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Adaptive Control of a Class of Nonlinear 
Discrete-Time Systems Using Neural Networks 

Fu-Chuang Chen, Member, ZEEE, and Hassan K. K h a ,  Fellow, ZEEE, 

Abstracr-Layered neural networks are used in a nonlinear 
self-toning adaptive control problem. The plant is an unknown 
feedback-hearimble discrete-time system, q ” t e d  by an 
input-ut model. To derive the linearizing-stabilizing feedback 
control, a @ossiMy n o “ a l )  state-space model of the plant 
is obtriwd. This model is used to define the zero dynamics, 
whieb am rrarsnaaed to be stabk, i.e., the sptm is 81wllllbd to 
be phase. A IkarMng feedback contdisderived in 
terms of some unknown nonlinear fimctions. A layered neural 
network is used to model the unknown system and generate the 
feedback control. Based on the error between the plant output 
and the modd output, the weights of the neural network are 
updated. A local convergeace result is given. The result says 
that, for any bounded initial conditions of the plant, if the 
neural network model conta€ns enough number of nonlinear 
bidden neurons and if the initial guess of the network weights 
is sufficiently close to the correct weights, then the tracking 
error between the plant output and the reference command will 
converge to a boded ball, whose size is determined by a dead- 
zone nonlinearity. Computer simulations verify the theoretical 
mdt. 

I. INTRODUCTION 

DAPTIVE control of linear systems has been an active A research area in the past two decades. It is only recently 
that issues related to adaptive control of feedback-linearkable 
nonlinear systems are addressed, e.g., [ll, [31, and 141. An 
important assumption in previous work on nonlinear adaptive 
control is the hea r  dependence on the unknown parameters, 
i.e., the unknown nonlinear functions in the plant have the 
form 

n 

f(.) = O i f i ( . )  (1) 
i=l 

where fi’s are known functions. The linear parameterization 
(1) is also used in the recent work [2] on applying Gaussian 
networks to an adaptive control problem. 

Multilayer neural networks can be considered as general 
tools for modeling nonlinear functions. The network comprises 
fixed (sigmoid-type) nonlinearities and adjustable weights 
which appear nonlinearly. Learning algorithms are used to 
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adjust the weights so as to reduce the modeling error. With 
the introduction of the back-propagation learning algorithm 
by Rumelhart et al. [5] in 1986, the multilayer neural network 
has become a popular architecture for practical applications in 
many areas, including system identi6don and control, signal 
processing, and pattern classification. some of the actihties in 
identikation and control problems have been reported in [6]. 

The idea of applying multilayer neural networks to adap- 
tive control of feedback-linearizable discrete-time systems 
appeared in [7] and [8]. In [13] we presented a convergence 
result for adaptive regulation using multilayer neural networks. 
Many restrictive assumptions, however, were made in [13]. As 
we worked on relaxing these assumptions, it became clear that 
the updating rule used in [ 131 would not be adequate. To cope 
with this problem, we incorporate a dead-zone nonlinearity 
in the weight updating rule, adapted from Kreissehneier and 
Anderson [14]. The control algorithm, the modified updating 
rule, and a convergence theorem are given in Section III. 

The control scheme and the convergence result presented 
in this paper are applicable to nonlinear discrete-time systems 
with a general relative degree. For a system with a relative 
degree higher than one, the cancellation control cannot be 
dehed explicitly because of a causality problem, i.e., current 
controls depend on future outputs. A similar problem appears 
in the linear case and has been discussed in [15] and [16]. 
In Section II, we generalize the results of [15] and [16] to 
the nonlinear case. We also define the zero dynamics and the 
minimum phase property of a nonlinear system. Minimum 
phase is one of the conditions of our convergence theorem. 
Finally, simulation results are given in Section IV. 

n. LINEARJZING FEEDBACK CONTROL 

We are interested in the single-inpdsingle-output nonlinear 
discrete-time system 

where fo and go are smooth (i.e., infinitely differentiable) 
functions of 

m 5 n, y is the output, U is the input, d is the relative degree of 
the system, and go is bounded away from zero. The arguments 
of fo and go are real variables. 
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There are two difficulties when we try to linearize system 
(2) via feedback. First, the control law cannot simply be 

with r(k) being the reference command, because this control is 
noncausal when d > 1. Second, since fo and go depend on past 
inputs, the system may become internally unstable after the 
feedback control, if it exists, cancels the plant dynamics. These 
two issues are weIl known for linear discrete-time systems 
[15], [16]. The purpose of this section is to resolve these 
difficulties for the nonlinear system (2). 

