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Assume that n and δ are positive integers with 2 ≤ δ < n. Let h(n, δ) be the minimum 

number of edges required to guarantee an n-vertex graph with minimum degree δ(G) ≥ δ to 
be hamiltonian, i.e., any n-vertex graph G with δ(G) ≥ δ is hamiltonian if |E(G)| ≥ h(n, δ).  

We prove that h(n, δ) = C(n − δ, 2) + δ2 + 1 if 
  1  3  ((   1) mod 2)

,6
n n

δ
+ + × +

≤ ⎢ ⎥
⎣ ⎦  h(n, δ)  

= C(n − 
2  1   1,  2) 12 2

n n− −+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  if 
   1  3 ((   1) mod 2)  1 ,6 2

n n nδ
+ + × + −< ≤⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦  and  

h(n, δ) = 2
nδ⎡ ⎤⎢ ⎥  if 

  1 .2
nδ −> ⎢ ⎥⎣ ⎦  

 
Keywords: complete graph, cycle, hamiltonian, hamiltonian cycle, edge-fault tolerant ham-
iltonian 
 
 

1. INTRODUCTION 
 

Throughout this paper, we use C(a, b) to denote the number of combinations of “a” 
numbers taking “b” numbers at a time, where a, b are positive integers and a ≥ b. For the 
graph definitions and notations, we follow [1]. Let G = (V, E) be a simple graph if V is a 
finite set and E is a subset of {(u, v) | (u, v) is an unordered pair of V}. We say that V is the 
vertex set and E is the edge set. Two vertices u and v are adjacent if (u, v) ∈ E. The com-
plete graph Kn is the graph with n vertices such that any two distinct vertices are adjacent. 
The degree of a vertex u in G, denoted by degG(u), is the number of vertices adjacent to 
u. We use δ(G) to denote min{degG(u)| u ∈ V(G)}. We use c(G) to denote the number of 
connected components in G. A path, 〈v0, v1, …, vm-1〉, is an ordered list of distinct vertices 
such that vi and vi+1 are adjacent for 0 ≤ i ≤ m − 2. A cycle is a path with at least three 
vertices such that the first vertex is the same as the last one. A hamiltonian cycle of G is a 
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cycle that traverses every vertex of G exactly once. A graph is hamiltonian if it has a ham-
iltonian cycle. 

In the past years, the studies on hamiltonian graphs have largely focused on their re-
lationship to the Four Color Problem. More recently, the study of hamiltonian cycle in gen-
eral graphs has been fueled by practical applications and by the issue of complexity. No 
easily testable characterization is known for hamiltonian graphs. Some sufficient condi-
tions have been investigated. Two milestones of these sufficient conditions are obtained by 
Ore and Dirac. Ore [9] proved that any n-vertex graph with at least C(n, 2) − (n − 3) edges 
is hamiltonian, and there exists an n-vertex non-hamiltonian graph with C(n, 2) − (n − 2) 
edges. Dirac [4] obtains the following sufficient condition based on the minimum degree. 
 
Theorem 1  Let G be an n-vertex graph with n ≥ 3 and 2( ) .nGδ ≥  Then G is hamilto- 
nian. Moreover, there exists an n-vertex non-hamiltonian graph G with 2( ) .nGδ <  
 

Erdős [5] presents the following sufficient condition based on the combination of the 
number of edges and the minimum degree. 
 
Theorem 2  Let G be an n-vertex graph with n ≥ 6δ(G). Then G is hamiltonian if |E(G)| > 
C(n − δ(G), 2) + δ(G)2. 
 

In this paper, we consider a result in a setting more general than Theorem 2. Our re-
sult (Theorem A) will also include Theorem 1 as a special case. Since a graph G with δ(G) 
= 1 is not hamiltonian, we consider graph G with δ(G) ≥ 2 in the following. Assume that n 
and δ are positive integers with 2 ≤ δ < n. Let h(n, δ) be the minimum number of edges 
required to guarantee an n-vertex graph with δ(G) ≥ δ to be hamiltonian. So any n-vertex 
graph G with δ(G) ≥ δ is hamiltonian if |E(G)| ≥ h(n, δ). We will prove the following theo-
rem. 
 
