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We propose a novel adaptive pipeline for continuous collision detection in cloth 

simulation. The pipeline consists of four components: bounding volume hierarchy (BVH) 
update, BVH traversal, a skipping frame session, and elementary test processing. The 
skipping frame session is activated adaptively for skipping both BVH update and BVH 
traversal during the process of collision detection. The proposed method improves the 
performance of collision detection in simulating cloth models comparing to some exist-
ing feature-based collision detection techniques, as indicated from experimental results.   
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1. INTRODUCTION 
 

Continuous collision detection computes accurate contact information, such as the 
time of contact, of colliding objects. It is widely applied in simulating deformable models, 
such as cloth models. The deformable models are discretized into triangular meshes at 
the preprocessing phase and each model is bounded by some kind of bounding volume 
hierarchies (BVHs). During the simulation, an interpolation approach is employed to 
interpolate the motion of models between two discrete time frames. For example, a cubic 
equation is solved for each feature pair if linear interpolation is adopted. There are fifteen 
feature pairs for each triangle pair, including six vertex-triangle pairs and nine edge-edge 
pairs. Both stages BVH update and BVH traversal are invoked in order to collect poten-
tially colliding pairs in the conventional pipeline of collision detection. However, colli-
sion events happen in some localized regions for interacting models as pointed out by 
some researchers. By exploiting this coherent property, we develop an adaptive pipeline 
for continuous collision detection in the simulation of cloth models.   

 
Summary of results: We propose a novel adaptive pipeline for continuous collision de-
tection in cloth simulation. We summarize the major results as follows: 

 
1. The pipeline consists of four components: BVH update, BVH traversal, a skipping 

frame session and elementary test processing. By employing the skipping frame ses-
sion, both BVH update and BVH traversal stages can be skipped. The bounding vol-
umes of BVH nodes are inflated based on both the local and global information of the 
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cloth models in order to employ the skipping frame session. 
2. The partial traversal scheme: As the inflated bounding volumes are not tight and they 

may be kept for several frames, there would be redundant potentially colliding pairs. 
A partial traversal scheme is proposed to handle them. The partial traversal scheme is 
conservative, thereby detecting all the colliding pairs.  

3. Adaptive self-collision detection: Adaptively perform self-collision detection based on 
the partitioning of low curvatured sub-surfaces. 

4. Robustness: We adopt a history-based approach to keep track of all the feature pairs in 
proximity. The sidedness of the colliding pairs can be determined according to their 
history instead of relying on the unreliable geometry information. 

 
The remainder of the paper is organized as follows. The related work and the over-

view of our algorithm are presented in sections 2 and 3, respectively. BVH update and 
BVH traversal of the proposed pipeline are discussed in section 4. The elementary test 
processing and self-collision detection are discussed in sections 5 and 6, respectively. 
Section 7 presents the skipping frame session and section 8 analyzes the proposed 
method. Experimental results are given in section 9. Finally, conclusion and future work 
are presented in section 10. 

2. RELATED WORK 

Collision detection was widely applied in cloth simulation [1-8]. Some approaches 
[1, 4, 9, 10] exploited the regularity properties of cloth models to perform self-collision 
detection. A comprehensive survey is described on collision detection for cloth and de-
formable models in [11]. There are spatial partitioning schemes and bounding volume 
hierarchies (BVHs) that have been developed in [12-16] to search for possible colliding 
pairs. Many non-colliding pairs are eliminated by using BVHs. Hence, the techniques are 
adopted to narrow down the number of potentially colliding pairs. The axis-aligned 
bounding box hierarchy (AABB) [15] and k-DOPs [12] are widely adopted. Larsson and 
Akenine-Moller [17] proposed a technique to perform BVH refitting for models de-
formed by morphing and a lazy evaluation method [18] to perform BVH update for 
breakable objects. Some methods employ extra bounding volumes to bound the vertices 
and edges of each triangle [19, 20].  

