 

(18) 

(19) 

(20) 

In addition, it can be proved that the following properties 
hold: 

x•=•;x;_ ' (2•) ' 1+Sky' ' 
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'= T(1 + a•, T)] -• A•, a•,_• _• <1, if <N'N' *> :# 0, 
(22) 

where A], can be interpreted as a convergence factor. On the 
other hand, the following limiting properties are also true: 

! 

when k->m, then a•,-->o•, S•,•0, A•,•I, (23) 

Vx,•,•O, X•,•X', (24) 

, y, ,, , (25) Y•,---> -(G M +N ), 

where Vy,•,={(Y'-G'X•,_•)(Y'-G'X•,_•)*} is the mean 
square root of Y'. 

It can be observed that the convergence of the iterative 
reconstruction process is guaranteed as shown in Eq. (22). 
The feedback operator is updated in a decelerating fashion as 
shown in Eq. (23). The influence of the hologram field Y' 
and the change of the source field X• are both decreasing 
during iterations, according to Eqs. (21) and (23). As the 
iteration goes on, the source image X•, will always converge 
to the optimal value X, as shown in Eq. (24), even when the 
input noise M' and output noise N' are present in the sys- 
tem. On the other hand, the iterated output image Y•, will 
converge asymptotically to Y'-(G'M' +N') as the residue 
R• monotonically decreases, according to Eq. (25). 

Further refinement of the iterative inversion technique 
can be achieved by incorporating the prior knowledge of the 
source. For example, if a source is embedded in a rigid 
baffle, the particle velocity should vanish outside the surface 
of the source. The surface velocity, therefore, can be updated 
by imposing the constraint before each iteration. The overall 
algorithm can be schematically represented by the flow chart 
shown in Fig. 6. With the variations of the feedback operator 
and constraints, four types of iterative inversion techniques 
can be implement on the basis of the algorithm in Fig. 6: (1) 
Nonoptimized feedback operator without source aperture 
constraint, (2) optimized feedback operator without source 
aperture constraint, (3) nonoptimized feedback operator with 
source aperture constraint, and (4) optimized feedback opera- 
tor with source aperture constraint. 

II. COMPUTER SIMULATION 

Numerical simulations were conducted to investigate the 
iterative inversion techniques. These methods were tested 
with the sound field generated by a baffled piston of 4 cm 
radius vibrating in the air with the uniform surface velocity 1 
m/s at the frequencies of 2 and 10 kHz (ka--1.82 and 9.11, 
respectively). The acoustic pressure in the hologram plane 
located 5 cm above the piston is generated with the sampling 
of Cartesian coordinates (aperture D=0.248 m, number of 
point N=32, spacing Ax=8 mm). Five spatial transforma- 
tion methods including direct Wiener filtering and the previ- 
ously discussed four iterative inversion techniques were used 
to reconstruct the sound pressure on the source surface (the 
distance of transformation is therefore 5 cm). The hologram 
data was first processed by the direct Wiener filter with the 
noise parameter denoted by ai. Then the results from the 
direct Wiener filter were used as the initial guess for the 

800 -- 

700 -- 

600- 

5oo- 

400-- 

300• 

-0.15 

ITHEORY 
-- ----WIENER 

........ ITERATION, NON-OPTIMIZED 
"--ITERATION, OPTIMIZED 

I I 
-0.10 -0.05 0.00 0.05 O. 10 O. 15 

X,m 

FIG. 7. Pressure magnitude on the surface of a baffled piston (ka=9.1) 
reconstructed from a hologram plane located 5 cm above a source with 
ai=0.01 and a•=0.1. 

iteration methods (with the noise parameters denoted by a• 
and with the number of iterations denoted by Nit-40). The 
simulated cases consist of numerous combinations of t• i and 
a• (each with three different levels). 