Theorem A  Assume that n and δ are positive integers with 2 ≤ δ < n. Then 

2

2
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⎪⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨= − + + < ≤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎪
⎪⎡ ⎤ ⎢ ⎥>⎪⎢ ⎥ ⎣ ⎦⎩

 

Roughly speaking, h(n, δ) depends on n and δ when 6
nδ ≤  or 2 ,nδ >  h(n, δ) de-  

pends only on n when 6 2 .n nδ< ≤  The latter is our main contribution. We use an example  
to illustrate Theorem A with the case that n = 16. 

 
n 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
δ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

h(n, δ) 96 88 86 86 86 86 64 72 80 88 96 104 112 120 
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Any 16-vertex graph G with δ(G) ≥ 2 is hamiltonian if |E(G)| ≥ 96, with δ(G) ≥ 3 is 
hamiltonian if |E(G)| ≥ 88, with δ(G) ≥ 4, …, 7 is hamiltonian if |E(G)| ≥ 86, with δ(G) ≥ 8 
is hamiltonian if |E(G)| ≥ 64, with δ(G) ≥ 9 is hamiltonian if |E(G)| ≥ 72, with δ(G) ≥ 15 is 
hamiltonian if |E(G)| ≥ 120. 

We compare our result Theorem A with Theorems 1 and 2, and make some remarks  
here. Theorem 1 considers the case 2 ,nδ ≥  which is the same as the case 

  1
2 .nδ −⎢ ⎥> ⎣ ⎦  And  

Theorem 2 discusses the case 6 .nδ ≤  We notice that there are still cases for 6
n

 < δ ≤   1
2

n −⎢ ⎥
⎣ ⎦   

left open. So our result fills up the gap and unifies the previous results. 
We defer the proof of Theorem A to section 4. We first give an application of Theo-

rem A, which is the original motivation of this paper. In particular, we establish the rela-
tionship between h(n, g) and g-conditional edge-fault tolerant hamiltonicity of the com-
plete graph Kn. Then we give some preliminary results in section 3. Finally, section 4 gives 
the proof of Theorem A. 

2. APPLICATIONS 

A hamiltonian graph G is k edge-fault tolerant hamiltonian if G − F remains hamil-
tonian for every F ⊂ E(G) with |F| ≤ k. The edge-fault tolerant hamiltonicity, He(G), is 
defined as the maximum integer k such that G is k edge-fault tolerant hamiltonian if G is 
hamiltonian and is undefined otherwise. Assume that G is a hamiltonian graph and x is a 
vertex such that degG(x) = δ(G). We arbitrary choose degG(x) − 1 edges from those edges 
incident to x to form an edge faulty set F. Obviously, degG-F(x) = 1 and hence, G − F is not 
hamiltonian. Therefore, He(G) ≤ δ(G) − 2 if He(G) is defined. It is easy to check that He(Kn) 
= n − 3 for n ≥ 3. In Latifi et al. [7], it is proved that He(Qn) = n − 2 for n ≥ 2 where Qn is 
the n-dimensional hypercube. In Li et al. [8], it is proved that He(Sn) = n − 3 for n ≥ 3 
where Sn is the n-dimensional star graph. 

Chan and Lee [2] began the study of the existence of hamiltonian cycle in a graph 
such that each vertex is incident to at least g nonfaulty edges. A graph G is g-conditional 
k edge-fault tolerant hamiltonian if G − F is hamiltonian for every F ⊂ E(G) with |F| ≤ k 
and minimum degree δ(G − F) ≥ g. The g-conditional edge-fault tolerant hamiltonicity, 
He

g(G), is defined as the maximum integer k such that G is g-conditional k edge-fault tol-
erant hamiltonian if G is hamiltonian and is undefined otherwise. Chan and Lee [2] proved 
that He

g(Qn) ≤ 2g-1(n − g) − 1 for n > g ≥ 2 and the equality holds for g = 2. 
Fu [6] studied the 2-conditional edge-fault tolerant hamiltonicity of the complete 

graph. The following result is in [6]:  
 
Suppose F ⊂ E(Kn) and δ(Kn − F) ≥ 2, where n ≥ 4. If n ∉ {7, 9} (respectively, n ∈ 
{7, 9}) then Kn − F is hamiltonian, where |F| ≤ 2n − 8 (respectively, |F| ≤ 2n − 9). 
 
In the conclusion of [6], it is claimed that the above statement is optimal. We restate 

this result using our terminology. 
 
He

2(Kn) = 2n − 8 for n ∉ {7, 9} and n ≥ 4, He
2(K7) = 5, and He

2(K9) = 9. 
Yet, it is easy to check that He

2(K3) is 0 and He
2(K4) is 2 (not 0). 
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Now, we extend the result in [6] and use our main result Theorem A to compute 
He

g(Kn) for any 1 ≤ g < n. 
 
Theorem 3  He

g(Kn) = C(n, 2) − h(n, g) for any 1 ≤ g < n. 
 
Proof: Let F be any faulty edge set of Kn with |F| ≤ C(n, 2) − h(n, g) such that δ(Kn − F) ≥ 
g. Obviously, |E(Kn − F)| ≥ h(n, g). By Theorem A, Kn − F is hamiltonian. Thus, He

g(Kn) ≥ 
C(n, 2) − h(n, g). 

