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A Neural Fuzzy System with 
Linguistic Teaching Signals 

Chin-Teng Lin, Member, ZEEE, and Ya-Ching Lu 

Abstract-A neural fuzzy system learning with linguistic teach- 
ing signals is proposed in this paper. This system is able to process 
and learn numerical information as well as linguistic information. 
It can be used either as an adaptive fuzzy expert system or 
as an adaptive fuzzy controller. At first, we propose a five- 
layered neural network for the connectionist realization of a fuzzy 
inference system. The connectionist structure can house fuzzy 
logic rules and membership functions for fuzzy inference. We use 
a-level sets of fuzzy numbers to represent linguistic information. 
The inputs, outputs, and weights of the proposed network can be 
fuzzy numbers of any shape. Furthermore, they can be hybrid of 
fuzzy numbers and numerical numbers through the use of fuzzy 
singletons. Based on interval arithmetics, two kinds of learning 
schemes are developed for the proposed system: fuzzy supervised 
learning and fuzzy reinforcement learning. They extend the 
normal supervised and reinforcement learning techniques to the 
learning problems where only linguistic teaching signals are 
available. The fuzzy supervised learning scheme can train the 
proposed system with desired fuzzy input-output pairs which 
are fuzzy numbers instead of the normal numerical values. With 
fuzzy supervised learning, the proposed system can be used for 
rule base concentration to reduce the number of rules in a fuzzy 
rule base. In the fuzzy reinforcement learning problem that 
we consider, the reinforcement signal from the environment is 
linguistic information (fuzzy critic signal) such as “good,” “very 
good,” or “bad,” instead of the normal numerical critic values 
such as “0” (success) or “-1” (failure). With the fuzzy critic 
signal from the environment, the proposed system can learn 
proper fuzzy control rules and membership functions. We discuss 
two kinds of fuzzy reinforcement learning problems: single- 
step prediction problems and multistep prediction problems. 
Simulation results are presented to illustrate the performance and 
applicability of the proposed system. 

I. INTRODUCTION 
OME observations obtained from a system are precise, S while some cannot be measured at all. Namely, two kinds 

of information are available. One is numerical information 
from measuring instruments and the other is linguistic informa- 
tion from human experts. Some data obtained in this manner 
are hybrid; that is, their components are not homogeneous but 
a blend of precise and fuzzy information. 

Neural networks adopt numerical computations with fault- 
tolerance, massively parallel computing, and trainable prop- 
erties; however, numerical quantities evidently suffer from a 
lack of representation power. Therefore, it is useful for neural 
networks to be capable of symbolic processing. Most learning 
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methods in neural networks are designed for real vectors. 
There are many applications that the information cannot be 
represented meaningfully or measured directly as real vectors. 
That is, we have to deal with fuzzy information in the learning 
process of neural networks. Fuzzy set is a good representation 
form for linguistic data. Therefore, combining neural networks 
with fuzzy set could combine the advantages of symbolic and 
numerical processing. In this paper, we propose a new model 
of neural fuzzy system that can process the hybrid of numerical 
and fuzzy information. 

In general, the learning methods can be distinguished into 
three classes: supervised learning, reinforcement learning, and 
unsupervised learning. In supervised learning, a teacher pro- 
vides the desired objective at each time step to the learning 
system. In reinforcement learning, the teacher’s response is 
not as direct, immediate, and informative as that in supervised 
learning and serves more to evaluate the state of system. The 
presence of a teacher or a supervisor to provide the correct 
response is not assumed in unsupervised learning, which 
is called “learning by observation.” Unsupervised learning 
does not require any feedback, but the disadvantage is that 
the learner cannot receive any external guidance and thus 
is inefficient, especially for the applications in control and 
decisionmaking. Hence, in this paper we are interested in 
the supervised and reinforcement learning capabilities of the 
neural fuzzy system. 

Most of the supervised and reinforcement learning meth- 
ods of neural networks, for exaxnple the perception [l], the 
BP (backpropagation) algorithm [2] and [3], and the AR-p 
algorithm [4], process only numerical data. For supervised 
learning problems, some approaches have been proposed to 
process linguistic information with fuzzy inputs, fuzzy outputs, 
or fuzzy weights. Ishibuchi and his colleagues have proposed 
a series of approaches and applications with the capacity of 
processing linguistic input or/and linguistic output [5]-[7]. 
In their methods, the weights, inputs, and outputs of the 
neural network are fuzzified using fuzzy numbers represented 
by a-level sets. They derived learning algorithms from a 
cost function defined by the a-level sets of actual fuzzy 
outputs and target fuzzy outputs. Hayashi et al. [8] presented a 
similar method with fuzzy signals and fuzzy weights by using 
triangular fuzzy numbers. A learning algorithm was derived 
from a nonfuzzy cost function. Hayashi et al. [9] also proposed 
a similar architecture of neural network with fuzzy weights 
and fuzzy signals, but the learning algorithm was complete 
different from the proposed methods of Ishibuchi. In their 
method, the BP learning algorithm is directly fuzzified based 
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on a fuzzy-valued cost function; i.e., the rule for changing 
fuzzy weights is defined by fuzzy numbers. 

The common points of the above approaches are summa- 
rized as follows: 1) The a-level sets of fuzzy numbers are used 
to represent linguistic inputs, linguistic outputs, fuzzy weights, 
or fuzzy biases. 2) The operations in neural networks are per- 
formed by using interval arithmetic operations for a-level sets. 
3) Fuzzy numbers are propagated through neural networks. 
4) Fuzzy weights are usually triangular or trapezoidal fuzzy 
numbers. Because the real number arithmetic operations in the 
traditional neural networks are extended to interval arithmetic 
operations for a-level sets in the above fuzzified networks, 
the computations become complex (e.g., multiplication of 
interval) and time-consuming. Moreover, since fuzzy numbers 
are propagated through the whole neural network, the time of 
computations and the required memory capacities are 2h times 
of those in the traditional neural networks, where h represents 
the number of quantized membership grade. In this paper, we 
attack this problem by allowing numerical signals to flow in 
the proposed network internally and reach the same purpose 
of processing fuzzy numbers. 

For reinforcement learning problems, almost all existing 
learning methods of neural networks focus their attention on 
numerical evaluative information [4], [ 101-[22]. Inspired by 
Klopf s [22] work and earlier simulation results [19], Barto 
and his colleagues used neuron-like adaptive elements to solve 
difficult learning control problems with only scalar reinforce- 
ment signal feedback [14]. They also proposed the associative 
reward-penalty ( AR-P) algorithm for adaptive elements called 
AR-P elements [12]. Several generalizations of AR-P al- 
gorithm have been proposed [20]. Williams formulated the 
reinforcement learning problem as a gradient-following pro- 
cedure [18], and he identified a class of algorithms, called 
REINFORCE algorithms, that possess the gradient ascent 
property; however, these algorithms still do not include the 
full AR-P algorithms. Recently, Berenji and Khedkar [15] 
proposed a fuzzy logic controller and its associated learning 
algorithm. Their architecture extends Anderson’s method [ 161 
by including a priori control knowledge of expert operators in 
terms of fuzzy control rules. Lin and Lee [lo] also proposed a 
connectionist architecture, called R”-FLCS, for solving vari- 
ous reinforcement learning problems. The R”-FLCS can find 
proper network structure and parameters simultaneously and 
dynamically. All the above reinforcement learning schemes 
assume scalar critic feedback (scalar reinforcement signal) 
from the environment. In this paper, we shall attack the fuzzy 
reinforcement learning problem where only fuzzy critic signal 
(e.g., “good,” “very good,” “bad.”) is available. This problem 
is much closer to the expert-instructing learning system in real 
world than the original one with scalar critic signal. 

