
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 27, 1545-1559 (2011)

1545

Adaptive Continuous Collision Detection for Cloth Models
Using a Skipping Frame Session*

SAI-KEUNG WONG

Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan

We propose a novel adaptive pipeline for continuous collision detection in cloth

simulation. The pipeline consists of four components: bounding volume hierarchy (BVH)
update, BVH traversal, a skipping frame session, and elementary test processing. The
skipping frame session is activated adaptively for skipping both BVH update and BVH
traversal during the process of collision detection. The proposed method improves the
performance of collision detection in simulating cloth models comparing to some exist-
ing feature-based collision detection techniques, as indicated from experimental results.

Keywords: computer graphics, continuous collision detection, cloth models, deformable
objects, feature-based technique

1. INTRODUCTION

Continuous collision detection computes accurate contact information, such as the
time of contact, of colliding objects. It is widely applied in simulating deformable models,
such as cloth models. The deformable models are discretized into triangular meshes at
the preprocessing phase and each model is bounded by some kind of bounding volume
hierarchies (BVHs). During the simulation, an interpolation approach is employed to
interpolate the motion of models between two discrete time frames. For example, a cubic
equation is solved for each feature pair if linear interpolation is adopted. There are fifteen
feature pairs for each triangle pair, including six vertex-triangle pairs and nine edge-edge
pairs. Both stages BVH update and BVH traversal are invoked in order to collect poten-
tially colliding pairs in the conventional pipeline of collision detection. However, colli-
sion events happen in some localized regions for interacting models as pointed out by
some researchers. By exploiting this coherent property, we develop an adaptive pipeline
for continuous collision detection in the simulation of cloth models.

Summary of results: We propose a novel adaptive pipeline for continuous collision de-
tection in cloth simulation. We summarize the major results as follows:

1. The pipeline consists of four components: BVH update, BVH traversal, a skipping

frame session and elementary test processing. By employing the skipping frame ses-
sion, both BVH update and BVH traversal stages can be skipped. The bounding vol-
umes of BVH nodes are inflated based on both the local and global information of the

Received January 19, 2010; revised April 27 & June 22, 2010; accepted July 5, 2010.
Communicated by Tong-Yee Lee.
* This paper was partially supported by the National Science Council of Taiwan (No. NSC 97-2218-E-009-040).

The content of the paper was presented in National Computer Symposium, Workshop on Image Processing,
Computer Graphics, and Multimedia Technologies, Taiwan, 2009.

SAI-KEUNG WONG

1546

cloth models in order to employ the skipping frame session.
2. The partial traversal scheme: As the inflated bounding volumes are not tight and they

may be kept for several frames, there would be redundant potentially colliding pairs.
A partial traversal scheme is proposed to handle them. The partial traversal scheme is
conservative, thereby detecting all the colliding pairs.

3. Adaptive self-collision detection: Adaptively perform self-collision detection based on
the partitioning of low curvatured sub-surfaces.

4. Robustness: We adopt a history-based approach to keep track of all the feature pairs in
proximity. The sidedness of the colliding pairs can be determined according to their
history instead of relying on the unreliable geometry information.

The remainder of the paper is organized as follows. The related work and the over-

view of our algorithm are presented in sections 2 and 3, respectively. BVH update and
BVH traversal of the proposed pipeline are discussed in section 4. The elementary test
processing and self-collision detection are discussed in sections 5 and 6, respectively.
Section 7 presents the skipping frame session and section 8 analyzes the proposed
method. Experimental results are given in section 9. Finally, conclusion and future work
are presented in section 10.

2. RELATED WORK

Collision detection was widely applied in cloth simulation [1-8]. Some approaches
[1, 4, 9, 10] exploited the regularity properties of cloth models to perform self-collision
detection. A comprehensive survey is described on collision detection for cloth and de-
formable models in [11]. There are spatial partitioning schemes and bounding volume
hierarchies (BVHs) that have been developed in [12-16] to search for possible colliding
pairs. Many non-colliding pairs are eliminated by using BVHs. Hence, the techniques are
adopted to narrow down the number of potentially colliding pairs. The axis-aligned
bounding box hierarchy (AABB) [15] and k-DOPs [12] are widely adopted. Larsson and
Akenine-Moller [17] proposed a technique to perform BVH refitting for models de-
formed by morphing and a lazy evaluation method [18] to perform BVH update for
breakable objects. Some methods employ extra bounding volumes to bound the vertices
and edges of each triangle [19, 20].

