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The constrained modified KP hierarchy and the
generalized Miura transformations

Jiin-Chang Shaw†§ and Ming-Hsien Tu‡‖
† Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan,
Republic of China
‡ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Received 28 July 1997

Abstract. In this letter, we consider the second Hamiltonian structure of the constrained
modified KP hierarchy. After mapping the Lax operator to a pure differential operator the
second structure becomes the sum of the second and the third Gelfand–Dickey brackets defined
by this differential operator. We simplify this Hamiltonian structure by factorizing the Lax
operator into linear terms.

ClassicalW -algebras have played an important role in integrable systems [1]. It’s Adler map
(see, for example, [2]) from which theW -algebras can be constructed as Poisson bracket
algebras. A typical example is theWn algebra constructed from the second Gelfand–Dickey
(GD) structure of thenth Korteweg–de Vries (KdV) hierarchy [3, 4]. Amazingly, under
factorization of the KdV–Lax operator, the second Hamiltonian structure is transformed
into a much simpler one in an appropriate space of the modified variables. Thus the
factorization not only provides a Miura transformation which maps thenth KdV hierarchy
to the corresponding modified hierarchies but also gives a free-field realization of theWn

algebra. This is what we called the Kupershmidt–Wilson (KW) theorem [5, 6]. In general,
the above scheme is encoded in the particular form of the Lax operator and its associated
Poisson structure. Several integrable systems have been studied based on this scheme, such
as the Kadomtsev–Petviashvili (KP) hierarchy and its reductions [7–13].

In this letter, we will consider a kind of reduction of the KP hierarchy called the
constrained modified KP (cmKP) hierarchy [14]. Many properties of the cmKP have been
studied, such as bi-Hamiltonian structure [14], Bäcklund transformation [15], modification
[16], and the conformal property [17], etc. However, a clear and conclusive statement about
the associated Poisson structure is still lacking. In the following, we will concentrate on
this problem. Especially, we will show that there is an interesting property of the second
Poisson structure of the cmKP hierarchy under factorization of the Lax operator into linear
terms.

The cmKP hierarchy [14] has the Lax operator of the form

Kn = ∂n + v1∂
n−1+ · · · + vn + ∂−1vn+1 (1)
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which satisfies the hierarchy equations

∂kKn = [(Kk/n
n )>1,Kn]. (2)

The second Poisson bracket associated with the Lax operator was obtained by Oevel and
Strampp [14] as follows

{F,G} =
∫

res

(
δF

δKn
22

(
δG

δKn

))
(3)

whereF andG are functionals ofKn and

22

(
δG

δKn

)
=
(
Kn

δG

δKn

)
+
Kn −Kn

(
δG

δKn
Kn

)
+
+
[
Kn,

(
Kn

δG

δKn

)
0

]
+∂−1 res

[
Kn,

δG

δKn

]
Kn +

[
Kn,

∫ x
(

res

[
Kn,

δG

δKn

])]
(4)

with
δG

δKn
≡ δG

δvn+1
+ ∂−1 δG

δvn
+ · · · + ∂−n δG

δv1
. (5)

Recently, Liu [16] conjectured that if the Lax operatorKn is factorized as

Kn = ∂−1(∂ − w1) · · · (∂ − wn+1) (6)

then in terms of{wi} the Poisson structure (3) can be simplified to

{wi(x), wj (y)} = (1− δij )δ′(x − y). (7)

whereδ′(x−y) ≡ ∂xδ(x−y). The cases forn = 1 and 2 have been explicitly demonstrated
in [16]. However, to the best of our knowledge, a general proof for alln is still lacking. It
is the main purpose of this letter to give an elegant and simple proof for the general case.

To simplify the Hamiltonian structure (4) let us consider the operator

Ln+1 ≡ ∂Kn = ∂n+1+ v1∂
n + (v2+ v′1)∂n−1+ · · · + (vn+1+ v′n)

≡ ∂n+1+ u1∂
n + u2∂

n−1+ · · · + un+1 (8)

which is a pure differential operator and the variables{vi} and{ui} are related by

v1 = u1

v2 = u2− u′1
...

vn+1 = un+1− u′n + · · · (−1)nu(n)1 .