To define the zero dynamics and to facilitate developing the 
conve ence proof, the inpudoutput form (2) of the system is 

as the current output and all past inputs and outputs up to the 
most delayed input or output on the right-hand side of (2), i.e., 

conve f ed into a state-space form. We select the state variables 

Zi(k) = Yk-n+i, for i = 1,2, * * ' ,TI, 

Zn+i(k)=Uk-m-d+i, for i = 1 , 2 , * * * , m + d - l .  

Let x(k) be the state vector. A state-space model of (2) is 
constructed accordingly as 

zi(k+l)=zi+l(k), for i = 1 , 2 , - . . , n - l  
zn(k + 1) = fO[X(k)] + 90[X(k>lZn+m+l(k) 

Zn+i(k + 1) = Zn+i+l(k), 
for i = l , 2 , . . . , m + d - 2  

zn+m+d-l(k + 1) =uk 
Y(k) =zn(k). (3) 

When d = 1, the second equation of (3) is 

zn(k + 1) = fO[X(k)l+ 90[X(k)I% 

Hence, the input-output map of the system can be linearized 
by a causal state feedback control that cancels the nonlinearity. 
When d > 1, we need to do more work to be able to cancel 
the nonlinearity by a causal state feedback control. The trick is 
to represent future plant outputs in terms of elements of x(k). 
Notice that zn(k + 1) = 2/k+l. Then 

zn(k+2) = fo[x(k+ I)] +go[x(~+l)]z,+m+1(~+1). (4) 

Replacing x(k + 1) in (4) by the right-hand side of (3), we 
have' 

zn(k + 2) = fl[X(k)] + 91[X(k)]zn+m+2(k). 

By applying the same technique recursively, one gets 

zn(k + 3) = f2[x(k)l + g2[x(k)Izn+m+3(k), 

Zn(k + d - 1) 

'Notice that fo and go depend only on 21 to %,+,. Therefore, substitution 
the argument of fo and go. The 

fd_Z[X(k)] + gd-2[x(k)]sn+m+d-l(k). 

of x ( k  + 1) from (3) does not bring Uk 
new functions fi and g1 depend on 11 to 1,+,+1. 

Consider the state transformation 

z(k) = 

It can be shown that the inverse of (3, i.e., x = T-l(z), 
exists provided go(x), gl(x), , gd-z(x) are bounded away 
from a m  over the domain of interest. After application of the 
transformation (S), (3) becomes 

Zli(k + 1) = Zl,i+l(k), 

Zl,m+d-l(k + 1) =fd-l[x(k)J 

for i =  1,2,.. .  , n + d - 2  

+ gd-l[X(k)]Zn+m+d-l(k + 1) 
= fd-1(T-1[Z(41) 

+ Qd-1 {T-l [Z(k)]}U& 
= F[z(k) ]  + G[z(k)l~k 

z24k + 1) = ZZ,i+l(k), 
for i =  1,2, . .-  , m -  1 

Y(k) = Zln(k). (6) 

when d = 1, the state vector z does not contain the compo- 
nents zli for i > n, and the state equation in the z coordinates 
takes the form (6) except that zzm(k + 1) = Uk. To deal with 
the cases d = 1 and d > 1 simultaneously we rewrite (6) as 

ZlZ(k + 1) =Zl,i+l(k), 
for i =  1,2 , - . .  , n + d - 2  

Zl,n+d-l(k + 1) =F[z (k ) ]  + G[z(k)]u& 
Z 2 i ( k  + 1) = ZZ,i+l(k), 

for i = 1,2,..- , m -  1 

(7) 

where Uk-d+l = Uk when d = 1, while for d > 1 we have 

The feedback control 

(9) 

linearizes the input-output map of the system and r(k) appears 
as desired output d steps later. This transformation procedure 
is illustrated by the following example. 
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I Eranrple: For n = m = d = 2, the system takes the form 

Replace the Yk+l term in (11) by the right-hand side of (10) 
to obtain 

Yk+2 = fO[Yk 7 fO(Yk-1, Yk, Uk-3, uk-2) 

The two functions f1 and g1  depend on past inputs and outputs; 
thus, the control Uk can be defined in terms of f~ and 91 .  U 

Following Monaco and Norman-Cyrot [ 171, the zero , dy- 
namics are defined as the unobservable dynamics when the 
control (9) is used, namely 

Since the dynamics associated with z l i ,  for i = 1, - . , n - 1 ,  

~ t e  always stable, we define the system to be mini” phase if 

(13) 

has an asymptotically stable equilibrium point C = [c,c, 
,cl’. Equation (12) defines the internal dynamics of the 

system when the reference command r(k) and the plant 
output yk are constrained to be identically zero. Since zli, for 
i = 1 , 2 , . . .  ,n + d - 1 are either forward or backward shifts 
of ark, constraining gk to be identically zero implies that zli = 
0, for i = 1,2, , n + d - 1 and the closed-loop equation 
reduces to (13). Note that (13) is the same equation that is 
obtained from (2) by constraining gk to be identically zero. 

m. ADAPTIVE CONTROL USING NEURAL NETWORKS 
Consider now the case when n, m, and d are known, but the 

nonlinear functions F(0)  and G(o)  in (7) are unknown. We 
use multilayer neural networks to model the unknown nonlin- 
earities. It has been shown by Funahashi [lo], Cybenko [ll], 
Hornik et al. [12], and Hecht-Nielson [9], using different tech- 
niques, that multilayer neural networks can approximate any 
“well-behaved” nonlinear function to any desired accuracy. 
The statement of Funahashi’s theorem [lo] is quoted here. 

