
SIGNAL 
PROCESSING 

ELSEVIER 

High-speed 

Signal Processing 43 (1995) 323-331 

closest codeword search algorithms for vector 
quantization* 

Chang-Hsing Lee, Ling-Hwei Chen* 

Department of Computer and Information Science, National Chiao Tung University 1001 Ta Hsueh Rd., Hsinchu, Taiwan 30050, Republic of 

China 

Received 2 October 1992; revised 13 September 1993, 14 July 1994 and 15 December 1994 

Abstract 

One of the most serious problems for vector quantization is the high computational complexity involved in searching 
for the closest codeword through a codebook in both codebook design and encoding phases. In this paper, based on the 
assumption that the distortion is measured by the squared Euclidean distance, two high-speed search methods will be 
proposed to speed up the search process. The first one uses the difference between the mean values of two vectors to 
reduce the search space. The second is to find the Karhunen-Loeve transform (KLT) for the distribution of the set of 
training vectors and then applies the partial distortion elimination method to the transformed vectors. Experimental 
results show that the proposed methods can reduce lots of mathematical operations. 

Zusammenfassung 

Eines der schwerstwiegenden Probleme bei der Vektorquantisierung ist die hohe rechnerische Komplexitlt, die mit der 
Suche des ngchstliegenden Kodewortes innerhalb eines Kodebuches verbunden ist, sowohl beim Entwurf des 
Kodebuches, als such bei der Kodierphase. In dieser Arbeit werden unter der Voraussetzung des quadriatischen 
Euklidischen Abstandes als Verzerrungsmaa zwei sehr schnelle Suchmethoden vorgeschlagen, urn den Suchprozelj zu 
beschleunigen. Die erste Methode verwendet die Differenz zwischen den Mittelwerten zweier Vektoren, urn den 
Suchraum zu verkleinern. Die zweite Methode besteht darin, zunIchst die Karhunen-Loeve Transformation (KLT) fiir 
die Verteilung der Menge der Trainingsvektoren zu finden. Danach wird die partielle Verzerrungseliminierungsmethode 
auf die transformierten Vektoren angewendet. Experimentelle Ergebnisse zeigen, dal3 die vorgeschlagenen Methoden die 
Anzahl der mathematischen Operationen erheblich vermindern kiinnen. 

L’un des problbmes les plus s6rieux dans la quantification vectorielle est la grande complexiti de calcul ntiessaire pour 
chercher le mot le plus proche dans un dictionnaire, ceci dans les deux phases de rkalisation du dictionnaire et 
d’encodage. Dans cet article, deux mtthodes de recherche rapide, bastes sur la supposition que la distortion est mesurk 
par la distance euclidienne quadratique, sont propos&es pour accklerer le processus de recherche. La premitre utilise la 
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difference entre les valeurs moyennes de deux vecteurs pour rtduire l’espace de recherche. La seconde consiste B trouver 
la transform& de Karhunen-Loeve (TKL) pour la distribution de l’ensemble des vecteurs d’apprentissage et ensuite 
applique la mtthode d’elimination partielle de distorsion aux vecteurs transform& Les rtsultats exptrimentaux 
montrent que les methodes proposees peuvent reduire un grand nombre d’operations mathtmatiques. 

Keywords: Codebook design; Karhunen-Loeve transform; Vector quantization 

1. Introduction 

Vector quantization (VQ) is a well-known tech- 
nique for low-bit-rate image compression [6,7,13]. 
In VQ, the images are first decomposed into vec- 
tors (i.e., blocks) and then sequentially encoded 
vector by vector. The aim of VQ is to find the best 
matching codeword in the codebook, and the key 
aspect of VQ is to design a good codebook contain- 
ing the most representative codewords. In the en- 
coding process, the index of the codeword that is 
the closest one to the input vector is transmitted or 
stored. The decoder uses the index to reconstruct 
the representative codeword. Compression is 
achieved by transmitting or storing the index of 
a codeword rather than the codeword itself. 