Mezger et al. [16] suggested that the bounding volume of each node could be in-
flated by a predefined distance. If the enclosed primitives (e.g. triangles) do not move
farther than a predefined distance, BVH update is not required for the current frame.
However, it is crucial to compute the distance of inflation in order to apply their method
but they did not specify a way to compute the distance of inflation automatically. It is
well known that BVH update and BVH traversal are not necessary for a brute force ap-
proach. However, the running time complexity of the brute force approach is too high
due to that there are many elementary tests. Similarly, if the inflation distance is not
computed appropriately, the running time complexity of their method would be high.

Moore and Wilhelms [21] studied continuous collision detection for rigid body
simulation. Later on, an efficient method for computing the time of contact in the simula-
tion of cloth models was developed in [22]. Similar techniques were employed in [4, 6,
10]. Tang et al. [23] proposed a method for reducing the number of elementary tests

ADAPTIVE COLLISION DETECTION FOR CLOTH MODELS

1547

based on deforming non-penetration filters.
Wong and Baciu [24] proposed a feature assignment scheme to assign edges and

vertices to incident triangles. The method reduces the number of potentially colliding
feature pairs. The technique [20] integrated both the techniques [19, 24] to reduce the
number of potentially colliding feature pairs further.

Selle et al. [8] proposed a method to handle complex cloth models. In some of their
animations, the number of triangles of cloth models is more than one million. They sug-
gested that the history based approach should be adopted so as to keep track of the rela-
tive orientation of interacting pairs in proximity. Moreover, it is important to control the
strain ratio [3] in order to prevent cloth models from overstretching.

3. ALGORITHM OVERVIEW

Each cloth model is discretized into a triangular mesh. The topology of the meshes
does not change. Furthermore, two features collide if their shortest distance is smaller
than or equal to a predefined threshold δd which is larger than or equal to the thickness of
cloth. If the bounding volumes of two triangles overlap, the two triangles form a poten-
tially colliding pair. The simulation time step is Δt.

(a) (b)

Fig. 1. The feature assignment for two triangles. The small dot (line) inside a triangle at a vertex
(edge) indicates that the vertex (edge) is assigned to the triangle.

We employ the feature assignment scheme [25] to assign each feature of meshes to
its incident triangle: a triangle assigned to itself and a vertex or edge assigned to one of
its incident triangles. The information of assignment is stored in each triangle as a feature
assignment mask. The mask of a triangle indicates the vertices or edges assigned to the
triangle. For example, the feature assignment of two meshes is illustrated in Fig. 1. The
assigned feature pairs of two potentially colliding triangles are computed based on the
mask as follows. Let Fvertex(T) and Fedge(T) denote the two sets of assigned vertices and
assigned edges to a triangle T, respectively. Consider two triangles A and B. Then the set
of vertex-triangle pairs is {Fvertex(A) × {B}} ∪ {Fvertex(B) × {A}}. Similarly, the set of
edge-edge pairs is {Fedge(A) × Fedge(B)}. For example, assume that the edge eA

0 is as-
signed to A, and two edges eB

0, eB
1, and the vertex q0 are assigned to B. Hence, the set of

the assigned feature pairs contains q0A, eA
0 eB

0, and eA
0 eB

1 for the triangles A and B. The
assigned feature pairs are checked instead of the fifteen feature pairs.

There is a skipping frame session at the runtime phase of the adaptive pipeline (see
Algorithm 1). During the skipping frame session, both BVH update and BVH traversal are
skipped. The number of frames that the skipping frame session lasts is nf. In the first frame
of the skipping frame session, flagSkippingFrame is set as false. Otherwise, it is set as true.

SAI-KEUNG WONG

1548

If flagSkippingFrame is false, a full BVH update and a full BVH traversal are per-

formed. The size of the bounding volume is extended adaptively at the stage of BVH
update according to the motion state of the objects. BVH traversal is then performed for
collecting potentially colliding triangle pairs and these pairs are stored in a pending list.
If flagSkippingFrame is true, we would collect the vertices and triangles moving farther
from their estimated movement distance. We call the vertices dangling vertices and the
triangles dangling triangles. A partial BVH traversal scheme is applied for processing
the dangling triangles.

We proceed to perform the elementary test processing for the potentially colliding
triangle pairs.

4. BVH UPDATE AND BVH TRAVERSAL

In our approach, each object has one BVH. In BVH update, the task is to refit the
bounding volume of each node so that the bounding volume bounds the swept volume of
the triangles assigned to the node. The bounding volumes of leaf nodes are updated first
and they are extended by the thickness of cloth. The bounding volume of each internal
node is then computed by merging the bounding volumes of its children. The process is
performed recursively until the root node is updated.