Theorem: Let +(z) be a nonconstant, bounded, and mono- 
tonically increasing continuous function. Let S be a compact 
subset of Rn and f (z l ,+ . -  ,z,,) be a real valued continu- 
ous function on S. Then for any E > 0, there exists an 
integer N and real constants c+ei(i = l , . . .  ,N),wij(i = 
1 , e - s  , N , j  = 1 , e . e  ,n) Such that 

N / n  \ 

satisfies max,Es-lf(zl,.-.  ,zn) - f ( z : , , . . -  ,zn)l < E .  

The network f in (14) contains one nonlinear hidden layer. 
Similar results for neural networks with more than one hidden 
layer can be derived from the theorem above or be shown from 
scratch [lo]. Funahashi’s theorem, however, provides only 
an “existence” result. The network size N and the network 
parameters 48, W;~S, 0:s are not determined by the theorem. 

To proceed with our development, we state our assumptions 
on the plant. 

Assumption I: go(x), e , gd- l (x )  are bounded away from 
zero over S, a compact subset of P+m+d-l, that is 

(15) vx E s. 
Assumption 2 (The Minimum Phase Assumption): The 

19i(X)l 1 b > 0, 

change of variables e2; = z2i - c transforms (13) into 

e z i ( k - t l ) = e z , i + l ( k ) ,  for i = l , 2 , - . .  , m - 1  

in some ball BPa C Rm. The existence of a Lyapunov 
function satisfying these condition is guaranteed by a converse 
Lyapunov theorem [ 131. 

Rewrite the plant in an input-output form as 

Yk+d = fd - l [x (k ) l+  gd-l[x@)IUk. (18) 

Recall from (6) that fd - l (x )  = F(z) and g d - l ( x )  = G(a). 
Plant (18) is modeled by the neural network 

(19) 

The functions fd- 1 (- , .) and J d -  1 ( - , -) depend on the structure 
of +e neural network and the number of neurons. For example, 
if fd-1 ( e ,  .) and j d - ~ ( . ,  a )  are three-layer neural networks 
with p and q hidden neurons, respectively, then they can be 
expressed as 

&+d = jd-l[X(k),  w] + 4d-l[X(k),  VI% 

P 

fd - l [x (k ) ,w1=  wiH 
i=l 
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and 
m+n+d-1 

i=l 

According to Funahashi's theorem, the function H in (20) 
and (21) has to be continuous, bounded, nonconstant, and 
monotonically increasing. We require, in addition, that H 
be differentiable. The differentiability of H is needed in 
our updating rule and convergence analysis. Throughout this 
research, we have used the hyperbolic tangent function 

in computer simulations, but other functions having the fore- 
going properties couId be used. 

Assumption 3: Given a positive constant E and a compact 
set S C Rn+m+d-l, there exist coefficients w and v such that 
fd- 1 anti jd-  1 approximate the continuous functions fd- 1 and 
gd-1, with accuracy E over S, that is 

3 w, v s.t .  max l fd- l (x ,  w) - fd-l (x)I  5 E 

and 
m m  I 6 d - l ( x , v )  - g d - l ( x ) (  5 € 7  

vx E s. (22) 

This assumption is justified by the approximation results of 
191-[12]. In our work we assume that the structure of the net- 
work and the number of neurons have been already specified, 
and (22) holds for the plant under consideration, but we do not 
assume that we know the weights w and v for which (22) is 
satisfied. Let w(k) and v(k) denote the estimates of w and v 
at time k. Then the control uk can be defined as the following. 

Control Law: 

where r (k)  is the reference command. 
The control U &  is applied to both the plant and the neural 

network model. The network weights are updated according 
to the error between the plant and model outputs. To better 
define the error, rewrite (18) and (19) as 

Y&+l = fd-1 [x(k - d + I)] 
+ gd-1 [x(k - d + l)]U&-d+l (24) 

and 
$&+l = fd-l[X(k - d + I), wl 

+ jd- l [x(k  - d + 1)1V]u&-d+l. (25) 

The estimated plant output is 

Yi+1 = f d - I [ x ( k  - d +  1),w(k)] 
+ 6d--l[X(k - d + 11, v(k)]u&-d+l-  (26) 

The error e;+1 is defined as 

.;+I = Y;+1 - Y k + l  (27) 

which will be used in the weight updating rule to be described 
next. 