Now, we prove that He
g(Kn) ≤ C(n, 2) − h(n, g). Assume that He

g(Kn) ≥ C(n, 2) − h(n, g) 
+ 1. Let G be any graph with h(n, g) − 1 edges such that δ(G) ≥ g. Let F be E(Kn) − E(G). 
In other words, G = Kn − F. Obviously, |F| = C(n, 2) − h(n, g) + 1. Since He

g(Kn) ≥ C(n, 2) 
− h(n, g) + 1, G is hamiltonian. This contradicts to the definition of h(n, g). Thus, He

g(Kn) ≤ 
C(n, 2) − h(n, g). 

Therefore, He
g(Kn) = C(n, 2) − h(n, g) for any 1 ≤ g < n.                      

3. PRELIMINARY RESULTS 

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The union of G1 and G2, G1 + G2, 
has edge set E1 ∪ E2 and vertex set V1 ∪ V2 with V1 ∩ V2 = φ. The join of G1 and G2, G1 
∨ G2, is obtained from G1 + G2 by joining each vertex of G1 to each vertex of G2. 

For 1 ≤ m < n/2, let Cm,n be the graph ( mK  + Kn-2m) ∨ Km and S be the set of vertices 
in Km; i.e., Cm,n − S = mK  + Kn-2m. We know that c(Cm,n − S) = m + 1 > |S|. Therefore, Cm,n is 
not hamiltonian.  

The degree sequence of an n-vertex graph is the list of vertices degree, in nonde-
creasing order, as d1 ≤ d2 ≤ … ≤ dn. A sequence of real numbers (p1, p2, …, pn) is said to 
be majorised by another sequence (q1, q2, …, qn) if pi ≤ qi for 1 ≤ i ≤ n. A graph G is de-
gree-majorised by a graph H if |V(G)| = |V(H)| and the nondecreasing degree sequence of 
G is majorised by that of H. For instance, the 5-cycle is degree-majorised by the com-
plete bipartite graph K2,3 because (2, 2, 2, 2, 2) is majorised by (2, 2, 2, 3, 3). 

Chvátal [3] points out that the family of degree-maximal non-hamiltonian graphs 
(those are not degree-majorised by others) are exactly Cm,n’s, i.e., any n-vertex non-ham- 
iltonian graph is degree-majorised by some Cm,n. 
 
Corollary 1  Let n ≥ 5. Assume that G is an n-vertex non-hamiltonian graph. Then δ(G)  
≤ 

  1
2

n −⎢ ⎥
⎣ ⎦  and |E(G)| ≤ 1

2
( ), ,max{| ( )|,  | ( )|}.nG n nE C E Cδ −⎢ ⎥⎣ ⎦

 

 
Proof: Let G be any n-vertex non-hamiltonian graph. With Theorem 1, δ(G) ≤ 

  1
2 .n −⎢ ⎥

⎣ ⎦   
And we know that G is degree-majorised by Cm,n for some integer m. Since δ(Cm,n) = m,  
δ(G) ≤ m ≤ 

 1
2 .n −⎢ ⎥

⎣ ⎦  Therefore, |E(G)| ≤ max{|E(Cm,n)| | δ(G) ≤ m ≤ 
  1
2 }.n −⎢ ⎥

⎣ ⎦  Since |E(Cm,n)|  

= 
1
2 (m2 + (n − 2m)(n − m − 1) + m(n − 1)) is a quadratic function with respect to m and the  

the maximum value of it occurs at the boundary m = δ(G) or m = 
 1

2 ,n −⎢ ⎥
⎣ ⎦  |E(G)| ≤ max{|E 

(Cδ(G),n)|, 1
2 ,| ( )|}.n nE C −⎢ ⎥⎣ ⎦

                                                    
 

By Corollary 1, we have the following corollary. 
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Corollary 2  Assume that G is an n-vertex graph with n ≥ 5. Then G is hamiltonian if 
|E(G)| ≥ max{|E(Cδ(G),n)|, 1

2 ,| ( )|}n nE C −⎢ ⎥⎣ ⎦
 + 1. 