Because of limited space, only the representative cases 
are shown in Figs. 7-10. The comparison of Figs. 7 and 3 
shows that the iterative inversion techniques are relatively 
insensitive to the choice of the noise parameter t• i in the 
initial guess and that they converge satisfactorily to the de- 
sired solutions. A slightly large noise parameter in the itera- 
tion methods is in general the preferable choice. As a• de- 
creases, the iteration method based on an optimized feedback 
operator with the aperture constraint function provides more 
accurate results (see Fig. 9). The low-frequency case (2 
kHz), where a relatively large amount of evanescent waves 
are present, is shown in Fig. 10. We observe that the iteration 
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FIG. 8. Pressure magnitude on the surface of a baffled piston (ka=9.1) 
reconstructed from a hologram plane located 5 cm above a source with 
ai=O.l and a•=O.1. 
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FIG. 9. Pressure magnitude on a surface of a baffled piston (ka--9.1) re- 
constructed from a hologram plane located 5 cm above a source with 
ai=O.1 and a•=0.0025. 

method based on the optimized feedback operator provides 
better results than the one based on a nonoptimized operator, 
especially when the constraint was imposed. The better con- 
vergence of the optimized feedback operator over the nonop- 
timized operator can be attributed to the optimized operator 
being dynamically updated in a decelerating fashion accord- 
ing to the minimum mean-square-error criteria, while for the 
nonoptimized operator the noise parameter is kept constant 
during iterations. 

Thus far we have been dealing with the ill-posed nature 
of the problem resulting from the errors involved in numeri- 
cal simulations (modeling, sampling, discretization, finite ap- 
erture, etc.). In practical applications, the overall noise con- 
tains not only the numerical errors but also the experimental 
errors (extraneous noise, boundary interactions, measure- 
ment errors, etc.). Nevertheless, the iterative inversion meth- 
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FIG. 10. Pressure magnitude on a surface of a baffled piston (ka=l.8) 
reconstructed from a hologram plane located 5 cm above a source with 
ai=0.0025 and a•=0.01. 
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FIG. 11. Pressure magnitude on a surface of a baffled piston (ka=9.1) 
reconstructed from a hologram plane located 5 cm above a source with 
ai=0.01 and az=0.1. Field is contaminated with a Gaussian noise. 

ods can still provide significant improvement in the recon- 
structed image in comparison with the direct Wiener filtering 
method. This fact is illustrated in Fig. 11 where the hologram 
data is contaminated with synthetic Gaussian noise in order 
to simulate more realistic experimental signals. Therefore, 
the previous observations in Figs. 7-10 still apply even for 
the cases where physical noise is present. 

Ill. CONCLUSION 

It is evident from the numerical simulations that the it- 

erative inversion techniques with all four types of feedback 
operators exhibit stable behavior and provide excellent re- 
constructed images. The iterative methods, though not as 
simple as the direct Wiener filtering (the computation time 
on Vax 11/785 is approximately 200 s for 40 iterations versus 
30 s in a 32X32 case), can generally improve the source 
image with reasonable initial guess and noise parameters. 

In some cases, the iterative inversion techniques are su- 
perior to the direct Wiener filtering; however, their perfor- 
mance depends largely upon the characteristics of the field of 
interest and the values of noise parameters. However, in 
those cases where it is difficult to find the optimal noise 
parameters for Wiener filtering, the more sophisticated itera- 
tive inversion methods can generally guide us to the desired 
solution with minimal efforts of trial and error. 

Some guidelines in applying the iterative inversion tech- 
niques are in order. Despite the previously discussed low 
sensitivity of the iteration methods to the initial guess of the 
image, heavy filtering is required to avoid false convergence. 
With a reasonable initial guess, one can usually obtain a 
satisfactory image by choosing a somewhat large noise pa- 
rameter within a sufficient number of iterations. For low- 

frequency sources, it is advisable to use the iteration method 
based on an optimized feedback operatorsWith constraint. In 
some cases, however, the constraint might cause slow con- 
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vergence at the central region of the source, and thus the 
noise parameter a• must not be too large. 

The iterative inversion technique appears to be a prom- 
ising alternative to other techniques because of higher accu- 
racy and flexibility in dealing with inverse reconstruction. 
However, the iteration method is not restricted to acoustic 
imaging, and it can be readily extended for more general 
inverse problems. In addition, the potential of iterative inver- 
sion techniques in industrial applications, e.g., source char- 
acterization (shape and motion) and noise source identifica- 
tion, will be explored by experimental investigations in the 
future. 
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