The objective of this paper is to explore the approaches 
to supervised learning and reinforcement learning of neural 
fuzzy systems which receive only linguistic teaching signals. 
At first, we propose a five-layered feedforward network for 
the network realization of a fuzzy inference system. This 
connectionist structure can house fuzzy logic rules and mem- 
bership functions, and perform fuzzy inference. We use a-level 
sets of fuzzy numbers to represent linguistic information. The 

inputs, outputs, and weights of the proposed network can be 
fuzzy numbers of any shape. Since numerical values can be 
represented by fuzzy singletons, the proposed system can in 
fact process and learn hybrid of fuzzy numbers and numerical 
numbers. Based on interval arithmetics, two kinds of learning 
schemes are developed for the proposed system. They are 
fuzzy supervised learning and fuzzy reinforcement learning. 
They generalize the normal supervised and reinforcement 
learning techniques to the learning problems where only 
linguistic teaching signals are available. The fuzzy super- 
vised learning scheme can train the proposed network with 
desired fuzzy input-output pairs (or, equivalently, desired 
fuzzy IF-THEN rules) represented by fuzzy numbers instead 
of numerical values. With supervised learning, the proposed 
system can be used for rule base concentration to reduce the 
number of rules in a fuzzy rule base. 

In the fuzzy reinforcement learning problem that we con- 
sider, the reinforcement signal from the environment is lin- 
guistic information (a fuzzy critic signal) such as “good,” 
“very good,” or “bad,” instead of the normal numerical critic 
values such as “0’ (success) or “-1” (failure). There are 
two major problems embedded in the reinforcement learning 
problems [lo]: 1) there is no instructive feedback from the 
environment to tell the network how to adapt itself, and 
2) (fuzzy) reinforcement signal may only be available at 
a time long after a sequence of actions has occurred (the 
credit assignment problem). To solve reinforcement learning 
problems in neural fuzzy systems, we integrate two of the 
proposed five-layered networks into a function unit. One net- 
work (action network) acts as a fuzzy controller that performs 
fuzzy stochastic exploration to find out its output errors. The 
other network (evaluation network) acts as a fuzzy predictor 
that uses the fuzzy temporal difference technique to predict 
the output errors for either single or multistep prediction. It 
also provides a more informative and in-time internal fuzzy 
reinforcement signal to the action network for its learning. 
After finding the output errors, the developed supervised 
learning scheme can be applied directly to train both the action 
and evaluation networks. Hence, with fuzzy critic signal from 
the environment, the proposed fuzzy reinforcement learning 
system can learn proper fuzzy control rules and membership 
functions. 

This paper is organized as follows: Section I1 describes the 
fundamental properties and operations of fuzzy numbers and 
their a-level sets. These operations and properties will be 
used in later derivation. In Section 111, the structure of our 
neural fuzzy system is proposed. A fuzzy supervised learning 
algorithm for the proposed system is presented in Section 
IV. The learning algorithm contains structure and parameter 
learning phases. In Section V, a fuzzy reinforcement learning 
scheme is developed. We consider the learning methods in two 
situations: single-step prediction problems and multistep pre- 
diction problems. In Section VI, two applications are simulated 
to illustrate the practical effect of the proposed neural fuzzy 
system. One is rule base concentration for knowledge-based 
evaluator (KBE) with fuzzy supervised learning. The other 
is the cart-pole balancing problem with fuzzy reinforcement 
learning. Finally, conclusions are summarized in Section VII. 
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Fig. 1. Representations of fuzzy number. (a) d e v e l  sets of fuzzy number. 
(b) discretized (pointwise) membership function. 

n. REPRESENTATION OF LINGUISTIC INFORMATION 

When constructing information processing systems such 
as classifiers and controllers, two kinds of information are 
available. One is numerical information from measuring in- 
struments and the other is linguistic information from human 
experts. We can naturally indicate the numerical information 
using real numbers. But, how to represent the linguistic data? 
It has been popular for using fuzzy sets defined by discretized 
(pointwise) membership functions to represent linguistic infor- 
mation (see Fig. l(b)). Fuzzy sets, however, can be defined by 
the families of their a-level sets according to the resolution 
identity theorem (see Fig. l(a)). In this paper, we use a- 
level sets of fuzzy numbers to represent linguistic information 
because of their advantages in both theoretical and practical 
considerations [23]-[25]. From theoretical point of view, they 
effectively study the effects of the fuzziness and the position of 
a fuzzy number in a universe of discourse. From practical point 
of view, they provide fast inference computations by using 
hardware construction in parallel and require less memory 
capacity for fuzzy numbers defined in universes of discourse 
with a large number of elements; they easily interface with 
two-valued logic; and they allow good matching with systems 
that include fuzzy number operations based on the extension 
principle. 

Let us first review some notations and basic definitions of 
fuzzy sets. We use the uppercase letter to represent a fuzzy set 
and the lowercase letter to represent a real number. Let x be 
an element in a universe of discourse X. A fuzzy set, P, is 
defined by a membership function, p p ( z ) ,  as pp: X -+ [0, 11. 
When X is continuum rather than a countable or finite set, the 
fuzzy set P is represented as P = sx p p ( z ) / z ,  where x E X. 
When X is a countable or finite set, P = Z ; p p ( x ; ) / z ; ,  
where z; E X .  We call the latter form as a discretized or 
pointwise membership function. A fuzzy set, P, is normal 
when its membership function, p p ( z ) ,  satisfies the condition 
max,: p p ( x )  = 1. A fuzzy set P is convex if and only 

0 5 X 5 1,z1 E X , x 2  E X .  The a-level set of a fuzzy 
set P, P,, is defined by 

if IlP(XZ1 + (1 - X ) Q )  2 m i n [ P P ( x l ) , P P ( Q ) ] ,  where 

= { 4 P P ( Z )  2 a> (1) 
where 0 4 a 5 l , x  E X. A fuzzy set P is convex if and 
only if every P, is convex; that is, P, is a closed interval of 
R. It can be represented by 

P, = [ P p ,  P ‘ p ]  (2) 
where a E [ 0 , 1 ] .  A convex and normalized fuzzy set whose 

~ 
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membership function is piecewise continuous is called a fuzzy 
number. Thus, a fuzzy number can be considered as containing 
the real numbers within some interval to varying degrees. 
Namely, a fuzzy number P may be decomposed into its a- 
level set, Pa, according to the resolution identity theorem [26] 
as follows 

P = UaP,,  = u a [ p j “ ) , p p ) ]  
01 (2 

= s, StP aPPa (%I/.. (3) 

We shall next introduce some basic operations of a-level 
sets of fuzzy numbers. These operations will be used in 
the derivation of our model in the following sections. More 
detailed operations of fuzzy numbers can be found in [27]. 

Addition: Let A and B be two fuzzy numbers 
and A, and B, their a-level sets, A = U,aA, = 
U,a[up),up)],B = U,aB, = U,a[bj”),bp)]. Then we 
can write 

A,(+)B, = [ u p ’ ,  up’] (+)[bp) ,  b p ) ]  

= [U?) + b p ,  up) + b p ] .  (4) 
Subtraction: The definition of addition can be extended 

to the definition of subtraction as follows. 

A,(-)B, = [ u ~ ’ , u ~ ) ] ( - ) [ b ~ ) , b ~ ) ]  

= ( a )  - b p ,  $1 - bl“)]. (5) 
Multiplication by an Ordinary Number: Let A be a 

fuzzy number in R and k an ordinary number k E R. We have 

Multiplication: Here we consider multiplication of fuzzy 
numbers in Rf , Consider two fuzzy numbers A and B in R+ . 
For the level a, we have 

The reader is referred to [27] for the general case that A and 
B are fuzzy numbers in R. 

Difference: We can compute the difference between 
fuzzy numbers A and B by 

diff(A, B )  = ~ [ ( U Y ’  - bp))’ + ( u p )  - b p ) ) ’ ] .  (8) 

Defuuijication: In many practical applications such as 
control and classification, numerical (crisp) data are required. 
That is, it is essential to transform a fuzzy number to a 
numerical value. The process of mapping a fuzzy number 
into a nonfuzzy number is called “defuzzification.” Various 
defuzzification strategies have been suggested in [28], [29]. 
In this section, we describe two methods (MOM, COA) that 
transform a fuzzy number in the form of a-level sets into a 
crisp value. 