Mezger et al. [16] suggested that the bounding volume of each node could be in-
flated by a predefined distance. If the enclosed primitives (e.g. triangles) do not move 
farther than a predefined distance, BVH update is not required for the current frame. 
However, it is crucial to compute the distance of inflation in order to apply their method 
but they did not specify a way to compute the distance of inflation automatically. It is 
well known that BVH update and BVH traversal are not necessary for a brute force ap-
proach. However, the running time complexity of the brute force approach is too high 
due to that there are many elementary tests. Similarly, if the inflation distance is not 
computed appropriately, the running time complexity of their method would be high.  

Moore and Wilhelms [21] studied continuous collision detection for rigid body 
simulation. Later on, an efficient method for computing the time of contact in the simula-
tion of cloth models was developed in [22]. Similar techniques were employed in [4, 6, 
10]. Tang et al. [23] proposed a method for reducing the number of elementary tests 
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based on deforming non-penetration filters.  
Wong and Baciu [24] proposed a feature assignment scheme to assign edges and 

vertices to incident triangles. The method reduces the number of potentially colliding 
feature pairs. The technique [20] integrated both the techniques [19, 24] to reduce the 
number of potentially colliding feature pairs further. 

Selle et al. [8] proposed a method to handle complex cloth models. In some of their 
animations, the number of triangles of cloth models is more than one million. They sug-
gested that the history based approach should be adopted so as to keep track of the rela-
tive orientation of interacting pairs in proximity. Moreover, it is important to control the 
strain ratio [3] in order to prevent cloth models from overstretching. 

3. ALGORITHM OVERVIEW 

Each cloth model is discretized into a triangular mesh. The topology of the meshes 
does not change. Furthermore, two features collide if their shortest distance is smaller 
than or equal to a predefined threshold δd which is larger than or equal to the thickness of 
cloth. If the bounding volumes of two triangles overlap, the two triangles form a poten-
tially colliding pair. The simulation time step is Δt.  

 
 
 
 
 

 
(a)                (b) 

Fig. 1. The feature assignment for two triangles. The small dot (line) inside a triangle at a vertex 
(edge) indicates that the vertex (edge) is assigned to the triangle.  

We employ the feature assignment scheme [25] to assign each feature of meshes to 
its incident triangle: a triangle assigned to itself and a vertex or edge assigned to one of 
its incident triangles. The information of assignment is stored in each triangle as a feature 
assignment mask. The mask of a triangle indicates the vertices or edges assigned to the 
triangle. For example, the feature assignment of two meshes is illustrated in Fig. 1. The 
assigned feature pairs of two potentially colliding triangles are computed based on the 
mask as follows. Let Fvertex(T) and Fedge(T) denote the two sets of assigned vertices and 
assigned edges to a triangle T, respectively. Consider two triangles A and B. Then the set 
of vertex-triangle pairs is {Fvertex(A) × {B}} ∪ {Fvertex(B) × {A}}. Similarly, the set of 
edge-edge pairs is {Fedge(A) × Fedge(B)}. For example, assume that the edge eA

0 is as-
signed to A, and two edges eB

0, eB
1, and the vertex q0 are assigned to B. Hence, the set of 

the assigned feature pairs contains q0A, eA
0 eB

0, and eA
0 eB

1 for the triangles A and B. The 
assigned feature pairs are checked instead of the fifteen feature pairs. 

There is a skipping frame session at the runtime phase of the adaptive pipeline (see 
Algorithm 1). During the skipping frame session, both BVH update and BVH traversal are 
skipped. The number of frames that the skipping frame session lasts is nf. In the first frame 
of the skipping frame session, flagSkippingFrame is set as false. Otherwise, it is set as true.  
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If flagSkippingFrame is false, a full BVH update and a full BVH traversal are per-

formed. The size of the bounding volume is extended adaptively at the stage of BVH 
update according to the motion state of the objects. BVH traversal is then performed for 
collecting potentially colliding triangle pairs and these pairs are stored in a pending list. 
If flagSkippingFrame is true, we would collect the vertices and triangles moving farther 
from their estimated movement distance. We call the vertices dangling vertices and the 
triangles dangling triangles. A partial BVH traversal scheme is applied for processing 
the dangling triangles.  