4.1 BVH Update with Inflation Distance

In the following we assume that each leaf node contains one triangle. The bounding

volume of each leaf node is inflated with a certain inflation distance for performing the
skipping frame session. Assume that the leaf node is associated with a triangle T. Initially
the bounding volume of each node is computed for bounding the swept volume of its
triangle and then the bounding volume is inflated with an inflation distance. The inflation
distance is the estimated movement distance de(T) of the triangle which is equal to the
maximum estimated movement distance of its three vertices. Assume that v(P) is the
speed of P. The estimated movement distance of P is v(P)ct(P) in the current simulation
time interval, where ct(P) is the contact time of P. However, ct(P) is unknown before
performing collision detection. Since ct(P) ≤ Δt, it implies that v(P)ct(P) ≤ vΔt. The esti-
mated movement distance could be therefore computed as v(P)Δt for one time step.
However, we attempt to skip more than one frame in the skipping frame session. Instead

Algorithm 1 Algorithm
1: if flagSkippingFrame then
2: collect dangling vertices
3: collect dangling triangles
4: perform traversal for dangling triangles
5: else
6: perform BVH update
7: perform BVH traversal
8: end if
9: perform front-end filtering for potentially colliding pairs
10: perform back-end filtering for potentially colliding pairs

ADAPTIVE COLLISION DETECTION FOR CLOTH MODELS

1549

of estimating the movement distance of triangles for one time step, we need to estimate
their movement distance for several frames. The movement of a vertex is affected by its
neighborhood as it is a part of a continuum material (e.g. cloth model). Moreover, the
strain ratio should be smaller than certain percentages (e.g. less than 15%) in simulating
cloth models, as reported previously in [4, 6]. Thus, we propose to adaptively estimate
de(P) as de(P) = (αv(P) + βv′)Δt + γl′, where v′ is the average speed of the vertices in the
neighborhood of P, and l′ is the average edge length of the cloth model. The three values
α, β and γ are adaptively adjusted. The value of α depends on the number of skipping
frames. There are other terms that can be included in computing de(P), such as accelera-
tion. In this paper, our focus is on the linear terms. To compute v′, we have to know the
connectivity of the cloth model and compute the average for its neighborhood. But the
cost is expensive by doing so. Moreover, it would be unreliable to estimate the speed of a
vertex based on its neighborhood over a number of frames due to uncertainty in a simu-
lation environment. Hence v′ is approximated as the average speed of all the vertices of
the cloth model. The information is presented in section 7 for computing α, β and γ.

4.2 BVH Traversal

Potentially colliding triangle pairs are collected during BVH traversal and they are

stored in a hash table. In BVH traversal, the root nodes of the two BVHs are checked
first. If they overlap, then their children are checked. This is done recursively until the
leaf nodes are reached. Then the corresponding two triangles of the two leaf nodes are
checked further. After two triangles are detected, they are determined whether or not they
should be registered. The set of the assigned feature pairs are computed if the two trian-
gles are assigned vertices or edges. If the set of assigned feature pairs is empty, then the
two triangles are ignored. Otherwise, the triangle pair is registered as an entry in a hash
table [26]. In order to quickly retrieve the entries from the hash table, the entry pointers
are stored in a pending list.

We maintain a list Lprev for all the active slots of the hash table in the previous frame
and another list Lcur for all the active slots in the current frame. Each element in the Lprev
and Lcur is an index of a slot. In the current frame, if a slot is visited, the slot index is re-
moved from the Lprev and it is added to another list Lcur. This can be implemented effi-
ciently by using a doubly linked list.

After the potentially colliding pairs are collected, we remove all the hash entries for
each slot of the hash table in Lprev. We then visit all the hash entries for each element in
Lcur and remove all the old hash entries. After that we set Lprev as Lcur and then clear Lcur.

There would be many potentially colliding pairs but they are too far to collide
within the simulation time interval due to the inflation of bounding volumes. The dis-
tance heuristic (section 6) is employed for eliminating these pairs. In order to employ the
distance heuristic, the shortest distance between two triangles should be computed. It is
not necessary to use all the fifteen feature pairs of two triangles for computing the short-
est distance as some feature pairs would be checked for multiple times. Thus, we con-
sider only the assigned feature pairs. By doing so, each feature pair is checked once. The
shortest distance d(T0,T1) is computed based on the assigned feature pairs. The triangle
pair is registered if d(T0, T1) ≤ de(T0) + de(T1) + δd. The triangle pair which is far away
would be therefore eliminated.

SAI-KEUNG WONG

1550

4.3 Processing Dangling Triangles

The bounding volumes are updated at the beginning of the skipping frame session.

They are kept unchanged until the end of the skipping frame session. There are dangling
triangles that probably move beyond their inflated bounding volumes. However, they are
not registered in the hash table during the BVH traversal. These dangling triangles
should be handled as they would intersect with each other.