0 

Mean of Maximum Method (MOM) 
The mean of maximum method (MOM) generates 

a crisp value by averaging the support values whose 
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membership values reach the maximum. For a discrete 
universe of discourse, this is calculated based on the 
membership function by 

2 

where 1 is the number of quantized z values which reach 
their maximum membership value. 

For a fuzzy number 2 in the form of a-level sets, the 
defuzzification method can be expressed according to (9) 
as 

where defuzzifier represents a defuzzification operation. 
Center of Area Method (COA) 

Assuming that a fuzzy number with a pointwise mem- 
bership function pz has been produced, the center of area 
method calculates the center of gravity of the distribution 
for the nonfuzzy value. Assuming a discrete universe of 
discourse, we have 

j = 1  

For a fuzzy number 2 in the form of a-level sets, it 
can be expressed according to (1 1) as 

defuzzifier(2) = zo = ’ (12) 
a l a  
& 

cy 

111. BASIC STRUCTURE OF THE NEURAL FUZZY SYSTEM 

In this section, we construct an architecture of neural fuzzy 
system that can process fuzzy and crisp information. Fig. 2 
shows the proposed network structure which has a total of 
five layers. This five-layered connectionist structure performs 
fuzzy inference effectively. Similar architectures have been 
proposed in [lo], [30], and [31]. Nodes at layer one are input 
nodes whose imports are fuzzy numbers or crisp numbers. 
Each input node corresponds to one input linguistic variable. 
Layer five consists of output nodes whose export are also fuzzy 
numbers or crisp numbers. Each output node corresponds to 
one output linguistic variable. Nodes at layers two and four are 
term nodes which define membership functions representing 
the fuzzy terms of the respective linguistic variable. Only the 
nodes at layer two and four have fuzzy weights. Each node in 
layer two executes a “match” action to find the match degree 
between the input fuzzy number and the fuzzy weight if the 
input is linguistic information. If the input is a crisp number, 
they execute a “fuzzification” operation to map the input value 
from an observed input space to the fuzzy weights in nodes 
at layer two. Each node at layer three is a rule node which 

Layer 5 : Merging 
Defuzzification 

Layer 4 : MAX 

h h *.. Layer 3 : MIN 

om. Layer 2 :  Matching 
Fuzzification 

0 0 0 Layer 1 : Input 

Fig. 2. The five-layered architecture of the proposed neural fuzzy system. 

represents one fuzzy rule. Hence, all the layer-3 nodes form 
a fuzzy rule base. Links from layers two to three define the 
preconditions of the fuzzy rules, and links from layer three to 
four define the consequents of the fuzzy rules. Therefore, for 
each rule node, there is at most one link (maybe none) from or 
to some term node of a linguistic node. This is true both for 
precondition links and consequent links. The links at layers 
two and five are fully connected between linguistic nodes 
and their corresponding term nodes. If linguistic outputs are 
expected, each node in layer five “merges” all fuzzy weights 
connected to it, scaled by the output values of layer four, 
to produce a new fuzzy number. If numerical output values 
are required, each layer-5 node executes a “defuzzification” 
operation to obtain a crisp decision. 

We shall next describe the signal propagation in the pro- 
posed network layer by layer following the arrow directions 
shown in Fig. 2. This is done by defining the transfer function 
of a node in each layer, Signal may flow in the reserve 
direction in the learning process as we shall discuss in the 
following sections. In the following description, we shall 
consider the case of single output node for clarity. It can be 
easily extended to the case of multiple output nodes. A typical 
neural network consists of nodes, each of which has some 
finite fan-in of connections represented by weight values from 
other nodes and fan-out of connections to other nodes (see 
Fig. 3). The notations U and U represent the input crisp and 
fuzzy numbers of a node, respectively. The notations o and 
0 represent, respectively, the output crisp and fuzzy numbers 
of a node. The superscript in the following formulas indicates 
the layer number. 

Layer 1 (Input): If the input is a fuzzy number, each 
node in this layer only transmits input fuzzy number X; to 
the next layer directly. No computation is done in this layer. 
That is 

0: = U a [ ~ : , ( ~ ) ,  o:icy)] = X; = U cx[xL:), x!;’]. (13) 
cy cy 
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Fig. 3. Basic structure of a node in the proposed neural fuzzy system. 

If the input is a crisp number xi, it can be viewed as a fuzzy 
singleton, i.e., 

a a 

Note that there is no weight to be adjusted in this layer. 
Layer 2 (Matching): Each node in this layer has exactly 

one input from some input linguistic node, and feeds its output 
to rule node(s). For each layer-2 node, the input is a fuzzy 
number and the output is a numerical number. The weight in 
this layer is a fuzzy number W X i j .  The index i, j means the 
j th  term of the ith input linguistic variable Xi. The transfer 
function of each layer-2 node is, 

a 

+ ( W s g  - ? p ) 2 ] ,  (15) 

02. 2.7 a ( f ? , )  23 = e - ( f , 2 , ) 2 / 2 g 2  (16) 

where o is the variance of the activation function a( . ) .  It is 
a constant given in advance. The activation function U ( . )  is 
a nonnegative, monotonically decreasing function of f$ E 
[0, CO], and a(0) is equal to 1. For example, a(.)  can also be 
given alternatively as 

02, 23 a(f?.) 23 = rf."J (17) 

where O < r < l ,  or 

where X is a nonnegative constant. The output of a layer-2 
node indicates the matching degree of input and fuzzy weight. 
It is noted that the matching process in this layer is different 
from that in the conventional fuzzy control systems [29]. In 
the conventional fuzzy control systems, we usually consider 
numerical input data, and thus the matching process is simply 
the calculation of a membership function value. If we view 
a numerical value as a fuzzy singleton, then our formula in 
the above will achieve the same result as the conventional 
approach dose. 

Layer 3 (MZN): The input and output of a node in this 
layer are both numerical. The links in this layer perform pre- 
condition matching of fuzzy logic rules. Hence, the rule nodes 
should perform fuzzy AND operation. The most commonly 
used fuzzy AND operations are intersection and algebraic 
product [29]. If intersection is used, we have 

(19) 03 = min(u;, U ; , . .  . , U",. 

On the other hand, if algebraic product is used, we have 

0; = U:.;. . .U;. (20) 

Similar to layer one, there is no weight to be adjusted in this 
layer. 

Layer 4 (MAX): The nodes in this layer should perform 
fuzzy OR operation to integrate the fired rules which have 
the same consequent. The most commonly used fuzzy OR 
operations are union and bounded sum 129). If the union 
operation is used, we have 

of = max(u;,ui,...,u:) . (21) 

If the bounded sum is used, we have 

04 = min(1, ut + U ;  + . . . + U",. (22) 

The input and output of each layer-4 node are both numerical 
values. 

Layer 5 (MergingDefuuiJcation): In this layer, each 
node has a fuzzy weight WU,. There are two kinds of 
operations in this layer. When we need a fuzzy output Y, 
the following formula is executed to perform a "merging" 
action 

xu:. wu, 
0 5  = U'a[O:(a),O;(a)~ y = . (23) 

a 
i 

Namely 

Y = U 'a[yp), yp'], WU; = U '~[wY,!;', wy,!;)] (24) 
a a 

where 

a 

a 

If the output of the neural fuzzy system is required to be a 
numerical value, the output node executes the defuzzification 
action. The following formulas simulate the Tsulcumoto' s 
defuzzification method 1321 

fi =defuzzifier(WY,) = a 1 (27) 
2 T ' a  
L 
a 

xu: ui f i 

2 

where 
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In the rest of this paper, we call the above proposed 
five-layered neural network with fuzzy output as “Fuzzy 
Connectionist Architecture with Linguistic Output” (FCLO), 
and that with numerical output as “Fuzzy Connectionist Ar- 
chitecture with Numerical Output” (FCNO). From the above 
description we observe that only layer-1 inputs and layer-5 
outputs of the FCLO and FCNO are possibly fuzzy numbers 
(in the form of a-level sets). Real numbers are propagated 
internally from layer two to layer four in the FCLO and 
FCNO. This makes the operations in our proposed network less 
time-consuming as compared to the neural networks that can 
also process fuzzy input/output data but require fuzzy signals 
flowing in them. 