We proceed to perform the elementary test processing for the potentially colliding 
triangle pairs. 

4. BVH UPDATE AND BVH TRAVERSAL 

In our approach, each object has one BVH. In BVH update, the task is to refit the 
bounding volume of each node so that the bounding volume bounds the swept volume of 
the triangles assigned to the node. The bounding volumes of leaf nodes are updated first 
and they are extended by the thickness of cloth. The bounding volume of each internal 
node is then computed by merging the bounding volumes of its children. The process is 
performed recursively until the root node is updated.  
 
4.1 BVH Update with Inflation Distance 

 
In the following we assume that each leaf node contains one triangle. The bounding 

volume of each leaf node is inflated with a certain inflation distance for performing the 
skipping frame session. Assume that the leaf node is associated with a triangle T. Initially 
the bounding volume of each node is computed for bounding the swept volume of its 
triangle and then the bounding volume is inflated with an inflation distance. The inflation 
distance is the estimated movement distance de(T) of the triangle which is equal to the 
maximum estimated movement distance of its three vertices. Assume that v(P) is the 
speed of P. The estimated movement distance of P is v(P)ct(P) in the current simulation 
time interval, where ct(P) is the contact time of P. However, ct(P) is unknown before 
performing collision detection. Since ct(P) ≤ Δt, it implies that v(P)ct(P) ≤ vΔt. The esti-
mated movement distance could be therefore computed as v(P)Δt for one time step. 
However, we attempt to skip more than one frame in the skipping frame session. Instead 

Algorithm 1 Algorithm  
1: if flagSkippingFrame then 
2:   collect dangling vertices 
3:   collect dangling triangles 
4:   perform traversal for dangling triangles 
5: else 
6:   perform BVH update 
7:   perform BVH traversal 
8: end if 
9: perform front-end filtering for potentially colliding pairs 
10: perform back-end filtering for potentially colliding pairs 
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of estimating the movement distance of triangles for one time step, we need to estimate 
their movement distance for several frames. The movement of a vertex is affected by its 
neighborhood as it is a part of a continuum material (e.g. cloth model). Moreover, the 
strain ratio should be smaller than certain percentages (e.g. less than 15%) in simulating 
cloth models, as reported previously in [4, 6]. Thus, we propose to adaptively estimate 
de(P) as de(P) = (αv(P) + βv′)Δt + γl′, where v′ is the average speed of the vertices in the 
neighborhood of P, and l′ is the average edge length of the cloth model. The three values 
α, β and γ are adaptively adjusted. The value of α depends on the number of skipping 
frames. There are other terms that can be included in computing de(P), such as accelera-
tion. In this paper, our focus is on the linear terms. To compute v′, we have to know the 
connectivity of the cloth model and compute the average for its neighborhood. But the 
cost is expensive by doing so. Moreover, it would be unreliable to estimate the speed of a 
vertex based on its neighborhood over a number of frames due to uncertainty in a simu-
lation environment. Hence v′ is approximated as the average speed of all the vertices of 
the cloth model. The information is presented in section 7 for computing α, β and γ.  

 
4.2 BVH Traversal 

 
Potentially colliding triangle pairs are collected during BVH traversal and they are 

stored in a hash table. In BVH traversal, the root nodes of the two BVHs are checked 
first. If they overlap, then their children are checked. This is done recursively until the 
leaf nodes are reached. Then the corresponding two triangles of the two leaf nodes are 
checked further. After two triangles are detected, they are determined whether or not they 
should be registered. The set of the assigned feature pairs are computed if the two trian-
gles are assigned vertices or edges. If the set of assigned feature pairs is empty, then the 
two triangles are ignored. Otherwise, the triangle pair is registered as an entry in a hash 
table [26]. In order to quickly retrieve the entries from the hash table, the entry pointers 
are stored in a pending list.  