At the beginning of a skipping frame session, the maximum distance of each vertex
P is computed as de(P) = (αv(P) + βv′)Δt + γl′. In the remaining frames of the session,
de(P) is updated as de(P) − v(P)Δt. If de(P) ≤ δd, then the vertex is marked as a dangling
vertex. After that we have to collect all the dangling vertices and the dangling triangles.
If the number of dangling triangles is small, we perform BVH traversal for each dangling
triangle individually. On the other hand, if there are many dangling triangles, we partially
update the BVH in a bottom-up manner [18]. Firstly update the BVs of the dangling tri-
angles and secondly climb up the BVH to the root and keep merging the BVs of internal
nodes and mark the nodes. Finally, we perform BVH traversal for the marked nodes for
collecting potentially colliding triangle pairs.

5. SELF-COLLISION DETECTION

Collecting the potentially colliding pairs of a mesh itself can be performed [1, 4] by
partitioning a cloth model into a set of low curvatured sub-surfaces and then performing
the hierarchy traversal for each pair of low curvatured sub-surfaces. A triangle belonging
to a low curvatured sub-surface satisfies the condition n(t) ⋅ nπ > 0 within the time inter-
val [0, Δt], where n(t) is the normal of the triangle at time t and nπ is the representative
normal of the sub-surface. In the following discussion, we assume that the sub-surfaces
of two sibling nodes are connected.

(a) (b)

Fig. 2. (a) The changes of the normal vector n(t) of a triangle within the time interval; (b) A ca-
nonical cone of a triangle.

There are two stages to partition a cloth model into a set of low curvatured sub-sur-
faces. We compute the canonical cone by using the method in [9, 10] for each triangle in
the first stage. A canonical cone with a representative normal vector nπ bounds the con-
tinuous normal vector n(t) of a triangle within the time interval [0, Δt], as illustrated in
Fig. 2. The triangle is itself a low curvatured subsurface if the canonical cone exists. We

ADAPTIVE COLLISION DETECTION FOR CLOTH MODELS

1551

traverse up the BVH for checking each internal node to merge canonical cones of its
children in the second stage. If the children are connected and the merging process [4] is
successful, then the triangles at the leaf nodes rooted at that internal node form a low
curvature sub-surface. Merging two cones is performed by computing a larger cone en-
closing them. If the canonical cone of a node does not exist, the merging process is
stopped for the node. In this case, we obtain some low curvatured sub-surfaces associated
with the child nodes. The maximum cone angle should be less than 90 degrees. We set it
to 70 degrees for avoiding drastic deformation within one sub-surface.

Collision detection check is performed between each pair of the sub-surfaces. The
collision check between two sub-surfaces is performed as an inter-collision check. A low
curvatured sub-surface could not intersect itself unless the contour of the surface has
self-intersection. To check whether the contour has collisions, the method in [10] should
be adopted to perform collision detection for the line segments of the contour.

6. ELEMENTARY TEST PROCESSING AND DISTANCE HEURISTIC

This section presents elementary test processing which consists of two sub-phases:
front-end filtering and back-end filtering phase. In the front-end filtering phase, we em-
ploy the distance heuristic to eliminate non-colliding pairs in the pending list. The idea of
the distance heuristic is presented as follows. Let dj

e(OA, OB) be the estimated distance
between two objects OA and OB at frame j. The estimated maximum displacement of the
two objects are dj+1

e(OA) and dj+1
e(OB) in the next frame, respectively. If dj

e(OA, OB) >
d j+1

e(OA) + dj+1
e(OB) + δd, the two objects cannot collide at the current frame. The esti-

mated distance dj+1
e(OA, OB) is then updated as dj

e(OA, OB) − (dj+1
e(OA) + dj+1

e(OB)).
In our case, the two objects are two triangles (T0, T1) for every pair in the pending

list. The maximum displacement of a triangle T is v(T)Δt, where v(T) is the speed of T. If
dj

e(T0, T1) ≤ dj+1
e(T0) + dj+1

e(T1) + δd, the potentially colliding pair is added to the admis-
sible list. As dj

e(T0, T1) is always less than or equal to the actual distance d(T0, T1), the
proposed method is conservative. After all pairs in the pending list are filtered, we pro-
ceed to the phase of back-end filtering for handling pairs in the admissible list.

Continuous collision detection [4, 6] is performed for each triangle pair in the ad-
missible list in the phase of back-end filtering. The assigned feature pairs of each triangle
pair are considered. Linear interpolation is adopted for computing the motion path of
each vertex in continuous collision detection. Higher order interpolation schemes are
possible but higher cost of computation is required. After the phase of back-end filtering,
all the colliding point-triangle and edge-edge pairs are detected.