 
Lemma 1  Assume that n and k are integers with n ≥ 5 and 

 1
21 .nk −⎢ ⎥≤ ≤ ⎣ ⎦  Then |E(Ck,n)|  

≥ 1
2 ,| ( )|n nE C −⎢ ⎥⎣ ⎦

 if and only if 
 1  3  ((   1)mod2)

61 n nk + + × +⎢ ⎥≤ ≤ ⎢ ⎥⎣ ⎦  or 
 1

2 .nk −⎢ ⎥= ⎣ ⎦  

 
Proof: We first prove the case that n is even. We claim that |E(Ck,n)| ≥ 

2 1,| ( )|n nE C −  if and  

only if 1 ≤ k ≤ 
  4
6

n +⎢ ⎥
⎣ ⎦  or k = 2

n
 − 1. Suppose that |E(Ck,n)| < 

2 1,| ( )|.n nE C −  Then |E(Ck,n)| = 
1
2   

(k2 + (n − 2k)(n − k − 1) + k(n − 1)) < 
2

2
1,

1
2 2 2 2| ( )| (( 1) ( 2( 1))( ( 1)n n

n n nE C n n− = − + − − − − −  

21) ( 1)( 1)).n n+ − −  This implies 3k2 + (1 − 2n)k + 
21 1

4 2( 2) 0,n n+ − <  which means (k − 2
n  

+ 1)(3k − 2
n

 − 2) < 0. Thus, |E(Ck,n)| < 
2 1,| ( )|n nE C −  if and only if 

  4
6 2 1.n nk+ < < −  Note that   

n and k are integers with n being even, n ≥ 6, and 1 ≤ k ≤ 2
n

 − 1. Thus, |E(Ck,n)| ≥ 
2 1,| ( )|n nE C −   

 if and only if 1 ≤ k ≤ 
  4
6

n +⎢ ⎥
⎣ ⎦  or k = 2

n
 − 1. 

For odd integer n, using the same method, we can prove that |E(Ck,n)| < 
2 1,| ( )|n nE C −  if  

and only if 
  1   1
6 2 .n nk+ −< <  Given that n ≥ 5, and 

 1
21 ,nk −≤ <  then |E(Ck,n)| ≥ 1

2 ,| ( )|n nE C −   

if and only if 
  1
61 nk +⎢ ⎥≤ ≤ ⎣ ⎦  or 

 1
2 .nk −=  Therefore, the result follows.              

4. PROOF OF THEOREM A 

By brute force, we can check that h(3, 2) = 3, h(4, 2) = 4, and h(4, 3) = 6. Therefore,  
the theorem holds for n = 3, 4. Next, we consider the cases that 1 ≤ δ ≤ 

 1
2

n −⎢ ⎥
⎣ ⎦  and n ≥ 5.  

Suppose that 1 ≤ δ ≤ 
  1  3  ((   1)mod2)

6 .n n+ + × +⎢ ⎥
⎢ ⎥⎣ ⎦  By Lemma 1, |E(Cδ,n)| ≥ 1

2 ,| ( )|.n nE C −⎢ ⎥⎣ ⎦
  

Let G be any n-vertex graph with δ(G) ≥ δ and |E(G)| ≥ |E(Cδ,n)| + 1 = C(n − δ, 2) + δ2 + 1. 
By Corollary 2, G is hamiltonian. Therefore, h(n, δ) ≤ C(n − δ, 2) + δ2 + 1. Since δ < 2 ,n

 
Cδ,n is not hamiltonian. Thus, h(n, δ) > |E(Cδ,n)| = C(n − δ, 2) + δ2. Hence, h(n, δ) = C(n − δ, 
2) + δ2 + 1. 

Suppose that 
  1  3  ((   1)mod2)  1

6 2 .n n nδ+ + × + −⎢ ⎥ ⎢ ⎥< ≤ ⎣ ⎦⎢ ⎥⎣ ⎦  By Lemma 1, |E(Cδ,n)| ≤ 1
2 ,| ( )|.n nE C −⎢ ⎥⎣ ⎦

 

Let G be any n-vertex graph with δ(G) ≥ δ and |E(G)| ≥ 
2 1,| ( )|n nE C −  + 1 = 2( 1, 2)nC n − − +   

2(n
 − 1)2 + 1. By Corollary 2, G is hamiltonian. Therefore, h(n, δ) ≤ 2 2( 1, 2) (n nC n − − +  −  

1)2 + 1. And we know that 
2 1,n nC −  is not hamiltonian. Thus, h(n, δ) > 

2 1,| ( )|n nE C −  = C(n −  

2
n

 − 1, 2) + 2(n
 − 1)2. Hence, h(n, δ) = 

2
2 2( 1, 2) ( 1) 1.n nC n − − + − +  

Finally, we consider the case that δ > 
 1

2
n −⎢ ⎥

⎣ ⎦  and n ≥ 5. Let G be any graph with δ(G) 

≥ δ > 
  1
2 .n −⎢ ⎥

⎣ ⎦  By Theorem 1, G is hamiltonian. Obviously, |E(G)| ≥ 2 .nδ⎡ ⎤
⎢ ⎥  Thus, h(n, δ) =  

2 .nδ⎡ ⎤
⎢ ⎥  

This completes the proof of our main result Theorem A.  
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