We maintain a list Lprev for all the active slots of the hash table in the previous frame 
and another list Lcur for all the active slots in the current frame. Each element in the Lprev 
and Lcur is an index of a slot. In the current frame, if a slot is visited, the slot index is re-
moved from the Lprev and it is added to another list Lcur. This can be implemented effi-
ciently by using a doubly linked list.  

After the potentially colliding pairs are collected, we remove all the hash entries for 
each slot of the hash table in Lprev. We then visit all the hash entries for each element in 
Lcur and remove all the old hash entries. After that we set Lprev as Lcur and then clear Lcur.  

There would be many potentially colliding pairs but they are too far to collide 
within the simulation time interval due to the inflation of bounding volumes. The dis-
tance heuristic (section 6) is employed for eliminating these pairs. In order to employ the 
distance heuristic, the shortest distance between two triangles should be computed. It is 
not necessary to use all the fifteen feature pairs of two triangles for computing the short-
est distance as some feature pairs would be checked for multiple times. Thus, we con-
sider only the assigned feature pairs. By doing so, each feature pair is checked once. The 
shortest distance d(T0,T1) is computed based on the assigned feature pairs. The triangle 
pair is registered if d(T0, T1) ≤ de(T0) + de(T1) + δd. The triangle pair which is far away 
would be therefore eliminated.  
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4.3 Processing Dangling Triangles 
 
The bounding volumes are updated at the beginning of the skipping frame session. 

They are kept unchanged until the end of the skipping frame session. There are dangling 
triangles that probably move beyond their inflated bounding volumes. However, they are 
not registered in the hash table during the BVH traversal. These dangling triangles 
should be handled as they would intersect with each other.  

At the beginning of a skipping frame session, the maximum distance of each vertex 
P is computed as de(P) = (αv(P) + βv′)Δt + γl′. In the remaining frames of the session, 
de(P) is updated as de(P) − v(P)Δt. If de(P) ≤ δd, then the vertex is marked as a dangling 
vertex. After that we have to collect all the dangling vertices and the dangling triangles. 
If the number of dangling triangles is small, we perform BVH traversal for each dangling 
triangle individually. On the other hand, if there are many dangling triangles, we partially 
update the BVH in a bottom-up manner [18]. Firstly update the BVs of the dangling tri-
angles and secondly climb up the BVH to the root and keep merging the BVs of internal 
nodes and mark the nodes. Finally, we perform BVH traversal for the marked nodes for 
collecting potentially colliding triangle pairs.  

5. SELF-COLLISION DETECTION 

Collecting the potentially colliding pairs of a mesh itself can be performed [1, 4] by 
partitioning a cloth model into a set of low curvatured sub-surfaces and then performing 
the hierarchy traversal for each pair of low curvatured sub-surfaces. A triangle belonging 
to a low curvatured sub-surface satisfies the condition n(t) ⋅ nπ > 0 within the time inter-
val [0, Δt], where n(t) is the normal of the triangle at time t and nπ is the representative 
normal of the sub-surface. In the following discussion, we assume that the sub-surfaces 
of two sibling nodes are connected.  

 

 
 
 
 
 
 
 

 
(a)                      (b) 

Fig. 2. (a) The changes of the normal vector n(t) of a triangle within the time interval; (b) A ca-
nonical cone of a triangle. 

 

There are two stages to partition a cloth model into a set of low curvatured sub-sur- 
faces. We compute the canonical cone by using the method in [9, 10] for each triangle in 
the first stage. A canonical cone with a representative normal vector nπ bounds the con-
tinuous normal vector n(t) of a triangle within the time interval [0, Δt], as illustrated in 
Fig. 2. The triangle is itself a low curvatured subsurface if the canonical cone exists. We 
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traverse up the BVH for checking each internal node to merge canonical cones of its 
children in the second stage. If the children are connected and the merging process [4] is 
successful, then the triangles at the leaf nodes rooted at that internal node form a low 
curvature sub-surface. Merging two cones is performed by computing a larger cone en-
closing them. If the canonical cone of a node does not exist, the merging process is 
stopped for the node. In this case, we obtain some low curvatured sub-surfaces associated 
with the child nodes. The maximum cone angle should be less than 90 degrees. We set it 
to 70 degrees for avoiding drastic deformation within one sub-surface. 