IV. SUPERVISED LEARNING ALGORITHM 
In this section, we shall derive supervised learning al- 

gorithms for the proposed neural fuzzy system (FCLO and 
FCNO). These algorithms are applicable to the situations that 
pairs of input-output training data are available. We allow the 
training data (either input or output) to be numerical values 
(vectors), fuzzy numbers, or mixture of them. When the system 
is trained to be a fuzzy controller or fuzzy classifier, the 
input and desired output are usually numerical values. On 
the other hand, when the system is trained to be a fuzzy 
expert system, the input and desired output are usually fuzzy 
numbers (linguistic information). In this case, the fuzzy input- 
output training pairs can be regarded as fuzzy if-then rules 
and the trained neural fuzzy system is like a (condensed) 
fuzzy knowledge base. Consider for example the following 
two training fuzzy if-then rules 

R I :  IF z1 is small and 2 2  is large, THEN y is good, 
R2: IF 2 1  is large and z2 is small, THEN y is bad. 

Then the corresponding two input-output training pairs are 
“(small, large; good)” and “(large, small; bad),” where the 
fuzzy terms are defined by given fuzzy numbers in the form 
of a-level sets. In general, the fuzzy rules for training are 

Rp: IF z1 is X,, and . . . and 2, is X,,,, THEN y is Yp 

where p = 1 ,2 ,  . . . , m, and m is the total number of train- 
ing rules. These fuzzy if-then rules can be viewed as the 
fuzzy input-output pairs, (X,I , X,,, . . . , X,,,; Y,), where p = 
1 ,2 ,  . . . , m. If the input or output are crisp data, the corre- 
sponding fuzzy elements in the training pairs become numer- 
ical elements. 

With the supervised learning algorithm that we shall de- 
velop, the proposed system can learn fuzzy if-then rules from 
numerical data. Moreover, it can learn fuzzy if-then rules 
from experts’ linguistic knowledge represented by fuzzy if- 
then rules. This means that it can learn to represent a set of 
training fuzzy if-then rules using another smaller set of fuzzy 
if-then rules. This is a novel and efficient approach to rule 
combination. The proposed neural fuzzy system can thus be 
used for rule base concentration to reduce the number of rules. 
This provides a useful tool for designing a fuzzy knowledge 
base. A knowledge base is usually contributed by several 
domain experts, so duplication of if-then rules is inevitable. 

We thus usually need to compress the rule base by combining 
similar rules into representative rules. 

Before the learning of the neural fuzzy system, an initial 
network structure is first constructed. Then during the learning 
process, some nodes and links in the initial network are deleted 
or combined to form the final structure of the network. At 
first, the number of input (output) nodes is set equal to the 
number of input (output) linguistic variables. The number of 
nodes in the second layer is decided by the number of fuzzy 
partitions of each input linguistic variable z;, IT(zz)I, which 
must be assigned by the user. The fuzzy weights W X ; j  in 
layer two are initialized randomly as fuzzy numbers. One 
better way is to distribute the initial fuzzy weights evenly 
on the interested domain of the corresponding input linguistic 
variable. As for layer three of the initial network, there are 
II;lT(x;)l rule nodes with the inputs of each rule node coming 
from one possible combination of the terms of input linguistic 
variables under the constraint that only one term in a term 
set can be a rule node’s input. This gives the preconditions 
of initial fuzzy rules. Finally, let us consider the structure 
of layer four in the initial network. This is equivalent to 
determining the consequents of initial fuzzy rules. Let the 
number of nodes in layer four be the same as the number of 
rule nodes in layer three. Also, the fuzzy weights in layer four 
are assigned randomly. The connections from layer-3 nodes to 
layer-4 nodes is one-to-one initially. That is, each layer-3 node 
is connected to its respective layer-4 node. Some of layer-4 
links and nodes will be eliminated properly in the structure 
learning process which will be described in Subsections IV-B. 

With the above initialization process, the network is ready 
for learning. We shall next propose a two-phase supervised 
learning algorithm for our five-layered neural fuzzy system. 
In phase one, a parameter learning scheme is used to adjust 
the fuzzy weights. In phase two, a structure learning scheme is 
used to delete or combine some nodes and links in the neural 
fuzzy system. 

A. Parameter Learning Phase 

A gradient-descent-based backpropagation algorithm pre- 
sented in [33] and [34], is employed to adjust fuzzy weights 
in layer two and layer four of the proposed network. If the 
FCLO is used, the error function to be minimized is 

where Y = U , a [ y p ) , y p ) ]  is the current fuzzy output and 
D = U , a [ d p ) ,  d p ) ]  is the desired fuzzy output. If the FCNO 
is used, the error function to be minimized is 

e = i ( d  - y), (31) 

where y is the current output and d is the desired output. We 
assume that W = U , a [ w ~ ) , w ~ ) ]  is the adjustable fuzzy 
parameter in layer two and layer four. Then to update fuzzy 
weights means to update the parameters tup) and tup). we 
shall next derive the update rules for these parameters layer 
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by layer based on the general learning rule 

(32) w(t + 1) = w(t) + 77 

where w represents w p )  or w g ) ,  and Q is the learning rate. 
Layer 5: If an FCLO is used and the desired output is 

fuzzy number Y, the update rules of wy,!;' and wyj;) are 
derived from (25) and (26) as follows 

The error signal to be propagated to the preceding layer is 

de 
(43) 

Layer 4: In this layer, there is no weights to be adjusted. 
Only the error signals need to be computed and propagated. 
If an FCLO is used, the error signal 6: is derived form (21) 

b5 = - = (y - d) .  
de de  ay?) U: dY - (yl") - d?)) - -- ' (33) 

xu: 
(a) -7- - dwyil ay, a w y p  

Up . (34) as follows -- - ( & Y ) - @ ) )  

2 aC(ep) + e?)) 
d w y p  dyd") dwyj;) 

6: = - de - 

i 

de de 

The error signals to be propagated to the preceding layer are = C(6y + 6 p )  (44) do! - 

where 

(37) 

(38) 
If an FCNO is used and the desired output is numerical 

value y, the update rules of the parameters are derived form 
(27) and (28) as follows 

= 1 (0) 2(YI - d1"')2, ep) = 1. (a) 
JY2 - dd"')2. 

where 

and 

where 

(45) 

(46) 

If FCNO is used, the error signal 6: is derived from (21) 
as follows 

Layer 3: As in layer four, only the error signals need to 
be computed. According to (19), this error signal 6: can be 
derived as 

de de do4 63 =- - -2 
dog - do4 do? 

(48) S,", if 04 = max(u;1,. . . , U",,, 

= { 0, otherwise. 
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where 

and 

When fuzzy weights are adjusted by (33)-(53), two unde- 
sirable situations may happen. That is, the lower limits of the 
a-level sets of fuzzy weights may exceed the upper limits, 
and the updated fuzzy weighted may become nonconvex. To 
cope with these undesirable situations, we perform necessary 
modifications on the updated fuzzy weights to make sure that 
they are legal fuzzy numbers after updating. This process is 
described as follows. 

Procedure: F u u y  Number Restoration: 
Inputs: Fuzzy weights W = U , a [ w p ) , w P ) ]  adjusted 

Outputs: The modified fuzzy weights W = 
by (33)-(53). 

U c u a [ 6 p ) ,  wp)] which are legal fuzzy numbers. 

Step 1. k = 1, 
if wrk) > wp), then wik) - - w2 (‘I 

and wp) = ( k c )  w1 7 

1 w1 w2 . else ,&(‘I = ( k )  and wp) = (‘1 
Step 2. For IC = h - 1 downto 0, do 

if w ( k / h )  > ,,jjy+l/h) then ,&iklh) = A(k+l /h )  , w1 > 
else w(”W = ( k / h )  w1 , 

(a) 

Fig. 4. Illustration of consequent combination. 