Linde et al. [ 1 l] proposed a clustering algorithm, 
which is referred to as the LBG algorithm, for VQ 
codebook design. The algorithm is an iterative pro- 
cess that minimizes the overall distortion of repres- 
enting the training vectors by their corresponding 
closest codewords. However, the LBG algorithm 
needs a great deal of computation time to do ex- 
haustive search for the closest codeword to a train- 
ing vector. To avoid this kind of search, many fast 
algorithms have been proposed. Among them, the 
partial distortion elimination method [l], the par- 
tial search partial distortion method [S], the 
Voronoi cells method [2,3], the k-d tree method 
[12,15,16], and the triangle inequality method 
[9,14,17-193 are more popular. However, many of 
these algorithms achieve the goal of decreasing the 
search time at the expense of the coding quality. 

Equitz proposed another codebook design algo- 
rithm, called the pairwise nearest-neighbor (PNN) 
clustering algorithm [5], to accelerate the code- 
book design process. This algorithm begins with 
a separate cluster for each training vector and 
merges the two clusters that have the smallest dis- 
tance at a time until the desired codebook size or 

cluster number is achieved. This algorithm signifi- 
cantly reduces computational complexity, but the 
resulting codebook is suboptimal. 

Since the most effort of searching for the closest 
codeword to a vector is to evaluate the distance 
between two vectors, if those remote codewords 
can be rejected before evaluating their distances 
from the input vector, the search process will be 
sped up. Based on this idea, two fast search 
methods can be proposed under the assumption 
that the distortion is measured by the squared 
Euclidean distance. The first one uses some elim- 
ination rules, which are based on the difference 
between the means of two vectors, to avoid unnec- 
essary distortion calculations for those codewords 
which are definitely not candidates of the closest 
codeword to the input vector. The second is to find 
the Karhunen-Loeve transform (KLT) for the dis- 
tribution of the training vectors, and then the par- 
tial distortion elimination method [l] is applied to 
the transformed vectors. 

In the next section, we will describe the proposed 
methods. Section 3 presents experimental results to 
show the effectiveness of the methods. Some con- 
clusions are given in Section 4. 

2. The proposed methods 

In this section, we will present the proposed 
high-speed closest codeword search algorithms. 
The first method is based on the difference between 
two mean values to reduce the search space, it is 
also called the mean difference method (MDM). 
The second one, which is referred to as the eigen- 
vector method (EVM), is to find the Karhunen- 
Loeve transform for the distribution of the training 
vectors. It then applies the partial distortion elim- 
ination method to the transformed vectors to reject 
those remote codewords. 
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2.1. The mean digerence method 

In VQ, the great effort of searching for the closest 
codeword to an input vector is to compute the 
distortion of representing the input vector by every 
candidate codeword. Thus, if we can use a simple 
test to reject those codewords which are definitely 
not candidates for the closest codeword to the 
input vector before the distortions are calculated, 
the search process can be sped up. In practice, two 
vectors with large mean difference will have large 
distance. Based on this idea, the first search method 
is developed. It uses the mean difference to deter- 
mine the search bound of the codewords. Before 
describing the method, we will first give some 
definitions and theorems. 

Definition 1. Let x = (x1, x2, . . . , xk) be a k-dimen- 
sional vector and y = ( y,, y2, . . . , yk) be a k-dimen- 
sional codeword. Define the mean values of x and 

Y as 

1 k 
m, =x C xj, 

j-l 

(1) 

Theorem 1. If the distortion measure of representing 
x and y is dejned to be the squared Euclidean dis- 
tance, i.e., 

d2(xlY) = i (Xj - .Yj)'9 

j=l 

then d2(x,y) >, k(m, - m,)‘. (3) 

Proof. Let X be a random variable and has occur- 
rences xj - yj, j = 1,2, . . . , k, with probability 
pj = l/k. Then from the following well-known 
inequality in probability [4], 

WX2) 2 LW)12, 

where E(X) is the expected value of X, we can get 

i [ j$l txj - Yj)” 
I[ 

2 1 ,$ txj-Yj) 
1 

2 

. (4) 
I-1 

By combining the above inequality and Eqs. (l)-(2), 
Inequality (3) can be easily derived. lJ 