Collision detection check is performed between each pair of the sub-surfaces. The 
collision check between two sub-surfaces is performed as an inter-collision check. A low 
curvatured sub-surface could not intersect itself unless the contour of the surface has 
self-intersection. To check whether the contour has collisions, the method in [10] should 
be adopted to perform collision detection for the line segments of the contour. 

6. ELEMENTARY TEST PROCESSING AND DISTANCE HEURISTIC 

This section presents elementary test processing which consists of two sub-phases: 
front-end filtering and back-end filtering phase. In the front-end filtering phase, we em-
ploy the distance heuristic to eliminate non-colliding pairs in the pending list. The idea of 
the distance heuristic is presented as follows. Let dj

e(OA, OB) be the estimated distance 
between two objects OA and OB at frame j. The estimated maximum displacement of the 
two objects are dj+1

e(OA) and dj+1
e(OB) in the next frame, respectively. If dj

e(OA, OB) > 
d j+1

e(OA) + dj+1
e(OB) + δd, the two objects cannot collide at the current frame. The esti-

mated distance dj+1
e(OA, OB) is then updated as dj

e(OA, OB) − (dj+1
e(OA) + dj+1

e(OB)).  
In our case, the two objects are two triangles (T0, T1) for every pair in the pending 

list. The maximum displacement of a triangle T is v(T)Δt, where v(T) is the speed of T. If 
dj

e(T0, T1) ≤ dj+1
e(T0) + dj+1

e(T1) + δd, the potentially colliding pair is added to the admis-
sible list. As dj

e(T0, T1) is always less than or equal to the actual distance d(T0, T1), the 
proposed method is conservative. After all pairs in the pending list are filtered, we pro-
ceed to the phase of back-end filtering for handling pairs in the admissible list.  

Continuous collision detection [4, 6] is performed for each triangle pair in the ad-
missible list in the phase of back-end filtering. The assigned feature pairs of each triangle 
pair are considered. Linear interpolation is adopted for computing the motion path of 
each vertex in continuous collision detection. Higher order interpolation schemes are 
possible but higher cost of computation is required. After the phase of back-end filtering, 
all the colliding point-triangle and edge-edge pairs are detected.  

7. THE SKIPPING FRAME SESSION 

A skipping frame session consists of nf frames. At the first frame of the skipping 
frame session, both BVH update and BVH traversal are performed. For the remaining (nf 
− 1) frames, both BVH update and BVH traversal are skipped. In order to improve the 
performance, nf should be computed adaptively.  

Recall that the maximum movement distance de(P) of a vertex P is estimated as (αv 
(P) + βv′)Δt + γl′ (see section 4.1). During the simulation, we keep track of the CPU time 
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spent on collision detection and adaptively adjust α, β and γ. If the average time is get-
ting better, we increase nf by one and at the same time change α, β and γ if necessary. In 
the remaining (nf − 1) frames, the expected movement distance of P is (nf − 1)v(P)Δt. 
However, P is affected by its neighboring vertices and the length of edges also affects the 
speed of a vertex due to the strain rate of a cloth model. The expected movement distance 
of a vertex P is therefore adjusted to de(P) = ((nf − 1)v(P) + βv′)Δt + γl′ in the remaining 
frames. The value α is set as (nf − 1) consequently. The two values β and γ are the 
weights for the average velocity of vertices and length of edges of the cloth model in 
computing de(P) of the vertex P, respectively. In our experiments, there is wind drag af-
fecting the motion of cloth models and the motion of cloth models is unpredictable. Thus, 
instead of computing these two values adaptively based on the simulation time step, they 
are assigned constant values, β = 0.2 and γ = 0.1, in our experiments. On the other hand, 
if the simulation is known beforehand, a better way for estimating the speed of a vertex 
could be possible, such as considering the local region of the vertex. 