A. Term-node combination scheme: Term-node combina- 
tion is to combine similar fuzzy terms in the term sets of 
input and output linguistic variables. We shall present this 
technique on the term set of output linguistic variables. It is 
applied to the term set of input linguistic variables in exactly 
the same way. The whole learning procedure is described as 
follows: 

Step 1. Perform parameter learning until the output error 
is smaller than a given value; i.e., e 5 errordimit, where 
error-limit is a small positive constant. 

Step 2. If diff(WY,,WY,) 5 similar-limit and 
similar-limit is a given positive constant, remove term 
node j with fuzzy weight WU, and its fan-out links, and 
connect rule node j in layer 3 to term node i in layer four 
(see Fig. 4). 

Step 3: Perform the parameter learning again to optimally 
adjust the network weights. 

The term-set combination scheme in Step 2 can automati- 
cally find the number of fuzzy partitions of output linguistic 
variables. 

The operations in Step 2 can be equally applied to the term 
set of input linguistic variables. 

B. Rule combination scheme: After the fuzzy parameters 
and the consequents of the rule nodes are determined, the 
rule combination scheme is performed to reduce the number 
of rules. The idea of rule combination is easily understood 
through the following example. Consider a system contains 
the following fuzzy if-then rules 

RI:  IF 21 is small and 22 is small, THEN y is good, 
R2: IF 21 is medium and 22 is small, THEN y is good, 
RJ: IF 21 is large and 5 2  is small, THEN y is good 

and 
if w p l h )  < cp+l/h), then &?Ih) = w2 

else @ / h )  = ( k l h )  w2 . 
Step 3. Output W ,  and stop. 

where the fuzzy partitions of input linguistic variable 51 are 
“small,” “medium,” and “large.” The three rules RI ,  R2 and 
RJ can be merged to one rule as follows 

R: IF 2 2  is small, THEN y is good. 

That is, the input variable 51 is not necessary in this SitUa- 
tion. The conditions for applying rule combination has been 
explored in [301 and are given as follows. 

1) These rule nodes have exactly the same consequents. 
2) Some preconditions are common to all the rule nodes, 

that is, the rule nodes are associated with the same term 
nodes. 

B. Structure Leurning Phase 

In this subsection, we propose a structure learning algorithm 
for the proposed neural fuzzy system to reduce its node and 
link number. This structure learning algorithm is divided into 
two parts: One is to merge the fuzzy terms of input and output 
linguistic variables (term-node combination). The other is to 
do rule combination to reduce the number of rules. We shall 
discuss these two parts separately in the following. 
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Illustration of rule combination. Fig. 5. B 

Input 

Fig. 6. The membership functions of the input linguistic value “very small” 
(Xl), “small” ( X 2 ) ,  ‘‘large’’ ( X 3 )  in Example 1 .  

3) The union of other preconditions of these rule nodes 
composes the whole terms set of some input linguistic 
variables. 

If some rule nodes satisfy these three conditions, then these 
rules can be combined into a single rule. Another example of 
rule combination is shown in Fig. 5. 

The following simple examples illustrates the performance 
of the proposed supervised learning algorithm on the FCLO. 
One practical application of this technique is to do rule base 
concentration in fuzzy rule base. It can effectively find a small 
set of representative rules from a bunch of fuzzy if-then rules 
by removing redundancy and finding similarity. One practical 
example of rule base concentration will be given in Section VI. 

Example 1: Consider the following three fuzzy if-then 
rules for training 

RI:  IF z is very small (Xl) ,  THEN y is very large (Dl) ,  
Rz: IF z is small (X2), THEN y is large (D2), 
RJ: IF z is large (X3), THEN y is small (D3), 

where the fuzzy numbers “small”, “large”, “very small” are 
given in Fig. 6. Because input and desired output are linguistic, 
an FCLO is used in this example. According to the initializa- 
tion process, we set up a FCLO with two layer-2 nodes and 
two layer-4 nodes (and thus two layer-3 (rule) nodes). Fig. 
7 shows the learning curves. The error tolerance is 0.0001 
and the number of a-cuts is 6. After supervised learning, the 
fuzzy outputs of the learned FCLO and the corresponding 
desired outputs are shown in Fig. 8. The figure shows that 
they match closely. The two learned (representative) fuzzy 

iterations 

Fig. 7. The learning curve in Example 1. 

Dsired (-l/Actual(..) output 

Fig. 8. The actual fuzzy outputs, Y1, Y2, Y 3  of the learned neural fuzzy 
system and the corresponding desired fuzzy outputs, D l I D 2 , D 3  in Example 
1. 

rules after learning (condensing) are 

IF z is WX1, THEN y is WY1, 
IF z is WX2, THEN y is WY2 

and 

where the fuzzy weights after learning are shown in Fig. 9. For 
illustration, Figs. 10 and 11 show the change of fuzzy weights 
in the learning process. Hence the original three fuzzy rules 
have been condensed to two rules, and these two sets of fuzzy 
rules represent equivalent knowledge. 

Example 2: In this exampie, we train an FCLO with five 
training fuzzy number pairs shown in Fig. 12. In this figure, the 
stacked rectangles represent different a-level sets. Five level 
sets corresponding to a = 0,0.25,0.5,0.75,1 are used for 
each fuzzy number. In the initial FCLO, there are four nodes 
in each of layers 2,3, and 4. That is, there are four fuzzy rules 
initially. After the structure and parameter learning, we obtain 
an FCLO containing three fuzzy rules (i.e., there are three 
nodes in each of layers 2, 3, and 4). Fig. 13 shows the learned 
fuzzy weights. To examine the generalization capability of the 
trained FCLO, we present three novel fuzzy numbers to its 
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Weight X (-)/Weight Y (..) 

Fig. 9. The learned fuzzy weights of the FCLO in Example 1. 

The change in Weights WXl(..), WXZ(-) 

Fig. 10. Time evolving graph of fuzzy weights WXI, W X 2  during the 
learning process in Example 1. 

The change in Weights WYl(..), WYZ(-) 

Fig. 11. 
learning process m Example 1. 

Time evolving graph of fuzzy weights W Y 1 ,  WY2 during the 

input nodes for testing. The results shown in Fig. 14 (the 
dashed rectangles) indicate the good generalization capability 
of the learned FCLO. 

l a  
0 0.2 0.4 0.6 0.8 1 

Inputs x 

Fig. 12. 
Example 2. 

The training fuzzy pairs ( X , Y )  in the form of a-level sets in 

1 -  

0.8 - 

0.6 - s ’ 0.4 - 

4.2  0 0.2 0.4 0.6 0.8 I 

Weight X 

Fig. 13. The learned fuzzy weights in Example 2. 
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Inputs x for testing 

Fig. 14. Generalization test of the learned neural fuzzy system in Example 2. 

V. REINFORCEMENT LEARNING WITH FUZZY CRITIC SIGNAL 
In the previous section, we considered the supervised learn- 

ing of the proposed neural fuzzy system and assumed that 
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membership value 

-1 0 

Fig. 15. An example of fuzzy reinforcement signals. 

the precise “target” output for each input pattern was always 
available; however, in some real-world applications, precise 
training data are usually difficult and expensive to obtain. In 
this section, we extend the supervised learning of the pro- 
posed system to reinforcement learning. In the reinforcement 
learning problem, we get only evaluative feedback (called 
the reinforcement signal) from the environment. Because the 
reinforcement signal is only evaluative and not instructive, 
reinforcement learning is sometimes called “learning with a 
critic” as opposed to “learning with a teacher” in supervised 
learning. 

Conventionally, the reinforcement signal is regarded as a 
real number. For example, the reinforcement signal, r ( t ) ,  can 
be one of the following forms: 1) a two-valued number, 
~ ( t )  E {-l ,O},  such that r ( t )  = 0 means “a reward” 
and r ( t )  = -1 means “a penalty”; 2) a multivalued dis- 
crete number in the range [-1, 01, for example, ~ ( t )  E 
{-1, -0.25, -0.5, -0 .25,O) which corresponds to different 
degrees of reward or penalty; 3) a real number, r( t )  E [- 1,0], 
which represents a more detailed and continuous degrees of 
reward or penalty. 