From the above theory, we can see that for 
a codeword y, if k(m, - m,)’ is larger than the 
current minimum distortion dii,, the codeword 
y will not be the closest codeword to the input 
vector x and thus can be rejected. Based on this 
reason, many codewords which are definitely not 
candidates for the closest codeword to x can be 
rejected without evaluating their distortions. How- 
ever, two vectors with similar mean values will have 
large distance if their components are very differ- 
ent. To solve this problem, an extra stage will be 
introduced. Assume that the size of each block 
(vector) is k with k = n x n, i.e. any row or column 
in the block contains n pixels. First, every block x is 
decomposed into n subvectors, X1,X2, . . . ,X,, 
with each subvector Xi representing the ith row or 
the ith column of the block. Let m,i and nt,.i be the 
mean values of the ith subvectors, Xi and Yi, of 
vectors x and y, respectively, for i = 1,2, . . . , n. 
Based on these notations, a definition and two 
corollaries will be given. 

Definition 2. Let M, = ( mXI, mX2, . . . , m,,) and 
My = (myl,my2, . . . ,myn), the squared distance 
between M, and M, is defined to be 

dz(~,y) = d2(M,, My) = i (m,, - m,i)2. 
i=l 

From Definition 2 and Theorem 1, we have the 
following corollary. 

Corollary 1. d2(x,y) 2 nd:(x,y) > k(m, - my)2. 

(5) 

Proof. Since m, and my are the mean values of M, 
and My, respectively, from Definition 2 and 
Theorem 1, we have 

dz(X,y) = i (t&i - t?lyi)2 > n(m, - my)‘. 
i=l 

Since k = n x n, we have 

n&x,y) > Urn, - my)‘. (6) 
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Since mxi and myi are the mean values Of Xi and Yi, values of codewords, then the sorted codebook 
from Theorem 1, we can get C,, is 

C,, = {y’i’lmi < mi+l, 1 d i 6 N - i}. 

i=l j=i i=l 

= n&x,y), (7) 

where Xii and Yij represent the jth pixels of Xi and 
Yi, respectively. Combining Inequalities (6) and (7), 
we finally obtain Inequality (5). 0 

From Theorem 1 and Corollary 1, we can obtain 
the following corollary immediately. 

Step 2. For each training vector x,, find the closest 
codeword yi(‘) in the codebook C,, and assign x, to 
class i(t). This procedure includes the following 
substeps: 

Step 2.1. Input a training vector x, = (x,r , xt2, . . . , 
xtk), compute the mean values of all subvectors ofx, 
and the mean value mXt of x,. 

Step 2.2. Find the codeword ytp) that has the 
minimum mean difference from x, (using binary 
search), i.e., 

Corollary 2. Let x be a training vector and d$” be 
the current candidate minimum distortion. For any 
codeword y, if k(m, - my)’ 2 d&n or n&x,y) > 

d&y then d2(~,y) 2 dkin e 

lm,, - m,l< lmxr - VIil for all i #p, 

where mP is the mean value of y(P). Set i(t) = p 
and the current minimum distortion &ii” = 
&(x,,y’“‘). 

From Corollary 2, we know that for a training 
vector x and a codeword y, if k(m, - m,,)’ > dzi” 

or ndi(x,.Y) 2 d$“,y will not be the closest code- 
word to x and can be rejected with calculating 

d2(x,y). 
With the above theorem and corollaries in hand, 

we now turn to describe the MDM. For a training 
vector x, we first calculate the mean values of all 
subvectors of x and the mean value of x. For every 
codeword y, if k(m, - my)’ is larger than the cur- 
rent minimum distortion d~i,, the codeword y 
will be rejected. Otherwise, if nd:(x,y) 2 d&n, 
the codeword y is rejected. If y is not rejected, 
the distortion d’(x,y) is calculated, and if 
d2(x9y) < d5”, the current minimum distortion 
dii” is replaced by d2(x,y). 