(9)

Proposition 1.With respect to the pure differential operatorLn+1, the second Poisson
bracket (3) now becomes

{F,G} =
∫

res

(
δF

δLn+1
�

(
δG

δLn+1

))
(10)

where

�

(
δG

δLn+1

)
=
(
Ln+1

δG

δLn+1

)
+
Ln+1− Ln+1

(
δG

δLn+1
Ln+1

)
+

+
[
Ln+1,

∫ x
(

res

[
Ln+1,

δG

δLn+1

])]
. (11)

with
δG

δLn+1
≡ ∂−1 δG

δun+1
+ ∂−2 δG

δun
+ · · · + ∂−n−1 δG

δu1
. (12)
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Proof. Since

δF =
∫

res

(
δF

δKn
δKn

)
=
∫

res

(
δF

δLn+1
δLn+1

)
(13)

we have
δF

δKn
= δF

δLn+1
∂ +O(∂−n−1) (14)

where O(∂−n−1) denotes terms of order−n− 1. Then (10) becomes

{F,G} =
∫
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∂22
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(15)

here we drop the termsO(∂−n−1) because the order of22(
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) is n− 1. Next we want to
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)′
0

which imply that

∂22

(
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)
=
(
Ln+1
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+
Ln+1− Ln+1

(
δG

δLn+1
Ln+1

)
+

+
[
Ln+1,

∫ x
(

res

[
Ln+1,

δG

δLn+1

])]
≡ �

(
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)
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�

Besides the standard second GD structure, the last piece of (11) is called the third GD
bracket which is compatible with the second one [3]. Hence, under the mapping (8), the
Hamiltonian structure (4) has been mapped to the sum of the second and the third GD
structure defined by the differential operatorLn+1.

Now we want to show that this Hamiltonian structure can be simplified via the following
factorization

Ln+1 = (∂ − w1)(∂ − w2) . . . (∂ − wn+1). (18)

This yields an expression for eachui (and hencevi) as a differential polynomial in{wi}
(the inverse statement is not true). For example

u1 = −(w1+ · · · + wn+1)

u2 =
∑
i<j

wiwj −
n−1∑
i=0

(n− i)w′n+1−i (19)

...

etc. Expression (19) is called the Miura transformation.



L728 Letter to the Editor

Proposition 2.Under the factorization (18), the Poisson structure (10) becomes

{F,G} =
∑
i 6=j

∫ (
δF

δwi

)(
δG

δwj

)′
(20)

i.e. the basic building blocks{wi} satisfy (7).

Proof. First, thanks to the KW theorem [5, 6] for the second GD structure, the first two
terms of the Poisson bracket (10) can be simplified as follows

{F,G}GD
2 = −

n+1∑
i=1

∫ (
δF

δwi

)(
δG

δwi

)′
(21)

or

{wi(x), wj (y)}GD
2 = −δij δ′(x − y). (22)

Thus the remaining tasks are to verify∫
res

(
δF

δLn+1

[
Ln+1,

∫ x

res

[
Ln+1,

δG

δLn+1

]])
=

n+1∑
i,j=1

∫ (
δF

δwi

)(
δG

δwj

)′
. (23)

Let li ≡ (∂ − wi), thenLn+1 = l1l2 · · · ln+1 and∫
res

(
δF

δLn+1
δLn+1

)
= −

∫
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(
δF

δLn+1

n+1∑
i=1

l1 . . . li−1δwili+1 . . . ln+1

)

= −
n+1∑
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∫
res

(
li+1 . . . ln+1

δF

δLn+1
l1 . . . li−1

)
δwi

=
n+1∑
i=1

∫
δF

δwi
δwi (24)

which implies

δF

δwi
= − res

(
li+1 . . . ln+1

δF

δLn+1
l1 . . . li−1

)
. (25)

Now(
n+1∑
i=1

δF

δwi

)′
= −

[
∂, res

( n+1∑
i=1

li+1 . . . ln+1
δF

δLn+1
l1 . . . li−1

)]

= −
n+1∑
i=1

res

([
∂, li+1 . . . ln+1

δF

δLn+1
l1 . . . li−1

])

= −
n+1∑
i=1

res

([
li , li+1 . . . ln+1

δF

δLn+1
l1 . . . li−1

])
= − res

[
Ln+1,

δF
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]
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Hence,
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i=1