The reinforcement signal given by the external environment 
(e.g., an expert), however, may be fuzzy feedback information 
such as “good,” “very good,’’ “bad,” “too bad.” This is 
true especially in the human-iterative learning environment, 
where human instructor is available. We call the reinforcement 
learning problem with fuzzy critic feedback as the fuzzy 
reinforcement learning problem. In this section, we shall attack 
this problem by considering the reinforcement signal R(t) as a 
fuzzy number in the form of a-level sets. We also assume that 
R(t) is the fuzzy signal available at time step t and caused by 
the input and action chosen at time step t - 1 or even affected 
by earlier inputs and actions. Namely, the reinforcement signal 
is a fuzzy number such that 

where 

-1 5 defuzzifier(R1) 5 defuzzifier(R2) 
< - e . . 5 defuzzifier(R,) 5 0 (55) 

where defuzzifier( R(t))  represents discrete degree of reward 
or penalty. For example (see Fig. 15), we may have 
R(t) €(very bad, bad, good, very good). 

In the reinforcement learning problems, it is common to 
think explicitly of a network functioning in an environment. 

- 
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The environment supplies the inputs to the network, receives 
its output, and then provides the reinforcement signal. There 
are several different reinforcement learning problems, depend- 
ing on the nature of environment: 

Class I: In the simplest case, the reinforcement signal is 
always the same for a given input-output pair. Thus there is 
a definite input-output mapping that the network must learn. 
Moreover, the reinforcement signals and input patterns do not 
depend on previous network outputs. 

Class II: In a stochastic environment, a particular input- 
output pair determines only the probability of positive rein- 
forcement. This probability is fixed for each input-output pair 
and again the input sequence does not depend on past history. 

Class IIk In the most general case, the environment may 
itself be governed by a complicated dynamical process. Both 
reinforcement signals and input patterns may depend on the 
past history of the network outputs. 

If a reinforcement signal indicates that a particular output is 
wrong, it gives no hint as to what the right answer should be; 
in terms of a cost function, there is no gradient information. 
It is therefore important in a reinforcement learning network 
for there to be some source of randomness in this network, 
so that the space of possible outputs can be explored until a 
correct value is found. This is usually done by using stochastic 
units. Several approaches have been proposed for the above 
three different classes of reinforcement learning problems. 
Barto and Anandan [12] proposed the associative reward- 
penalty algorithm AR-P,  which is applicable to Class I and 
11 problems. Its essential ingredient is the stochastic output 
unit. Another approach to reinforcement learning involves 
modeling the environment with an auxiliary network, which 
can then be used to produce a target for each output of 
the main network 1171, [35], [36]. This scheme reduces the 
reinforcement learning problem to a two-stage supervised 
learning problem with known targets. This approach can be 
used to resolve reinforcement learning problems of Class 
I and 11, and the general idea of this separate modeling 
network can be also applied to Class 111 problems. Another 
approach aiming at solving Class 111 reinforcement learning 
problems is “learning with predictor.” In Class III problems, 
a reinforcement signal may only be available at a time long 
after a sequence of actions has occurred. To solve the long 
time-delay problem, prediction capabilities are necessary in 
a reinforcement learning system. In this scheme, a predictor 
(critic) receives the raw reinforcement signal T from the 
environment and feeds a processed signal ? on to the main 
network. The i signal represents an evaluation of the current 
behavior of the main network, whereas T typically involves 
the past history. Recently, more and more researchers devote 
the reinforcement learning problems using this method [lo], 
[12]-[15]. In this paper, we also use this scheme in our 
reinforcement learning model. 

A. Architecture of Reinforcement Learning Model 

The proposed reinforcement learning model, as shown in 
Fig. 16, integrates two previously proposed five-layered net- 
works (FCLOs or FCNOs developed in Section 111) into a 
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Predictor 

Fig. 16. The proposed fuzzy reinforcement learning system. 

learning system. One (FCLO or FCNO) serving as the action 
network can choose a proper action or decision according 
to the current input. The action network acts as a fuzzy 
controller. The other (FCLO) serving as the evaluation network 
performs single or multistep prediction of the external fuzzy 
reinforcement signal. The evaluation network acts as a fuzzy 
predictor. The fuzzy predictor provides the action network 
with more informative and beforehand internal reinforcement 
signal for learning. Because the reinforcement signal is a fuzzy 
number, an FCLO is used for fuzzy predictor. The action 
network can be FCLO or FCNO depending on the actual 
requirement. Structurally, these two networks share the first 
two layers of the original FCNO or FCLO (see Fig. 16). This 
means that they partition the input space in the same way. 

We distinguish two kinds of prediction-learning problems 
for the fuzzy predictor. In the single-step prediction problems, 
all information about the correctness of each prediction is 
revealed at once. In the multistep prediction problems, cor- 
rectness is not revealed until more than one time step after 
the prediction is made, but partial information relevant to its 
correctness may be revealed at each time step. In the single- 
step prediction problems, data naturally comes in observation- 
output pairs; these problems are ideally suited to the pairwise 
supervised learning approach. We shall discuss these problems 
in Subsection V-B. For the multistep prediction problems, we 
use the temporal difference (TD) prediction technique, which 
is a class of incremental learning procedures introduced by 
Sutton [ll]. The main characteristic of this technique is that 
they learn from successive predictions, whereas in supervised 
learning methods, learning occurs only when the difference 
between the predicted outcome and actual outcome is revealed. 
Hence the learning in TD does not have to wait until the actual 
outcome is known and can update its parameters at each time 
step. We shall explore these problems in our proposed model 
in Subsection V-C. 

For the action network, the reinforcement learning algorithm 
allows its output nodes to perform stochastic exploration. 
With the internal fuzzy reinforcement signals from the fuzzy 
predictor, the output nodes of the action network can perform 
more effective stochastic searches with a higher probability of 
choosing a good action as well as discovering its output error 
accurately. The detailed learning procedure will be discussed 
in the following subsections. 

In a word, the architecture of the proposed reinforcement 
learning model schematically shown in Fig. 16 has three 
components: 

The action network maps a state vector into a recom- 
mended actions, Y or y, using FCLO or FCNO. 
The evaluation network (predictor) maps a state vector 
and an external fuzzy reinforcement signal into a pre- 
dicted fuzzy reinforcement signal which indicates state 
goodness. This is also used to produce internal reinforce- 
ment signal. 
The stochastic unit using both Y (or y) F d  the internal 
reinforcement signal to produce an action Y (or y), which 
is applied to the environment. 

Since the action network and the evaluation network are in 
fact the FCLO or FCNO introduced in Section 111, their node 
operations in five layers are the same as those in the original 
structure. Let us now describe the operations in the stochastic 
unit in Fig. 16. 

To estimate the gradient information of error function in a 
reinforcement learning network, there needs to be some source 
of randomness such that the space of possible output can be 
explored to find a correct value. Thus, the stochastic unit is 
necessary for the action network. In estimating the gradient 
information, the output Y(y) of the action network does not 
directly act on the environment. Instead, the stochastic unit 
uses the predicted fuzzy reinforcement signal P(t )  of the 
evaluation network and the action Y(y) recommended by the 
action network to stochastically generate an attual action Y (5) 
acting on the environment. The actual action Y (9) is a random 
variable with mean Y(y) and variance cr(t). The variance (or 
width) a( t )  representing the amount of exploration is some 
nonnegative, monotonically decreasing function of P(t ) .  In 
our model, a(t)  is chosen as 

(56) 
2k 

a(t)  = ~ - k, 1 + e X P ( t )  

p ( t )  = defuzzifier(P(t)) (57) 

where X is a search-range scaling constant which can be simply 
set to 1, and P(t )  is the predicted fuzzy reinforcement signal 
used to predict R( t + 1) when the environment state is X (t) or 
z(t) .  The magnitude of a(t)  is large when p ( t )  is low. Because 
we restrict the highest degree of reward to p ( t )  = 0, the value 
of a(t)  is 0 whenp(t) = 0. The action Y, or y, is what actually 
applied to the environment. The stochastic perturbation in the 
suggested approach leads to a better exploration of action 
space and better generalization ability. 