7. THE SKIPPING FRAME SESSION

A skipping frame session consists of nf frames. At the first frame of the skipping
frame session, both BVH update and BVH traversal are performed. For the remaining (nf
− 1) frames, both BVH update and BVH traversal are skipped. In order to improve the
performance, nf should be computed adaptively.

Recall that the maximum movement distance de(P) of a vertex P is estimated as (αv
(P) + βv′)Δt + γl′ (see section 4.1). During the simulation, we keep track of the CPU time

SAI-KEUNG WONG

1552

spent on collision detection and adaptively adjust α, β and γ. If the average time is get-
ting better, we increase nf by one and at the same time change α, β and γ if necessary. In
the remaining (nf − 1) frames, the expected movement distance of P is (nf − 1)v(P)Δt.
However, P is affected by its neighboring vertices and the length of edges also affects the
speed of a vertex due to the strain rate of a cloth model. The expected movement distance
of a vertex P is therefore adjusted to de(P) = ((nf − 1)v(P) + βv′)Δt + γl′ in the remaining
frames. The value α is set as (nf − 1) consequently. The two values β and γ are the
weights for the average velocity of vertices and length of edges of the cloth model in
computing de(P) of the vertex P, respectively. In our experiments, there is wind drag af-
fecting the motion of cloth models and the motion of cloth models is unpredictable. Thus,
instead of computing these two values adaptively based on the simulation time step, they
are assigned constant values, β = 0.2 and γ = 0.1, in our experiments. On the other hand,
if the simulation is known beforehand, a better way for estimating the speed of a vertex
could be possible, such as considering the local region of the vertex.

If the CPU time spent on collision detection is getting worse, nf should be decreased
and the current skipping frame session should be terminated. If nf is changed to one, the
skipping frame session would be disabled for a while before a new skipping frame ses-
sion begins. Sometimes, it is necessary to set nf as one in order to obtain the CPU time
spent on collision detection without the skipping frame session. We would know whether
or not the performance of the skipping frame session is reasonable at the moment.

When self-collision detection is performed, each cloth model is partitioned in the
first frame of the skipping frame session. In the remaining frames, the continuous ca-
nonical cone is computed for each triangle per time step. We identify the triangles that
violate the low curvature property of their current assigned low curvature sub-surfaces.
These triangles may lead to self-collision events. They are handled individually to check
whether or not they collide with the other parts of the cloth model. There would be a few
such kind of triangles if the objects do not deform rapidly.

8. ANALYSIS AND DISCUSSION

We rely on the speed of vertices of the cloth models to estimate the expected move-
ment distance of vertices. The expected movement distance would affect the number of
skipping frames. Increasing the probability of penetration free movement for the models
is crucial for achieving high performance. We show that the higher the resolution of cloth
models the higher the probability of penetration free movement is. Let b be a small
bounding region and B a large bounding region (see Fig. 3). Both of them are convex.
Assume that b is randomly allocated inside B without overlapping the boundary of B.
We want to compute: (1) the expected free movement distance of b and (2) the probabil-
ity that the boundaries of b and B do not overlap if b moves in an arbitrary direction.

8.1 Expected Free Movement Distance

The expected free movement distance of b inside B is the average free movement

distance of b without overlapping the boundary of B. It is given by:

ADAPTIVE COLLISION DETECTION FOR CLOTH MODELS

1553

{ , }
(, , , ,) (, , , ,)

D
p x y z r x y z dxdydzd dθ φ θ φ θ φ

Ω∫ ∫ (1)

where (θ, φ) is the movement direction of b in the spherical coordinate system, (x, y, z) is
the location of the reference point of b, D is the spatial domain, Ω is the set of possible
movement directions, p(θ, φ, x, y, z) is the probability density function that b moving in
direction (θ, φ), and r(θ, φ, x, y, z) is the maximum distance that b moving in the direc-
tion (θ, φ) at (x, y, z) without overlapping the boundary of B.

(a) (b)

Fig. 3. Movement without collision; (a) A bounding volume b moves inside a region B. The region
is not necessarily to be a disk. It can be other shapes; (b) An AABB b moves inside another
AABB B with a distance of d in an arbitrary direction. b would not collide with the bound-
ary of B if the vertex of b at the lower left corner lying inside the dark region.

Consider the case in the one-dimensional space. Both b and B are bounding inter-
vals which are lying horizontally. Let L be the length of B and l (≤ L) the length of b. In
this case, b can only move horizontally either to the left side or right side. Let x be the lo-
cation of the right hand side of b. The expected free movement distance is computed as:

1 1 1 1() () .
2 2 2

L L

l l

L lL x dx x l dx
L l L l

−
− + − =

− −∫ ∫ (2)

The smaller l, the longer the expected free movement distance is. Similarly in the
three-dimension space, the smaller the size of b, the longer the expected free movement
distance is.