If the CPU time spent on collision detection is getting worse, nf should be decreased 
and the current skipping frame session should be terminated. If nf is changed to one, the 
skipping frame session would be disabled for a while before a new skipping frame ses-
sion begins. Sometimes, it is necessary to set nf as one in order to obtain the CPU time 
spent on collision detection without the skipping frame session. We would know whether 
or not the performance of the skipping frame session is reasonable at the moment.  

When self-collision detection is performed, each cloth model is partitioned in the 
first frame of the skipping frame session. In the remaining frames, the continuous ca-
nonical cone is computed for each triangle per time step. We identify the triangles that 
violate the low curvature property of their current assigned low curvature sub-surfaces. 
These triangles may lead to self-collision events. They are handled individually to check 
whether or not they collide with the other parts of the cloth model. There would be a few 
such kind of triangles if the objects do not deform rapidly.  

8. ANALYSIS AND DISCUSSION 

We rely on the speed of vertices of the cloth models to estimate the expected move-
ment distance of vertices. The expected movement distance would affect the number of 
skipping frames. Increasing the probability of penetration free movement for the models 
is crucial for achieving high performance. We show that the higher the resolution of cloth 
models the higher the probability of penetration free movement is. Let b be a small 
bounding region and B a large bounding region (see Fig. 3). Both of them are convex. 
Assume that b is randomly allocated inside B without overlapping the boundary of B. 
We want to compute: (1) the expected free movement distance of b and (2) the probabil-
ity that the boundaries of b and B do not overlap if b moves in an arbitrary direction. 

 
8.1 Expected Free Movement Distance 

 
The expected free movement distance of b inside B is the average free movement 

distance of b without overlapping the boundary of B. It is given by: 
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{ , }
( , , , , ) ( , , , , )

D
p x y z r x y z dxdydzd dθ φ θ φ θ φ

Ω∫ ∫  (1) 

 
where (θ, φ) is the movement direction of b in the spherical coordinate system, (x, y, z) is 
the location of the reference point of b, D is the spatial domain, Ω is the set of possible 
movement directions, p(θ, φ, x, y, z) is the probability density function that b moving in 
direction (θ, φ), and r(θ, φ, x, y, z) is the maximum distance that b moving in the direc-
tion (θ, φ) at (x, y, z) without overlapping the boundary of B.  

 

 
(a)                      (b) 

Fig. 3. Movement without collision; (a) A bounding volume b moves inside a region B. The region 
is not necessarily to be a disk. It can be other shapes; (b) An AABB b moves inside another 
AABB B with a distance of d in an arbitrary direction. b would not collide with the bound-
ary of B if the vertex of b at the lower left corner lying inside the dark region. 

 

Consider the case in the one-dimensional space. Both b and B are bounding inter-
vals which are lying horizontally. Let L be the length of B and l (≤ L) the length of b. In 
this case, b can only move horizontally either to the left side or right side. Let x be the lo- 
cation of the right hand side of b. The expected free movement distance is computed as: 

1 1 1 1( ) ( ) .
2 2 2

L L

l l

L lL x dx x l dx
L l L l

−
− + − =

− −∫ ∫  (2) 

The smaller l, the longer the expected free movement distance is. Similarly in the 
three-dimension space, the smaller the size of b, the longer the expected free movement 
distance is.  

 
8.2 Probability of Penetration Free Movement 

 
Assume that b moves with a distance d in an arbitrary direction. The probability that 

the boundaries of b and B do not overlap is given by: 

{ , }
( , , , , ) ( , , , , )

D
p x y z c x y z dxdydzd dθ φ θ φ θ φ

Ω∫ ∫    (3) 

where c is a characteristic function which is given by: 
 

c = 0, if r(θ, φ, x, y, z) ≤ d + δd, 
c = 1, otherwise. 