Let 8 = [TI. The problem of adjusting the estimate 
8 ( k )  on-line is a typical problem in adaptive conFo1. The 
new element here is the fact that the functions fd-1 and 
jd-1 depend nonlinearly on the parameter 8. In the adaptive 
control of linear systems, or even linearizable continuous-time 
systems [3], the corresponding functions depend linearly on 
the unknown parameter 8. This nonlinear dependence on 8 is 
the main challenge in the current problem. In a previous work 
[13], we studied an updating rule of the form 

where 

and 

~k = 1 + Ji-d+lJk-d+l .  

The variable is the output of a multilayer neural network. 
Hence, the Jacobian matrix Jk-d+l can be calculated using the 
routines of the backpropagation algorithm [5]. We were able to 
prove an asymptotic regulation result, under some restrictive 
assumptions, like assuming that the nonlinearty fd-1 vanishes 
at the origin and that fd-1 and gd-1 can be modeled perfectly 
by neural networks, that is, 6 = 0 in (22). As we tried to 
relax these restrictions and work on the tracking problem, it 
became clear that the learning rule (28) would be inadequate. 
The source of the problem is partly from model uncertainties in 
the stability analysis. Related problems have been extensively 
studied in the literature on robust adaptive control [ 181, where 
a number of modifications of the simple gradient algorithm 
have been proposed to cope with robustness problems. We 
are going to employ a dead-zone algorithm for updating the 
weights which has been adapted from [14]. At each time step, 
if the error between the plant output and the model output 
is larger than a certain threshold, the weights are updated. 
Otherwise, the weights are not changed. To implement this, the 
error e;+, defined in (27) is applied as input to a dead-zone 
function D(e),  defined by 

if 1.1 5 do 
D(e) = e - do if e > 6 (29) (" e + d o  if e < - & .  

The output of the dead-zone function is used in the updating 
rule. 

Updating Rule: 

Define the parameter error as 
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7"heoremI: Suppose Ir(k)l 5 dl for all k 2 0. Given 
any constant p > 0 and any smal l  constant do > 0, there 
exist positive constants p1 = p1(p, dl), p2  = p2(p, dl), E* = 
~ * ( p ,  do, dl), and 6* = S*(p, do, dl) such that if Assumptions 
1 and 3 are satisfied on 5' II B,, with E < E * ,  Assumption 2 
is satisfied on Bpa, I ~ ( 0 ) l  5 p, and le(0)I I 6 < 6*, then 

will be monotonically nonincreasing, and IQ (k + 
will converge to zero. 

2) The tracking error between the plant output and the 
reference command will converge to a ball of radius 
do centered at the origin. 

Pro08 
Step I :  The dynamics associated with zl [see (7)] are 

z ~ ; ( k + l ) = z l , i + ~ ( k ) ,  for i = l , 2 , . . . , n + d - 2  

zl,n+d-l(k) =F[z (k ) ]  + G[z(k)]uk. (32) 

The last equation can be rewritten as 

~ l , n + d - l ( k  + 1) =J'[z(k)] + G[z(k)]~k 
=P[z (k ) ,  w] + G[Z(k),V]Uk 

+ (J'[z(k)l - @Iz(Js), WI 

+ {G[z(k)l - G[z(k) ,  VI)Uk)l 

=fi[2@),wl+ G[z(k),V].k + {.}1 (33) 

where @[z(k), w] = fd-l{T-'[z(k)], w} and G[z(k),v] = 
&~1{T- ' [ z (k ) ] ,v } .  Plugging Uk into (331, we have 

ZlpI+d-l(k + 1) =P[z (k ) ,  w] + G[z(k),v] 

= @ ( I C ) ,  w] + G [ z ( k ) ,  VI 

- f i [ z ( k ) ,  w] + r (k)  

+ G [ z ( k ) ,  VI 

Define 

eli(k) = w ( k )  - r(k - n - d + i). (35) 

Then (32) can be represented in new state variables el as 

With the transformation 

the dynamics associated with 22  are transformed into 

Thus, (36) and (38) together is the new state-space represen- 
tation of the closed-loop system. 