8.2 Probability of Penetration Free Movement

Assume that b moves with a distance d in an arbitrary direction. The probability that

the boundaries of b and B do not overlap is given by:

{ , }
(, , , ,) (, , , ,)

D
p x y z c x y z dxdydzd dθ φ θ φ θ φ

Ω∫ ∫ (3)

where c is a characteristic function which is given by:

c = 0, if r(θ, φ, x, y, z) ≤ d + δd,
c = 1, otherwise.

SAI-KEUNG WONG

1554

Consider a simple example with a weak condition that b moves with distance d in
an arbitrary direction. In the three-dimensional space, assume that both B and b are
AABBs. In the next frame, the probability that b still lies inside B is Πj(Lj − lj − 2d −
2δd)/Lj, where j indicates a coordinate axis. The smaller the size of b, the higher the prob-
ability is. In other words, the probability for a triangle not becoming a dangling triangle
is higher if the size of b is smaller. Assume that the speed of b is v in each direction and
the time step is Δt. Then d = vΔt. It implies that the probability of penetration free
movement is higher if the time step Δt is smaller. A higher resolution of cloth models
requires smaller Δt so as to satisfy the Courant condition [3].

9. EXPERIMENTS

We performed a Monte Carlo simulation to collect the expected free movement dis-
tance and probability of penetration free movement. The small bounding volume is ran-
domly generated inside the large bounding volume. The number of tests is one million.
Both bounding volumes are cubes. The ratio of side length k equals to the side length of
the small bounding volume divided by the side length of the large bounding volume.
The movement distance ratio of a vertex per time step is defined as the maximum move-
ment distance of the vertex divided by the side length of the small bounding volume. The
expected free movement distance is almost linear to the ratio of side length as shown in
Fig. 4. Moreover, the probability of penetration free movement is almost one when the
movement distance ratio is small. That is the small bounding volume has a small chance
to move beyond the large bounding volume for small movement distance ratio. The
higher the ratio of side length the higher the probability is. Consider that the small
bounding volume is a unit cube. Assume that the time step is 0.01 (sec) and the move-
ment distance of a vertex is 0.15. Then the movement distance per time step is 0.0015
which is much smaller than 0.05. The probability of penetration free movement is almost
one in this case.

(a) (b)

Fig. 4. (a) Expected free movement distance; (b) Probability of penetration free movement.

Furthermore, we performed two sets of experiments for collecting the performance
characteristics of the proposed method. In each set, there were four animations. Table 1

ADAPTIVE COLLISION DETECTION FOR CLOTH MODELS

1555

shows the model complexities. The complexity of cloth models is up to tens of thousands
of triangles in Experiment Set One while the complexity of cloth models is up to hun-
dreds of thousands of triangles in Experiment Set Two. The experiments were all per-
formed on an Intel(R) Core(TM2) Quadcore CPU machine with 2.4GHz of 2GB memory
and one thread was employed to perform the computation. The predefined threshold δd
was set as 0.015 for all the experiments. The hash table had 200031 slots for all experi-
ments. We compare our methods with two methods proposed by [24] and [20], and other
methods at the end of this section. We denote the method by [24] as NoDup and the
method by [20] as R-TRI. Our methods are labeled as nSwD and SwD. In both nSwD
and SwD, distance heuristic is employed but there is no skipping frame session in nSwD.
NoDup relies on the feature assignment scheme to perform continuous collision detection
for the feature pairs. R-TRI employs the improved feature assignment scheme and bounds
each feature (vertex or edge) with an extra bounding volume.

Table 1. The model complexities. Table 2. Performance statistics.

9.1 Experiment Set One

In Experiment Set One, the cloth models were affected by a wind drag model in

Animations Two, Three and Four. Fig. 5 shows the snapshots. In Animation One, a cloth
model interacted with a spinning bumpy ball. In Animation Two, a cloth model inter-
acted with a ball. In Animation Three, a cloth model interacted with four rigid cones.
There were many collision events due to the large bounding volumes of the cones. In
Animation Four, a garment interacted with a mannequin. Table 2 shows the performance
statistics of Experiment Set One. Compared with NoDup, nSwD and SwD outperform it
by up to around 50% and 100%, respectively. Compared with R-TRI, nSwD and SwD
outperform it by up to around 20% and 70%, respectively.