Step 2.3. Find the closest codeword y’(‘) in C,, 
and assign x, to class i(t). The procedure is as 
follows: 

Setd= 1; 
while ((p + d 6 N and k(m,, - mp+d )2 

< diin) or 

A detailed description of how to employ the 
MDM to the codebook design of the LBG algo- 
rithm is given below. 

Step 0. Initialization: Given N = codebook size, 
M= the number of training vectors, k = n x n = 
the dimension of a training vector, Co = initial 
codebook, E = distortion threshold. Set iteration 
counter r = 0, initial total distortion D- 1 = co . 
Step 2. Compute the mean values of all subvec- 
tors and the mean value, mi, of each codeword 
y”’ in the codebook C,, for i = 1,2, . . . , N. Sort 
C, according to the increasing order of the mean 

(p - d 2 1 and k(mXt - mp_d)2 < Ai,) begin 
if (p + d < N and k(m,, - m,+d)’ < d,$,) 

begin /* first stage */ 
if (nd$(x,,y”‘d) < &ii”) begin /* 

second stage */ 
if(d2(x,,yp’d) < diin) begin 

dii” = d2(X,,yp+d); 

i(t) = p + d; 
end; 

end; 
end; 
if (p - d 2 1 and k(m, - mP_d)2 -C A,$,,) 

begin /* first state */ 
if(ndf(x,,yPed) < d&) 

begin /* second stage */ 
if(d2(x,,ypdd) < &ii”) begin 

dii” = d2(X~pyp-d); 

i(t) = p - d; 
end; 

end; 
end; 
d=d+l; 

end; (of while} 
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Step 3. Compute the overall distortion for the rth 
iteration, D,. Here D, is defined to be 

D, = f 4P(x,,y”“). 
r=1 

Step 4. If (O,_ 1 - D,)/Dr < E, halt with final code- 
book being C,,. Otherwise go to Step 5. 
Step 5. Compute the centroid of every class. The 
centroids are regarded as the codewords of the new 
codebook. Set r = I + 1 and go to Step 1 for next 
iteration, 

The MDM contains two stages. The first one 
compares the mean value of a codeword with that 
of the training vector; the second compares the 
mean values of the n subvectors of the codeword 
with those of the training vector. Note that the 
second stage will be very effective when every vec- 
tor is normalized so that it has zero mean or when 
two compared vectors with similar means have 
variant block types (for example, if one vector rep- 
resents a homogeneous block and the other is 
a block with edge pixels). 

The encoder has to find the closest codeword in 
a predesigned codebook for each input vector and 
then uses the codeword as the reproduction one of 
the corresponding input vector. Therefore, it can 
use the MDM to find the closest codeword to each 
input vector. The details of this procedure are sim- 
ilar to those in Step 2 of the codeword design 
algorithm described above. 

2.2. The eigenvector method 

As mentioned previously, the most effort in 
searching for the closest codeword to a training 
vector is to evaluate the distance between two vec- 
tors. The lower the vector dimension is, the less the 
effort of the distance evaluation is. If we can find 
a lower-dimensional subspace S and for every vec- 
tor u, its projection vector on S can approximate 
u very well, the distance between two projected 
vectors will approach to that between two original 
vectors. Thus, those remote codewords can be re- 
jected only through testing the distance between 
their projected vectors and the projected vector 
of the input vector. The first stage of the MDM 

is such an example, the mean value of a vector 
represents the point of projecting the vector onto 

the subspace S1 spanned by the unit.vector (l/G, 

lJJst, . . . , l/G). This means that in order to 
lower the complexity of the distance evaluation, we 
have projected every vector onto the one-dimen- 
sional subspace Si to approximate the vector. Since 
the rate of rejecting codewords before evaluating 
their distortions depends on the approximation 
accuracy, how to find a projection subspace with 
proper dimension becomes an important topic. In 
fact, the Karhunen-Loeve transform (KLT) for the 
distribution of the training vectors can be used to 
find the best subspace [lo]. Based on this trans- 
form and the above idea, the eigenvector method 
(EVM) is developed. It will first use KLT to find the 
best lower-dimensional subspace and projects 
every training vector and codeword onto the sub- 
space to get the projected vectors. Then the partial 
distortion elimination method [l] is applied to 
quickly reject those codewords which are definitely 
not candidates for the closest codeword match. The 
detail is described as follows. 