Let 

Step 2: Consider the set 

where the positive constants p 1  and p2 will be chosen as we 
go along. To start with, we choose them to ensure that, for all 
Ix(0)I 5 p, the initial vector e(0) will be in the interior of 
1,. Since z(k) = e(k) + [D(k)  q' and x(k) = T-'[z(k)], 
it is clear that for all e in I,, the vector x belongs to a ball 
B,, , where p1 depends on p l ,  p2, dl and )Cl. We assume that 
Assumptions 1 and 3 hold on a compact set S containing BPI.  
Consider also the set 

Our goal in this step is to show that as long as e(k) remains 
in Ie, the set Ie will be a positively invariant set, provided 
<and 6 are sufficiently small. Toward that end, suppose that 
O ( k )  belongs to 10. The input-output form of the system is 

Y ~ + I  = f d - i [ ~ ( k - d +  I)] +gd-i[x(k-d+ l ) ] ~ - d + i .  (41) 
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The error between the neural network output and the plant 
output is 

4 + 1  =9;+1 - Yk+l 
=fd-l[x(k-d+l),W(k)] -f^d-l[X(k-d+l),W] 

+ @-1[x(k - d + I), ~ ( k ) ]  
- 4 d - l W  - d + l) ,  V])Uk-d+1 + O(E) 

Since x(k) is bounded, there exist c3 and q (depending on 
1-11 and 112) such that 

Assume that 6 and E are small enough such that 

lrl(k)l I M < do ‘ (45) 
(do defined in (29)). Using the definition of the dead-zone 
function (29), we can easily verify the following claims: 

If le;+l( I do, then D(e;+l) = 0. 
If e;+l > do, i.e., Q(k)’Jk-d+l + ~ ( k )  > do, then 
@(k)’Jk-d+l > 0, since /v(k)( < 4 

w;+,> = Q@)’Jk-d+l+ rl(k) 
- do < Q(k)’Jk-d+l + do - do 

* D(eE+l) < 6(k)’Jk--d+l. 

where 0 5 a ( k )  < 1. Substituting (46) into the updating rule 
(30), we obtain 

Subtracting 0 from both sides of (47), it becomes 

* (48) Q ( k  + 1) = Q ( k )  - a(k) [Q(~)’Jk-d+lIJk-d+l 
1 + JJ-d+l Jk-d+l 

Then 

0 ( k  + 1)’0(k + 1) - Q(k)’Q(k) 

which shows that Ie is positively invariant. 
Step 3: Rewrite the dynamics associated with el as 

where 
0 1 ... ... 

A =  1 ... ... .!. 0 1  !], , B = i ] ,  

. . . . . . . . . 
1.1, ={.)1+{.)2. 

For all e E I, there exist constants c5 and CG (depending on 
pi and p2) Such that 

The matrix A is a stability matrix since all its eigenvalues 
are at the origin. Hence, given any symmetric Q > 0,3 a 
symmetric P > 0 such that A‘PA - P = -Q. Consider the 
quadratic function Vl(el(k)) = ei(k)Pel(k). Then 

The R.H.S. will be negative 

whenever V~[el(k)] > - cg (c56 + (53) A 
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The conclusion from (53) is that, given any p3 > 0, if S and 
E are smal l  enough such that 

(54) 

then CVl(e1) 5 113) will be a positively invariant set. By 
choosing ,US large enough so that lel(0)l 5 &/x-(P)], 

C9 

x - (c56 + < P3 

I p3). Moreover, by 
can make {Vl(el) 5 

113) c {le11 I Pl). 
Step 4: The dynamics associated with e 2  are 

e2i(k+ 1) =e2,;+1(k), for i = 1,2,.. .  , m -  1 
e2m(k + 1) =Uk-d+l - c 

where 

Uk-d+l = {-k[el(k - d + 1) + n(k - d + I), 
e2(k - d + 1) + C, w(k - d + l)] 
+ r(k - d + l)}/{G[eI(k - d + 1) 
+ II(k - d +'l), e2(k - d + 1) 
+ C, ~ ( k  - d + l)]}. 

After some manipulation similar to previous steps, we can 
show that as long as e(k) belongs to I, 

+ Wl) + O(P1) + O(6) + O(E)]2. 

Let 

and rewrite the equation for e2 as 

Thus, if pa is chosen large enough, there will be a positively 
invariant set {Vz[e2(k)] I p4) c {le21 I p2). By choosing 
p4 large enough we can be sure that e2(O) E {Vz(ez) 5 ~44). 

Step5: We combine the results of Steps 2, 3, and 4 to 
conclude that as long as e(k) remains in le, the sets Ie = 
{Q 5 6},{Vl(el) I ~ 3 1 ,  and (VZ(e2) I ~ 4 )  are positively 
invariant sets for sufficiently s m a l l  E and 6. Since 

4 0 )  E {Vl(el) 5 ~ 3 }  x (h(e2) I P ~ )  c re 
We ~ e e  that e(k) remains in le for all k 2 0. Hence, our 
concfusions so far are indeed valid for all k 2 0. 