9.2 Experiment Set Two

In Experiment Set Two, there were four animations. Fig. 6 shows the snapshots of

Experiment Set Two. The motion of cloth models was not changing drastically. The tim-
ing information was collected for different number of frames in the skipping frame ses-
sion. We denote αxfy with the skipping frame session enabled, where x is the value of α
and y is the value of nf. We compare our methods with NoDup. In Animation One, the

SAI-KEUNG WONG

1556

cloth model consisted of 320k triangles. The initial time step was 5 ms and it was dy-
namically adjusted during the simulation [5]. On average, our method took 660 ms and
NoDup took 830 ms to detect all the colliding pairs including self-collision events.

In Animations Two, Three and Four, each cloth model consisted of a half million
triangles. The ridges of the underneath objects are shown clearly. In Animation Two,
there was a deformable volumetric model. The timing information is shown in Fig. 7
without including the timing in self-collision detection. The numbers at the top of each
bar indicate the speedup factors. The results show that by employing the skipping frame

Fig. 5. Snapshots of experiment set one.

Fig. 6. Snapshots of experiment set two.

Fig. 7. Experiment set two: performance statistics of animation two, three and four. BVHU: BVH

update. BVHT: BVH traversal. ETP: Elementary test processing. The numbers at the top of
each bar indicate the speedup factors.

ADAPTIVE COLLISION DETECTION FOR CLOTH MODELS

1557

session, the speedup factor of our method is in the range from two to five.

9.3 Comparison with Other Methods

The spinning ball benchmark was performed in several papers. On average, our

method took 130ms to detect both inter- and self-collision events for the cloth model
consisting of 97k triangles. There were many folds and wrinkles on the cloth model in
our animation. In [27], it took 246ms for the cloth model consisting of around 92k trian-
gles on a 2.66 GHz Intel Pentium machine with 2GB RAM using a single thread. In [10],
it took 290ms on a machine with similar settings.

Tang et al. [23] proposed a method for filtering non-colliding feature pairs so as to
avoid solving high order polynomial equations. It took 144ms on a 2.4 GHz machine
with 4GB RAM to perform the spinning ball benchmark. Its performance is quite similar
to ours. However, our method aims at skipping BVH update and BVH traversal. Hence,
their method and our method are complementary to each other.

The required memory is mainly used for storing the potentially colliding triangle
pairs in our method. The memory size is proportional to the number of potentially col-
liding triangle pairs. For example, in the spinning ball benchmark, the average number of
potentially colliding triangle pairs was 142k and the memory size was 48M. We not only
kept information of each potentially colliding pair for performing collision detection but
also information for performing dynamics computation.

10. CONCLUSION AND FUTURE WORK

We have proposed a novel adaptive approach to perform continuous collision detec-
tion for cloth models using a skipping frame session. Our approach combines the feature
assignment scheme and the distance heuristic. Both inter- and self-collision detection are
supported. The skipping frame session is activated adaptively to accelerate the process of
collision detection. Even though there are external forces acting on the cloth models, our
method still outperforms some existing efficient feature-based techniques. There are two
limitations in our method. First, the movement distance of the vertices of the cloth mod-
els should be small compared to the size of bounding volumes of other objects in order to
employ the skipping frame session. However, our experiment results show that when a
wind drag model with moderate strength, the skipping frame session can still be em-
ployed. If the external forces are too strong, the skipping frame session could be disabled.
The proposed method also performs efficiently by employing the distance heuristic alone.
Second, all colliding pairs and potentially colliding pairs in close proximity are hashed as
the proposed method is a history-based method. The memory space is quite demanding.
On the other hand, as suggested in [8], tracking pairs in close proximity is necessary in
order to reliably compute the relative orientation of colliding pairs. In the future, we will
investigate methods to minimize the storage size.

ACKNOWLEDGEMENTS

We thanked the reviewers for their helpful and insightful comments.

SAI-KEUNG WONG

1558

REFERENCES

1. P. Volino and N. Magnenat-Thalmann, “Efficient self-collision detection on smoothly
discretised surface animation using geometrical shape regularity,” Computer Graph-
ics Forum, Vol. 13, 1994, pp. 155-166.

2. M. Courchesne, P. Volino, and N. Magnenat-Thalmann, “Versatile and efficient
techniques for simulating cloth and other deformable objects,” in Proceedings of
ACM SIGGRAPH, 1995, pp. 137-144.

3. X. Provot, “Deformation constraints in a mass-spring model to describe rigid cloth
behaviour,” Graphics Interface, 1995, pp. 147-154.

4. X. Provot, “Collision and self-collision handling in cloth model dedicated to design
garments,” Computer Animation and Simulation, 1997, pp. 177-189.

5. D. E. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proceedings of
SIGGRAPH, 1998, pp. 43-54.

6. R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of collisions, contact and
friction for cloth animation,” ACM Transactions on Graphics, Vol. 21, 2002, pp.
594-603.