Once the amount of exploration, cr( t), has been decided, the 
next problem is how to generate the actual output. Because 
the output of the learning system can be fuzzy number or 
numerical number, we discuss these two situations separately 
in the followings. 

I) Numerical Stochastic Unit: When the action is a numer- 
ical value y (i.e., a FCNO is used as the action network), the 
actual output 6 of the stochastic unit can be set as 
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Fig. 17. Illustration of fuzzy stochastic exploration. 

That is, $(t) is a normal or Gaussian random variable with 
variance o(t), mean y(t) ,  and the density function 

(59) 

The actual output y can be also set simply as a uniform 
random variable with width 20, mean y, and the density 
function 

(60) 
-, if (y - 0) I Y I (y + a) ,  

f(Y) = 2a 
{ l  0, otherwise. 

2)  Fuzzy Stochastic Unit: When the action is a fuzzy num- 
ber Y = U, a[y?),yp’] (i.e., a FCLO is used as the action 
network), the fuzzy stochastic unit generates a fuzzy action, 
Y = U, a[$?), $?)I, based on the amount of exploration a. 
The parameter $p)(yp)) is set as a uniform random variable 
with mean y p ) ( y p ) ) ,  width 20, and the density function as 
the same as above. After having decided these parameters, yp’ 
and yp), we must then maintain the convex property of the 
fuzzy action. We propose the following procedure to complete 
the fuzzy stochastic exploration. In this procedure, the notation 
h is the number of quantized membership grade. As shown in 
Fig. 17, the actual fuzzy action Y must falls in the shadow 
region randomly in the fuzzy stochastic exploration. 

Procedure: Fuzzy Stochastic Exploration: 
Input: Y = ~ , a [ y ~ ) , y ~ ) l .  
output: Y = U”a[yp),gp)]. 

Step 1. For k = 1 to h, find $ik)  such that 

Step 3. Output Y and stop. 
Like the supervised learning process introduced in Section 

IV, we need to perform two kinds of initialization: structure 
initialization and parameter initialization before performing the 
reinforcement learning algorithm. The initialization process 
is exactly the same as that for the supervised learning (see 
Section IV). It should be done on both the action network 
and the evaluation network. After the initialization process, 
the reinforcement learning algorithms are performed on both 
networks. These learning algorithms for both the action net- 
work and the evaluation network are derived below. Again, 
we discuss the single step and multistep prediction problems 
separately in the following subsections. 

B. Leaming Algorithm for Single-Step Prediction Problems 

In this subsection, a reinforcement learning algorithm is 
proposed to solve the Class I and Class II reinforcement 
learning problems described previously using a single-step 
fuzzy predictor. The function of the single-step fuzzy predictor 
is to predict the external fuzzy reinforcement signal, R(t + 1) , 
one time step ahead, that is, at time t. Here, R(t + 1) is the 
external fuzzy reinforcement signal resulting from the inputs 
and actions chosen at time step t ,  but it can only be known 
at time step t + 1. If the fuzzy predictor can produce a fuzzy 
signal P(t )  at time step t ,  which is the prediction of R(t + l), 
a better action can be chosen by the action network at time 
step t ,  and the corresponding learning can be performed in the 
action network at time step t + 1 upon receiving the external 
reinforcement signal R(t + 1). 

Basically, the reinforcement learning of a single-step fuzzy 
predictor is simply a supervised learning problem. The goal is 
to minimize the squared error 

e = + C [ ( p p ) ( t )  - r p ) ( t  + 1>>2 
LI 

+ (p?’(t) - r p ( t  + 1))2] (61) 

where R(t + 1) = U,a[rp)(t + l) ,r?)(t  + l)] represents 
the desired fuzzy output, and P ( t )  = U,a[pp’(t),p?)(t)] 
is the current predictor output. Similar to the supervised 
learning algorithm developed for FCLO in Subsection IV-A, 
we can derive the learning algorithm for the single-step fuzzy 
predictor. The update rules are the same as (33)-(53) if Y is 
replaced by P(t )  and D is replaced by R(t + 1). 

We next develop the learning algorithm for the action 
network. The goal of the reinforcement learning algorithm is 
to adjust the parameters wp’ and wp) of the action network 
such that the fuzzy reinforcement signal R is maximum; that is 

dr 
A W N -  

dW 

where w = wp) or wp) and r = defuzzifier(R). There are 
two different reinforcement learning algorithms for the action 
network depending on either FCNO or FCLO being used as the 
action network. We describe these two reinforcement learning 
algorithms for the action network in the followings. 
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numerical A - when p (  t )  # r( t + 1). Then we can define the error function as 
output Y Y  Y 

- _ - - - - _ _ _ _ _  V , V n v e = c[(yp' - S',-')2 + ( y p )  - jjp')']. (67) 

reinforcement 
signal 

4 
r ( t+ l )  

4 
0 

(b) 
Fig. 18. The concept of deciding desired outputs in the stochastic unit. 

We first derive the reinforcement learning algorithm for 
the action network with numerical output (FCNO). In this 
situation, to determine dr ldw,  we need to know dr ldy ,  
where y is the output of the action network. Since the fuzzy 
reinforcement signal does not provide any hint as to what the 
right answer should be in terms of a cost function, the gradient, 
dr ldy,  can only be estimated using the stochastic unit. 

The output of the single-step predictor, P ( t ) ,  is a predicted 
fuzzy reinforcement signal for the output of the action network, 
y(t), and the external fuzzy signal R(t + 1) is a critic score 
from environment for actual output y(t) of the stochastic 
unit. From these values, we can construct a desired target 
output jj(t). Note that we restrict the values of defuzzified 
reinforcement signals, P ( t )  and R(t + I) , in the range [ - 1, 0] , 
that is, -1 5 p ( t )  5 0 and -1 5 r ( t  + 1) 5 0, where 
p ( t )  = defuzzifier(P(t)) and r(t+l) = defuzzifier(R(t+l)). 
From Fig. 18, we find that the expected target output g should 
fall on the position representing that the value of reinforcement 
signal is 0. Hence, if p ( t )  # r ( t  + l),  we let 

Then, if p ( t )  # r ( t  + l), we can define 

e = +(y - iJ2. (64) 

When p ( t )  = ~ ( t  + l ) ,  the weights are not changed, that is, 
delay = 0. With this error function, the learning rules of 
the FCNO-based action network can be derived. They are the 
same as (33)-(53) if d is replaced by ij. 

When the output of the action network is a fuzzy number Y, 
we can derive the learning algorithm in a similar way as we 
did in the above. We decide an expected fuzzy target output 
Y = u,a[g',-',~p)] as 
- 

a 

When p ( t )  = r ( t  + l), the weights are not changed, that is, 
d e l d y p )  = 0 and de/dyp)  = 0. With this error function, the 
learning equations of the FCLO-based action network are the 
same as (33)-(53) if D is replaced by L. 

There is another method to estimate the gradient information 
[lo]. This method does not construct the expected target 
output, but finds the gradient direction of the error function. 
With this method, the output error gradient in (33)-(53) for 
FCNO can be replaced by 

and for FCLO, the gradient information is estimated by 

where 1' is the internal reinforcement signal sent to the action 
network. In (68), r( t  + 1) is the actual fuzzy reinforcement 
feedback for the actual action, jj(t), and p ( t )  is the predicted 
fuzzy reinforcement signal for the expected action, y(t). The 
ratiole behind the above equations is described as follows. If 
r ( t  + 1) > p ( t ) ,  then y(t) is a better action than the expected 
one, y(t), and y(t) should be moved closer to jj(t). That is, 
this is a rewarding event when F ( t +  1) > 0. If r ( t+ 1) < p ( t ) ,  
then y(t) is a worse action than the expected one, and y(t) 
should be moved farther away from y(t). That is, this is a 
penalizing event when 1'(t + 1) < 0. 