SAI-KEUNG WONG 

 

1554 

 

Consider a simple example with a weak condition that b moves with distance d in 
an arbitrary direction. In the three-dimensional space, assume that both B and b are 
AABBs. In the next frame, the probability that b still lies inside B is Πj(Lj − lj − 2d − 
2δd)/Lj, where j indicates a coordinate axis. The smaller the size of b, the higher the prob-
ability is. In other words, the probability for a triangle not becoming a dangling triangle 
is higher if the size of b is smaller. Assume that the speed of b is v in each direction and 
the time step is Δt. Then d = vΔt. It implies that the probability of penetration free 
movement is higher if the time step Δt is smaller. A higher resolution of cloth models 
requires smaller Δt so as to satisfy the Courant condition [3].  

9. EXPERIMENTS 

We performed a Monte Carlo simulation to collect the expected free movement dis-
tance and probability of penetration free movement. The small bounding volume is ran-
domly generated inside the large bounding volume. The number of tests is one million. 
Both bounding volumes are cubes. The ratio of side length k equals to the side length of 
the small bounding volume divided by the side length of the large bounding volume.  
The movement distance ratio of a vertex per time step is defined as the maximum move-
ment distance of the vertex divided by the side length of the small bounding volume. The 
expected free movement distance is almost linear to the ratio of side length as shown in 
Fig. 4. Moreover, the probability of penetration free movement is almost one when the 
movement distance ratio is small. That is the small bounding volume has a small chance 
to move beyond the large bounding volume for small movement distance ratio. The 
higher the ratio of side length the higher the probability is. Consider that the small 
bounding volume is a unit cube. Assume that the time step is 0.01 (sec) and the move-
ment distance of a vertex is 0.15. Then the movement distance per time step is 0.0015 
which is much smaller than 0.05. The probability of penetration free movement is almost 
one in this case.  

 

 
(a)                                  (b) 

Fig. 4. (a) Expected free movement distance; (b) Probability of penetration free movement. 
 

Furthermore, we performed two sets of experiments for collecting the performance 
characteristics of the proposed method. In each set, there were four animations. Table 1 
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shows the model complexities. The complexity of cloth models is up to tens of thousands 
of triangles in Experiment Set One while the complexity of cloth models is up to hun-
dreds of thousands of triangles in Experiment Set Two. The experiments were all per-
formed on an Intel(R) Core(TM2) Quadcore CPU machine with 2.4GHz of 2GB memory 
and one thread was employed to perform the computation. The predefined threshold δd 
was set as 0.015 for all the experiments. The hash table had 200031 slots for all experi-
ments. We compare our methods with two methods proposed by [24] and [20], and other 
methods at the end of this section. We denote the method by [24] as NoDup and the 
method by [20] as R-TRI. Our methods are labeled as nSwD and SwD. In both nSwD 
and SwD, distance heuristic is employed but there is no skipping frame session in nSwD. 
NoDup relies on the feature assignment scheme to perform continuous collision detection 
for the feature pairs. R-TRI employs the improved feature assignment scheme and bounds 
each feature (vertex or edge) with an extra bounding volume.  

Table 1. The model complexities.           Table 2. Performance statistics. 

  
 

9.1 Experiment Set One 
 
In Experiment Set One, the cloth models were affected by a wind drag model in 

Animations Two, Three and Four. Fig. 5 shows the snapshots. In Animation One, a cloth 
model interacted with a spinning bumpy ball. In Animation Two, a cloth model inter-
acted with a ball. In Animation Three, a cloth model interacted with four rigid cones. 
There were many collision events due to the large bounding volumes of the cones. In 
Animation Four, a garment interacted with a mannequin. Table 2 shows the performance 
statistics of Experiment Set One. Compared with NoDup, nSwD and SwD outperform it 
by up to around 50% and 100%, respectively. Compared with R-TRI, nSwD and SwD 
outperform it by up to around 20% and 70%, respectively.  
 