7. K. J. Choi and H. S. Ko, “Stable but responsive cloth,” in Proceedings of SIG-
GRAPH, 2004, pp. 604-611.

8. A. Selle, J. Su, G. Irving, and R. Fedkiw, “Robust high-resolution cloth using paral-
lelism history-based collisions and accurate friction,” IEEE Transactions on
Visualization and Computer Graphics, Vol. 15, 2009, pp. 339-350.

9. S. K. Wong and G. Baciu, “Dynamic interaction between deformable surfaces and
nonsmooth objects,” IEEE Transactions on Visualization and Computer Graphics,
Vol. 11, 2005, pp. 329-340.

10. M. Tang, S. Curtis, S. E. Yoon, and D. Manocha, “ICCD: Interactive continuous col-
lision detection between deformable models using connectivity-based culling,” IEEE
Transactions on Visualization and Computer Graphics, Vol. 15, 2009, pp. 544-557.

11. M. Teschner, et al., “Collision detection for deformable objects,” in Eurographics
State-of-the-Art Report, 2004, pp. 119-139.

12. A. Smith, Y. Kitamura, H. Takemura, and F. Kishino, “A simple and efficient
method for accurate collision detection among deformable polyhedral objects in ar-
bitrary motion,” in Proceedings of Virtual Reality Annual International Symposium,
1995, pp. 136-145.

13. S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical structure for
rapid interference detection,” in Proceedings of SIGGRAPH, 1996, pp. 171-180.

14. J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan, “Efficient col-
lision detection using bounding volume hierarchies of k-DOPs,” IEEE Transactions
on Visualization and Computer Graphics, Vol. 4, 1998, pp. 21-36.

15. G. van den Bergen, “Efficient collision detection of complex deformable models
using AABB trees,” Journal of Graphics Tools, Vol. 2, 1999, pp. 1-14.

16. J. Mezger, S. Kimmerle, and O. Etzmuss, “Hierarchical techniques in collision de-
tection for cloth animation,” Journal of WSCG, Vol. 11, 2003, pp. 322-329.

17. T. Larsson and T. Akenine-Moller, “Efficient collision detection for models de-
formed by morphing,” Visual Computer, Vol. 19, 2003, pp. 164-174.

18. T. Larsson and T. Akenine-Moller, “A dynamic bounding volume hierarchy for gen-

ADAPTIVE COLLISION DETECTION FOR CLOTH MODELS

1559

eralized collision detection,” Computer and Graphics, Vol. 30, 2006, pp. 451-460.
19. M. Hutter and A. Fuhrmann, “Optimizied continuous collision detection for defor-

mable triangle meshes,” Journal of WSCG, 2007, pp. 25-32.
20. S. Curtis, R. Tamstorf, and D. Manocha, “Fast collision detection for deformable

models using representative-triangles,” in Proceedings of Symposium on Interactive
3D Graphics and Games, 2008, pp. 61-69.

21. M. Moore and J. P. Wilhelms, “Collision detection and response for computer ani-
mation,” Computer Graphics, Vol. 22, 1988, pp. 289-298.

22. J. D. Liu, M. T. Ko, and R. C. Chang, “Collision avoidance in cloth animation,”
Visual Computer, Vol. 12, 1996, pp. 234-243.

23. M. Tang, D. Manocha, and R. Tong, “Fast continuous collision detection using de-
forming non-penetration filters,” in Proceedings of SIGGRAPH, 2010, pp. 7-13.

24. S. K. Wong and G. Baciu, “A randomized marking scheme for continuous collision
detection in simulation of deformable surfaces,” in Proceedings of ACM Interna-
tional Conference on Virtual Reality Continuum and Its Applications, 2006, pp. 181-
188.

25. S. K. Wong and G. Baciu, “Robust continuous collision detection for interactive
deformable surfaces,” Computer Animation and Virtual Worlds, Vol. 18, 2007, pp.
179.

26. D. E. Knuth, Sorting and Searching: The Art of Computer Programming, 2nd ed.,
Vol. 3, Addison-Wesley, Massachusetts, 1997.

27. M. Tang, S. E. Yoon, and D. Manocha, “Adjacency-based culling for continuous
collision detection,” Visual Computer, Vol. 24, 2008, pp. 545-553.

Sai-Keung Wong (黃世強) received his Ph.D. and M.S. de-
grees in Computer Science from the Hong Kong University of Sci-
ence and Technology (HKUST) in 2005 and 1999, respectively.
From June 2005 to January 2008, he was a postdoctoral fellow of
the Department of Computing of the Hong Kong Polytechnic Uni-
versity. He has been an Assistant Professor of the Department of
Computer Science of the National Chiao Tung University, Taiwan,
since 2008. His research interests include computer animation, col-
lision detection, 3D game engines and visualization.