'197 

Step 6: Since (50) is valid for all k 2 0, we conclude that 

&(k)'&(k) +C1 k + CO (56) 

6 ( k ) ' 6 ( k )  is monotanidy nonincreasing and 

where C1 is a constant. Moreover, (56) implies that 

6(k)'Jk-d+1 -0 as k 4 00. (57) 

Using (57) in (47) shows that 

Another related point to be shown is that, since 

IGW), v(k)l - Gb(k)lI I IG[z(k),v(k)l 
- Gd-l[Z(k),VIl 
+ 13d-l{T-1[Z(k)l, v} 
- 9d-1{T-1[Z(k)l)l 

5i?13(k)l+ e 5 E6 + E (59) 

the function G[z(k),v(k)] will be bounded away from zero 
and will have the same sign as G[z(k) ] ,Vk 2 0, provided 
6 and E are smal l  enough to satisfy 35 + E 5 b/2.  A direct 
implication of this result is that the uniform boundedness of 
e(k) will ensure uniform boundedness of u k .  

Step 7: Finally, we show that the plant output will even- 
tually track the reference command with an error less than 
do. 
Since x(k) and U k  are bounded for all k, it can be verified 

that J k - d + l  is bounded. Hence, (57) implies that 

a(k)6(k)J&d+i 0 aS k --t 00 

*D(ei+l) - 0 as k - 00 

-lei+ll < d o  as k - 00 - IY,t.+l - Yk+lI < do as k - 00. 

Recall that 

while the control U k  is generated from 
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Iv. SIMULNION 

The simulation is divided into three parts. Part I shows how 
the dead-zone size do is related to the modeling error E and 
the initial parameter error 6(0). Part II emphasizes that our 
result is nonlocal in the initial state of the plant. In Part III, the 
neural network is used to control a relative-degree-two system. 
The simulation programs are written in Microsoft C and run 
on an IBM PC compatible machine. 
Part I: The result of Theorem 1 is local in the sense that 

if the initial parameter error 6 (0) and the modeling error E 

are small enough (both depending on the size of do), then 
the tracking error will converge to a ball of radius do. Here 
we want to demonstrate through simulation that this local 
convergence theorem is not a conservative result. 

The system is modeled by 

$+1 = .f['&c, Yk-1, w(k)] + Gk'% (60) 

where f is the output of a neural network and g is a scalar. 
Our goal is to control the plant 

to track a reference command. The network .f contains two 
nonhear hidden layers, with four nonlinear neurons in each 
hidden layer. In practice, the modeling error E is determined 

network is determined. To find out the model- 
ing error, we have the neural network model (60) undergo an 
off-line training. During the training, the control Uk is selected 
randomly from [-2.2, 2.21 and applied to the plant and the 
model. Then, based on the error between the plant output 
y ~ + ~  and the model output Y:+~, the network parameters 

standard backpropagation algorithm [5].  The average output 
error (averaged over 10oO iterations) drops to 0.05 after 10000 
iterations. It is observed that training for more than 100oO 
iterations would do little for reducing the error. 

The simulation proceeds as follows: The neural network 
model is pretrained for 20000 iterations, and the network 
parameters at the end of the training (denoted as 8(20k)) 
are perturbed as follows: all the elements in w(20k) are 
increased by the amount A, and ij(20k) is decreased by the 
amount A. The perturbed network model is used to control 
the plant, which initially rests at -2.0, to track a sinusoidal 
reference command r(k) = 1.5 sin (.lrk/50), using the control 
law and the updating rule described in the previous section. 
The closed-loop control system is run for 6OOO time steps 
and then checked for convergence of the tracking error. It 
is clear from the updating rule (30) that if le1 5 do, then 
Q ( k  + 1) = 8 ( k ) .  To check the convergence of the tracking 
error, the system is run for another 8000 time steps. If no 
network parameter changes are observed during this period, the 
tracking error is said to have converged to the dead zone. The 
network parameters are checked 14 digits below the decimal 
point under MATLAB. 

W(k) and j k  are Updated t0 W(k + 1) and &+I Using the 

The simulation result is described next. 
When A = 0, i.e., when the pretrained network is not 
perturbed, the error would not converge to the dead zone 

unless 4 is incxeased to 0.075. Obviously, = 0.075 is 
needed to compensate for the modeling error. 
Continuing with do = 0.075 but gradually increasing A, 
we found that the tracking error converges if A 5 0.088. 
When A is larger than 0.088,h has to increase such that 
the tracking error converges. The upper bounds imposed 
on A are 

A 10.088, when 4 = 0.075 
A 5 0.100, when do = 0.090 
A 50.136, when do = 0.130 
A 5 0.198, when d~, = 0.200 

A 5 0.249, when do = 0.320. (62) 
This shows that convergence in this example is local, with 
the allowable size of A clearly depending on the size of 
the dead zone (i.e., 4). 
Although the convergence is checked only 6O00 time 
steps after the control is implemented, this does not affect 
the accuracy of (62). Once it was tested with A = 0.136 
and do a little less than 0.130 (for example do = 0.129), 
we found the error did not converge even when the control 
system is run up to 1OOOOO time steps. 
Equations (44) and (45) in the proof of Theorem 1 say 
that the following condition has to be satisfied 

c31e(o)12 + C4E 5 do. (63) 