δF

δwi
= −

∫ x

res

[
Ln+1,

δF

δLn+1

]
. (27)

Note that we have substitutedli for ∂ in the third line because nothing will change.
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Therefore,
n+1∑
i,j=1

∫ (
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)(
δG

δwj

)′
= −

∫ ( n+1∑
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δF
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(
δF

δLn+1

[
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∫ x
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[
Ln+1,

δG

δLn+1

]])
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�

Proposition 3.If the Hamiltonian Hk of the cmKP hierarchy equations∂kKn =
[(Kk/n

n )>1,Kn] = 22(
δHk
δKn
) with respect to the second structure is expressed in terms of

{wi} by the Miura transformation, then the corresponding modified equations will be

∂kwi =
∑
j 6=i

(
δHk

δwj

)′
. (29)

Proof. This is just a corollary of proposition 2. �

Finally, we would like to provide another interesting property of the Poisson structure
(10) although it is less relevant to this case. In fact, in [18] it was shown that the Poisson
structure (10) can be associated to the Lax operator of the form

L = ∂N + u1∂
N−1+ . . .+ uN +

M∑
i=1

φi∂
−1ψi. (30)

Therefore we can discuss the Poisson structure (10) under the factorization of the Lax
operator containing inverse linear terms.

Proposition 4.Let L be a pseudo-differential operator of the form (30). Then under the
following factorization (generalized Miura transformation)

L = (∂ − a1) . . . (∂ − an)(∂ − b1)
−1 . . . (∂ − bm)−1 (n = N +M,m = M) (31)

the Poisson structure (10) associated withL becomes

{ai(x), aj (y)} = (1− δij )δ′(x − y)
{bi(x), bj (y)} = (1+ δij )δ′(x − y) (32)

{ai(x), bj (y)} = δ′(x − y).

Proof. It has been shown [10–13] that the second GD bracket with respects to the
factorization (31) are given by

{ai(x), aj (y)}GD
2 = −δij δ′(x − y)

{bi(x), bj (y)}GD
2 = δij δ′(x − y) (33)

{ai(x), bj (y)}GD
2 = 0.

Hence, we only need to treat the third structure and to show that∫
res

(
δF

δL

[
L,

∫ x

res

[
L,
δG

δL

]])
=
∫ ( n∑

i=1

δF

δai
+

m∑
j=1

δF

δbj

)( n∑
i=1

δG

δai
+

m∑
j=1

δG

δbj

)′
.

(34)
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Let Ai = (∂ − ai) andBj = (∂ − bj ) then

δF =
∫

res

(
δF

δL
δL

)
=
∫

res

(
δF

δL

n∑
i=1

A1 . . . Ai−1δAi . . . AnB
−1
1 . . . B−1

m

)

+
∫
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(
δF

δL
A1 . . . An

m∑
j=1

B−1
1 . . . B−1

j−1δB
−1
j . . . B−1

m

)
(35)

≡
∫ ( n∑

i=1

δF

δai
δai +

m∑
j=1

δF

δbj
δbj

)
. (36)

SubstitutingδAi = −δai and δB−1
j = B−1

j δbjB
−1
j into (35) and comparing with (36), we

obtain

δF

δai
= − res

(
Ai+1 . . . AnB

−1
1 . . . B−1

m

δF

δL
A1 . . . Ai−1

)
(37)
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B−1
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m
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j

)
. (38)

Thus
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+
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j

]
= − res

[
L,
δF

δL

]
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∫ x
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[
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. (41)

�

In summary, we have shown that the second Hamiltonian structure of the cmKP hierarchy
has a very simple realization. In terms of the variables{wi}, the Lax operatorKn can be
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factorized as (6) and the Poisson structure (3) is mapped into a much simpler form (7). We
also discuss the Poisson structure (10) under factorization of the Lax operator containing
inverse linear terms. The resulting brackets (32) turns out to be simple as well. We hope
that we can explore the usage of these brackets in the future.

Note added in proof. After submission of this manuscript for publication we became aware of the preprint by Liu
[19] which partly overlaps our work.

We would like to thank Professor W-J Huang for inspiring discussions and Dr M-C Chang
for reading the manuscript. This work was supported by the National Science Council of
the People’s Republic of China under grant no NSC-86-2112-M-007-020.
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