Let C, be the covariance matrix of the training 
vectors x’s and be represented by 

C, = E((x - m,) (x - mJT), 

where m, = E(x), and T indicates vector transposi- 
tion. For all training vectors, under the mean 
square error sense, the best p-dimensional projec- 
tion subspace, S,, is spanned by the p orthonormal 
eigenvectors associated with the p largest eigen- 
values of C,, the reason can be found in [lo]. Let 
A be the matrix whose rows are formed by the 
orthonormal eigenvectors of C, and are ordered 
such that the first row of A is the eigenvector 
associated with the largest eigenvalue, and the 
last row is the eigenvector associated with the 
smallest eigenvalue. If we use the eigenvectors as 
the coordinate axes, then the new coordinates 
x’ = (xi,&, . . . ) xi) of each vector x can be ob- 
tained by the following equation: 

x’=Ax. 

This is the well-known KLT. Let x and y be two 
k-dimensional vectors, and x’ and y’ be the new 
coordinates of x and y projected on the eigenvector 
coordinate system, respectively, then x’ = Ax and 
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y’ = Ay. Since A is an orthonormal transform 
matrix, the distance between x and y is equal to 
the distance between x’ and y’, i.e., d’(x’,y’) = 
d2(x,y). Let A, be the p x k matrix whose rows 
are formed by the first p rows of A. Let 
x; = (x;,x;, . . . ,xk) and Y; = (Y’I,Y;, . . . ,Y;) be 
two p-dimensional vectors of x and y projected on 
the subspace, S,, spanned by A,, i.e., xb = A& and 
yb = Apv. Therefore, we can get 

d2(x,y) = &(x’,y’) = i (XI - y;)2 
j=l 

> i (XJ - y>)’ = d’(x;,yy). 
j=l 

Having the above result, we will begin describing 
the EVM. 

Let x be a training vector and the current candi- 
date minimum distortion be dii”. For any code- 
wordy, if d2(x”,yk) is larger than dzi,, y will not 
be the closest codeword to x and can be rejected 
without calculating its distortion. To test whether 
d’(xb,yb) is larger than d:i”, the partial distortion 
elimination method [l] is applied to speed up the 
testing process. 

Note that the EVM needs some overhead to 
obtain the covariance matrix of the training vec- 
tors, the eigenvectors and the projected vectors. As 
contrasted with the MDM, the EVM has a higher 
rejection rate but needs more overhead. Therefore, 
for codebooks with smaller codebook sizes, the 
MDM may outperform the EVM, and the EVM is 
proper for those codebooks with larger codebook 
sizes. 

3. Experimental results 

To examine the efficiency of the proposed two 
methods, experiments were performed on a Sun 
SPARC-station-IPC using several 512 x 512 mono- 
chrome images with 256 gray levels. Each image is 
divided into 4 x 4 blocks, so that the training se- 
quence contains 16 384 16-dimensional vectors. 
The proposed algorithms were compared with the 
LBG algorithm and the fast nearest-neighbor 
search (FNNS) algorithm 1143, which is based on 
the triangle inequality, in terms of the numbers of 

ol : : : : : : : , 

1 2 3 4 5 6 7 8 9 10 

eigenveetor number 

oy;;;to” 1000 

. Eli------------------------------ 
800 __ ___. .___________________----_.. 

1 2 3 4 5 6 7 8 9 IO 

eigenveetor number 

(b) 

Fig. 1. The average numbers of mathematical operations (over- 
head included) required per vector in codebook design using the 
EVM with variant codebook sizes versus selected eigenvector 
number p. (a) Codebook size 128, (b) codebook size 512. 

multiplication, addition, and comparison opera- 
tions required in codebook design as well as image 
encoding. 