For this example, we want to see (63) hold and to 
determine a possible value of q. Substituting the values 
of (62) into (63) and assuming the equality holds, one has 

~ ( 0 . 0 8 8 ) ~  + C ~ E  = 0.075 
~ ~ ( 0 . 1 0 0 ) ~  + C ~ E  = 0.090 
~ ( 0 . 1 3 6 ) ~  + C ~ E  = 0.130 
~ ( 0 . 1 9 8 ) ~  + C ~ E  =0.200 
c3(0.249)2 + C ~ E  = 0.320. (64) 

Computing q from the four pairs of neighboMg equa- 
tions developed from (U), one obtains the four values 
for q 

6.649, 4.708, 3.863, 4.825. 

They are of the same order and are indeed close. This 
shows that there is a quadratic relationship between do 
and the maximum allowable Q(0). 

Purr ZZ: In this part of the simulation, we want to emphasize 
that the result of Theorem 1 is nonlocal in the initial state of the 
plant. With A = 0.195 and 4 = 0.21, three initial conditions 
of the plant are tried: 3.0, 0.0, and -3.0. Fig. 1 shows the 
plant outputs for the first 100 time steps. For all of the three 
initial conditions, the tracking errors are observed to converge 
to the dead zone after 6OOO time steps. 

There are two remarks concerning the results of Part I and 
Part II. 

Remark 1: Although a suitable dead-zone size is needed to 
guarantee the convergence of the tracking error to the dead 
zone, without using dead zone we may achieve better results 
in terms of how close the plant output is to the reference 
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Fig. 1. The plant output for three different initial conditions. 
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Fig. 4. The plant output for the regulation problem when no dead zone is 
Used.  
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Fig. 2. The plant output when no dead zone is used. 

command. To illustrate this point, set A = 0.30 and 4 = 
0 and rerun the simulation in Part I. Fig. 2 shows that, after 
6OOO time steps, only smal l  error exists between the reference 
command and the plant output. The parameters, however, 
do not convergt. Fig. 3 shows the behavior of the typical 
weight w11 in f .  Taking into consideration that in Part I the 
network weights are checked 14 digits below the decimal point 
for convergence, the weight fluct~atio~ in Fig. 3 should be 
considered very large. 

Remark 2: Although Part I and Part II pertinently address 
ow main theoretical results in this paper, they do not illustrate 
the d a l  role af dead-zone nonlinearity in accommodating 

-1.50 I 
0 140 280 420 560 700 

time Step 

Fig. 5. The plant output for the regulation problem when do = 0.09. 

modeling errors. To emphasize this point, let us consider 
another example. Here neural network (60) is used to regulate 
the output of plant (65) to zero 

We artificially construct the following situation: the bias 
weights in the neural network are eliminated so that f becomes 
unable to model a nonlinear function which does not vanish 
at the origin. The plant contains a cos term; thus, it can not 
be properly modeled by the neural network around the origin. 
The neural network is pretrained for loo0 time steps. Fig. 4 
shows the simulation result when no dead zone is used. The 
initial condition of the plant is (yo, y-1) = (-1.5, -1.5). After 
some initial transient, the plant output is brought toward zero. 
The plant output, however, bursts into wild oscillations every 
time it comes close to zero. This is because the neural network 
controller can not provide correct cancellation control around 
zero plant output. To cope with this situation, a dead zone of 
size do > 0 is specified in the updating rule. Fig. 5 shows 
the result when do = 0.09. After some fast initial transient, 
the plant output is observed to gradually decay toward the 
origin and finally stay at 0.09. It is interesting to turn to Fig. 6 
to look at the behavior of a randomly chosen weight in the 
ne& network model. When 4 = 0.09 is specified, the weight 
converges to a constant. Fig. 6 also shows that the same weight 
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Fig. 6. The effect of dead zone on the behavior of a randomly chosen weight. 
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Fig. 7. The pendulum output. 

moves around without settling to any point when 6 = 0, i.e., 
when no dead zone is used. 

PurtZZZ: In this part we are going to apply the neural 
network to control a pendulum, which is a relative-degree- 
two system. Suppose that the equation of motion of the 
pendulum is 

(66) 

Let T denote the sampling period. Equation (66) is discretized 
(using Euler’s Rule) as 

e( t )  + i ( t )  + sin (e( t ) )  = u(t). 