9.2 Experiment Set Two 

 
In Experiment Set Two, there were four animations. Fig. 6 shows the snapshots of 

Experiment Set Two. The motion of cloth models was not changing drastically. The tim-
ing information was collected for different number of frames in the skipping frame ses-
sion. We denote αxfy with the skipping frame session enabled, where x is the value of α 
and y is the value of nf. We compare our methods with NoDup. In Animation One, the 
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cloth model consisted of 320k triangles. The initial time step was 5 ms and it was dy-
namically adjusted during the simulation [5]. On average, our method took 660 ms and 
NoDup took 830 ms to detect all the colliding pairs including self-collision events. 

In Animations Two, Three and Four, each cloth model consisted of a half million 
triangles. The ridges of the underneath objects are shown clearly. In Animation Two, 
there was a deformable volumetric model. The timing information is shown in Fig. 7 
without including the timing in self-collision detection. The numbers at the top of each 
bar indicate the speedup factors. The results show that by employing the skipping frame 

 
Fig. 5. Snapshots of experiment set one. 

 

 
Fig. 6. Snapshots of experiment set two. 

 

 
 
 
Fig. 7. Experiment set two: performance statistics of animation two, three and four. BVHU: BVH 

update. BVHT: BVH traversal. ETP: Elementary test processing. The numbers at the top of 
each bar indicate the speedup factors. 
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session, the speedup factor of our method is in the range from two to five. 
 
9.3 Comparison with Other Methods 

 
The spinning ball benchmark was performed in several papers. On average, our 

method took 130ms to detect both inter- and self-collision events for the cloth model 
consisting of 97k triangles. There were many folds and wrinkles on the cloth model in 
our animation. In [27], it took 246ms for the cloth model consisting of around 92k trian-
gles on a 2.66 GHz Intel Pentium machine with 2GB RAM using a single thread. In [10], 
it took 290ms on a machine with similar settings.  

Tang et al. [23] proposed a method for filtering non-colliding feature pairs so as to 
avoid solving high order polynomial equations. It took 144ms on a 2.4 GHz machine 
with 4GB RAM to perform the spinning ball benchmark. Its performance is quite similar 
to ours. However, our method aims at skipping BVH update and BVH traversal. Hence, 
their method and our method are complementary to each other.  

The required memory is mainly used for storing the potentially colliding triangle 
pairs in our method. The memory size is proportional to the number of potentially col-
liding triangle pairs. For example, in the spinning ball benchmark, the average number of 
potentially colliding triangle pairs was 142k and the memory size was 48M. We not only 
kept information of each potentially colliding pair for performing collision detection but 
also information for performing dynamics computation. 

10. CONCLUSION AND FUTURE WORK 

We have proposed a novel adaptive approach to perform continuous collision detec-
tion for cloth models using a skipping frame session. Our approach combines the feature 
assignment scheme and the distance heuristic. Both inter- and self-collision detection are 
supported. The skipping frame session is activated adaptively to accelerate the process of 
collision detection. Even though there are external forces acting on the cloth models, our 
method still outperforms some existing efficient feature-based techniques. There are two 
limitations in our method. First, the movement distance of the vertices of the cloth mod-
els should be small compared to the size of bounding volumes of other objects in order to 
employ the skipping frame session. However, our experiment results show that when a 
wind drag model with moderate strength, the skipping frame session can still be em-
ployed. If the external forces are too strong, the skipping frame session could be disabled. 
The proposed method also performs efficiently by employing the distance heuristic alone. 
Second, all colliding pairs and potentially colliding pairs in close proximity are hashed as 
the proposed method is a history-based method. The memory space is quite demanding. 
On the other hand, as suggested in [8], tracking pairs in close proximity is necessary in 
order to reliably compute the relative orientation of colliding pairs. In the future, we will 
investigate methods to minimize the storage size. 
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