Fig. 1 shows the average numbers of multiplica- 
tion, addition, and comparison operations required 
per vector in codebook design using the EVM 
algorithm versus the number of selected eigenvec- 
tors. From this figure, we can see that selecting 
more eigenvectors does not guarantee to result in 
better performance. For example, when codebook 
sizes of 128 and 512 are chosen, selecting 3 and 
5 eigenvectors, respectively, will perform best. In 
practice, the more eigenvectors are selected, the 
more codewords can be rejected. However, the 
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Fig. 2. The average numbers of mathematical operations (over- 
head included) required per vector in codebook design versus 
codebook sizes. (a) Multiplication, (b) addition, (c) comparison. 

overhead will increase in proportion to the number 
of selected eigenvectors. From this figure, we can 
see that the more the codewords are, the more the 
eigenvectors we need. 

Fig. 2 shows the average numbers of multiplica- 
tion, addition, and comparison operations required 
per vector in codebook design using the LBG, the 
FNNS, the MDM and the EVM algorithms. The 
MDM uses a column of a block to represent a sub- 
vector. The image Lena was used to design the 
codebook. From this figure, we can see that the 
MDM and EVM algorithms require much fewer 

12 3 4 5 6 7 8 9 10 

eigeavectornumber 

(8) 

1800 

1600 

1400 

1200 

operation 
1000 

couat 
800 

600 

400 

200 

0 

12 3 4 5 6 7 8 9 10 

eigcnvectornumber 

W 

Fig. 3. The average numbers of mathematical operations re- 
quired per vector in image encoding using the EVM with variant 
codebook sizes versus selected eigenvector number p. (a) Code- 
book size 128, (b) codebook size 512. 

multiplication and addition operations needed by 
the LGB algorithm and outperform the FNNS 
algorithm. The overhead required in the MDM and 
the EVM algorithms and that in the FNNS algo- 
rithm are included in this figure. 

Fig. 3 shows the average numbers of multiplica- 
tion, addition, and comparison operations required 
per vector in image encoding using the EVM algo- 
rithm versus the number of selected eigenvectors. In 
the simulation, the image Lena was used to design 
a codebook, and the resulting codebook was then 
used to encode the four images (Lena, Peppers, Jet 
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Fig. 4. The average numbers of mathematical operations re- 
quired per vector in image encoding of four images (Lena, 
Peppers, Jet and Baboon) versus codebook sizes: (a) multiplica- 
tion, (b) addition, (c) comparison. 

and Baboon). The overhead is excluded in this 
figure, since the eigenvectors and the projection of 
each codeword onto the subspace spanned by the 
selected eigenvectors can be calculated in advance 
and stored for image encoding. 

Fig. 4 shows the average numbers of mathe- 
matical operations required per vector for image 
encoding by giving a predesigned codebook using 
the full search, the FNNS, the MDM and EVM 
algorithms. From this figure, we can see that the 

EVM results in the best performance, since much of 
its overhead has been calculated in advance and is 
not included in this figure. 

From these figures, we can see that in the code- 
book design process, the MDM performs best 
when a codebook has a smaller size (e.g., 128 and 
256), while the EVM performs best for codebooks 
with larger size (eg., 512 and 1024). Both methods 
outperform the FNNS algorithm. In image encod- 
ing, the EVM results in the best performance be- 
cause the overhead required in evaluating the 
eigenvectors and the projection vectors of all code- 
words can be done in advance. 

4. Conclusions 

In this paper, based on the assumption that the 
distortion is measured by the squared Euclidean 
distance, two high-speed closest codeword search 
algorithms: the MDM and the EVM, for vector 
quantization have been proposed. The proposed 
algorithms can speed up the search process in VQ 
codebook design as well as image encoding. The 
MDM uses the difference between the mean values 
of two vectors to reduce the search space. The 
EVM projects each vector onto the subspace span- 
ned by the Karhunen-Loeve transform. It then 
calculates the distance between a training vector 
and every codeword in the projected subspace to 
reject those codewords which are definitely not 
candidates for the closest codeword to the training 
vector. The performance of the proposed algo- 
rithms has been evaluated in both codebook de- 
sign as well as image encoding. Simulation results 
show that the proposed algorithms can save a great 
number of mathematical operations required in 
the LBG algorithm and outperform the FNNS 
algorithm. 
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