&+1= (2 - q e k  + (T - i)ek-l 
- T2 sin (6k-1) + T2uk-l. (67) 

To define the control, the same transformation as described in 
Sation 11 is performed 

ek+2 = (2 - T)ek+l + (T - 1)& - T2sin(&) + T ~ U ~  
= ( 2  - T)[ (2  - T)& + (T - 1 ) e k - l  - T2sin(&-1) 

+ T2tik-l] + (T - 1)& - T28an(8k) + T2Uk 

which is modeled by 

&+2 = f [ 8 k t & - i , ~ k - i , ~ ( k ) ]  +jhl~uk (68) 

where 3 is a neural network that contains two hidden layers 
with only two newms in each hidden layer, while g is a scalar 
that is updated directly. At each time step, tbe cofftml Uk is 

-OB1 t 
-0.02 I 

0 320 640 960 1200 1600 

trine step 

Fig. 8. After some initial transient, the weight converges. 

generated from (68). The updating of the weights is based on 
the error between &+I and 

= j[ek-l, w - ~ ,  ~ ( l c ) ]  + B ~ - ~ u ~ - ~  (69) 

as was outlined in Section ID. Figs. 7 and 8 show the simula- 
tion results when T = 0.3 and a dead zone of size 6 = 0.09 
is used. The plant output is supposed to track a sinusoidal 
reference command of magnitude 1. Before the network is 
used for controlling the pendulum, it is trained for 12 OOO time 
steps. The initial condition of the pendulum is 80 = - 1 radian. 
The plant output, shown in Fig. 7, converges toward the dead 
zone quickly after the control process starts. The behavior of 
a randomly chosen weight in the neural network is shown in 
Fig. 8. The weight converges after some initial quick changes. 

V. CONCLUSIONS 
The use of neuralnetworks in control has drawn much 

interest in the control community in the past few years. In this 
work we presented an analytical study of the use of multilayer 
neural networks in the control of a class of nonlinear discrete- 
time systems with relative degree possibly higher than one. 
The convergence result of this paper is local with respect to 
the initial paramem but nodocal with respect to the initial 
states of the plant. This feature of the result distinguishes 
it from a simple local result that could have been obtained 
by Taylor linearization about an equilibrium point and a set 
of nominal parameters. The fact that the initial states of the 
plant are allowed to belong to any compact set required a 
carem Lyapunov-type analysis of the closed-loop system. On 
the other hand, having a local result with respect to the initial 
parameters is not the best that one would have hoped for. In 
the lack of analytical results in the ma, however, the result we 
obtained here is definitely a welcome conceptual contribution. 
The result, actually, is a little bit more than a conceptual one. 
The need to start from initial parameters suflicienfly close to 
the exact ones can be addressed by pretraining. In all our 
simulations, the neural network used to model an unknown 
nonlinearity has gone through intensive &-line t*lining using 
the backpropagation algorithm. This off-line training provided 
a good starting point when the network was used in on- 
line adaptive control. The idea of performing off-line training 
&fkitely has some merits, especially when such b.aining is 
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performed on a prototype sample of the system. When the 
network is then U& in an on-be adaptive control system, it 
may not provide an acceptable model of the actual nonlinearity 
of the system, but it could p v i &  a m-1 that is good 
enough for the initial parameters to be within their domain 
of attraction. 
Our analytical study has also pointed out ithe need to 

incorporate a &ad-zone nonlinearity to account for modeling 
errors between the actual nonlinearity and its neural network 
model. We have demonstrated via simulations the crucial role 
played by the dead-zone nonlinearity. 

The convergence result we obtained in Theorem 1 is stated 
in a generic farm that could be applied to many nonhear 
pa”e$e&ation schemes, provided the stated assumptions are 
satisfied. In particular, any function approximator that would 
satisfy Assumption 3 with arbitrarily small E would be a 
scheme to which we could apply Theorem 1. The link between 
our work and multilayer neural networks comes at three points. 
First, we used the well-known results on the use of the 
multilayer neural network as a universal function approximator 
to justify Assumption 3. Second, ow updating d e  requires the 
calculation of a Jacobian matrix which can be calculated using 
the routines of the backpropagation algorithm. This is particu- 
larly important because those routines have the advantage that 
when the number of neuron layers is fixed (in practice, less 
than four layers are used), the computation time of the. Jacobian 
is independent of the network complexity (that is, the number 
of neurons used in each layer which increases with the com- 
plexity of the approximated function), provided appropriate 
parallel computing hardware is available. Third, all our simu- 
lations have been for the case of multilayer neural networks. 

The fact that Theorem 1 is stated in a generic form that i s  
not limited to multilayer neural networks is a good feature and 
a bad feature at the same time. It is good because our analysis 
could be useful in other situations. But, it is bad because the 
analysis does not take advantage of properties that might be 
unique to multilayer neural networks. It is not clear at this 
time what could be such properties or how could they be used 
to obtain sharper results. 
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