In the proposed system, the action network and the evalu- 
ation network are trained together, however, since the action 
network relies on accurate prediction of the evaluation net- 
work, it seems practical to train the fuzzy predictor first, at 
least partially, or to let the fuzzy predictor have a higher 
learning rate than the action network. Besides the above pa- 
rameter learning phase, the structure learning phase described 
in Section IV is executed to complete the whole learning 
process. 

C. Leaming Algorithm for  Multistep Prediction Problems 
The algorithms described in the last subsection work under 

the assumption that the environment returns a fuzzy reinforce- 
ment signal in response to every single action acting on it. 
There are many applications in which the learning system 
receives evaluation of its behavior only after a long sequence 
of actions; that is, both reinforcement signals and environment 
states may depend arbitrarily on the past history of the network 
output. This kind of reinforcement scheme is called delayed 
reinforcement. In this section we shall discuss how the problem 
of learning with delayed reinforcement can be solved using 
the multistep fuzzy predictor. 
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In the delayed reinforcement learning problem, the temporal 
credit assignment problem becomes severe because we have 
to assign credit or blame individually to each action in a 
sequence for an eventual success or failure. The solution to the 
temporal credit assignment problem is to design a multistep 
fuzzy predictor which can predict the reinforcement signal at 
each time step. To achieve this purpose, the technique based on 
the temporal difference (TD) method is used. The TD method 
is a class of incremental learning procedures introduced by 
Sutton [ 111. The main characteristic of the TD method is that 
they learn from successive predictions, whereas in the case of 
supervised learning, learning occurs only when the difference 
between the predicted outcome and the actual outcome is 
revealed. Hence the learning in TD does not have to wait until 
the actual outcome is known, and can update its parameters 
within a trial period. In the proposed reinforcement learning 
system, we use TD methods in the evaluation network to 
make it function as a multistep fuzzy predictor. We shall dis- 
cuss three different cases of reinforcement learning problems 
below. Note again that because the reinforcement signal is 
linguistic, we use an FCLO as the multistep fuzzy predictor. 

Case I: Prediction of final fuzzy outcome. Assume we 
are given the fuzzyhumerical input sequences of the form, 
X ( l ) , X ( z ) , . . . , X ( m ) ,  where each X ( t )  is an input vector 
of fuzzy numbers or real numbers available at time step t 
from the environment and the fuzzy reinforcement signal is 
R(m + 1) at time step m + 1. For each input sequence, 
the fuzzy predictor produces a corresponding sequence of 
predictions P ( l ) , P ( 2 ) , . . . , P ( m ) ,  each of which is an es- 
timate of R(m + 1). We assume that the fuzzy weights 
W = U,cr[wp', w?)] in the evaluation network are updated 
only once for each complete input sequence and does not 
change during a sequence. After a complete sequence has been 
processed, w(wp' or w?') is changed by the sum of all the 
sequence's increments 

m 

w t w + Aw(t). 
t = l  

Because each P ( t )  is an estimate of R(m + l ) ,  the error 
function based on supervised learning approach in each time 
step t is 

and 

a 

- $'(m + 1 ) ) 2 ]  

de 
Aw(t) oc -- 

dw(t).  

Thus, the update rules of the Aw(t) are derived as 

(73) 

= (pl"'(t)  - $'(m + 1))- dP?)(t)  (74) 
dw?'(t) ' 

In either case, note that all Aw(t) in (74) and (75) depend 
critically on R(m + l ) ,  and thus cannot be determined until 
the end of the sequence when R(m + 1) becomes known. 
Thus, all observations (inputs) and predictions made during a 
sequence must be remembered until the end, and then all the 
Aw(t)'s can be computed. 

In fact, (74) and (75) can be computed incrementally as 
shown below. First, consider the following facts 

m 

~ p ' ( m  + 1) - p v ' ( t )  = c ( p p ' ( k  + 1) - p p ' ( k ) ) ,  (76) 

(77) 

k = t  
m 

$'(m + 1) - p?'(t) = C ( p ? ' ( k  + 1) - p?' (k) )  
k = t  

wherepp'(m+l) = r p ' ( m + l )  andpp)(m+l)  = ~?'(m+ 
1). By replacing r?'(m+l)--pm'(t) and r?'(m+l)-p?'(t) 
by (76) and (77), (74) and (75) are transformed to 

which can be computed incrementally at each time step. The 
procedure given by (78) and (79) is the special case of the TD 
procedure, called TD(l), in which all of the predictions are 
altered to an equal extent. It can be extended to the following 
general form 

in which alterations to the predictions of input vectors occuring 
k steps in the past are weighted according to At-' for 0 5 
X 5 1. The formulas in (80) and (81) are called the TD(X) 
procedure proposed by Sutton in [ 1 11. In the extreme case that 
X = 0, called TD(O), the weight increment is determined only 
by its effect on the prediction associated with the most recent 
observation 
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Case 2: Prediction of finite cumulative fuzzy outcomes. 
The TD method can be also used to predict a quantity that 
accumulates over a sequence. That is, each step of a sequence 
may incur a cost, and we wish to predict the expected total cost 
over the sequence. In this problem, the predictor output P(t )  
is to predict the remaining cumulative fuzzy cost given the tth 
observation rather than the overall fuzzy cost for the sequence. 
In OUT system, we consider the cost to be the value of the 
reinforcement signal. Let ~ ( t +  1) = ~,a[r?)(t+ 11, r?’(t+ 
l)] denote the actual fuzzy cost incurred between time steps t 
and t +l. We would like P( t )  to be equal to the expected value 
of Z ( t )  = u,a[Z?’(t),Zp)(t)] = ETzt R(k + 1). Thus, 

m 

Z?’( t )  = Cr?’(k  + l), (84) 
k = t  
m 

Z?’(t) = Er?’@ + 1). (85) 
k=t  

The prediction error can be represented in terms of temporal 
difference as 

m 

Z? ’ ( t )  - p ( t )  = r y ( k  + 1) - p‘l“’(t) 
k = t  
m 

k = t  

m 

k = t  
m 

k = t  

and 

p?’(t) = $)(t  + 1) + yp?)(t + 1). (91) 

The mismatch or TD error is the difference between the right 
hand and left hand sides of these equations r?)(t + 1) + 
ypy)(t  + l>,rF)(t + 1) + y p p ) ( t  + 1) and thus the update 
rules are 

- de = -(r?)(t + 1) + yp, ( a )  (t  + 1) 
dwi“’(t) 

a p ( “ ) ( k )  (92) - p P ’ ( t ) )  A t - k L  
t 

k = l  dw,(*)(k)’ 

Once the output error gradient information of the multistep 
fuzzy predictor is obtained using the methods discussed in 
the above three cases, its learning becomes a supervised 
learning problem and thus (33)-(53) in Section IV can be used 
here directly. Note that, the system only receives an external 
reinforcement signal R(m + 1) after a sequence of inputs at 
the time step m + 1. Hence, we can assume that the external 
reinforcement signal R(t)  is zero (nonexisting) at the other 
time steps, that is, R(t) = U,a[O,O], for 2 5 t 5 m. 

As for the action network, the learning algorithm of the 
action network is similar to that derived in Subsection V-B. 
When the output is numerical, we have 

(87) and 

de dr 
ay 

where P ( m  + 1) = U,a[O, 01. Thus, the update rules are 
-- 0: - = ( T ( t  + 1) + yp(t + 1) - P ( t ) ) ( $ ( t )  - de -- 

(95) 
- -(r?)(t + 1) + pl“’( t  + 1) 

aw?) ( t )  = i ( t  + l)(Y(t) - l/(t)). 

Case 3: Prediction of infinite discounted cumulative 
fuzzy outcomes. In this case, P(t )  predicts the discounted 
sum ~ ( t )  = cg0 y k ~ ( t  + IC + 1); i.e., zia’(t) = 
Er=.=, ykr?’(t + k I), Z?’( t )  = Er=.=, y k r ? ) ( t  + k + I), 
where y,O 5 y 5 1, is the discounted rate parameter. If the 
prediction is accurate, we can write 

00 

pr“’(t) = y k r ? ) ( t  + k + 1) 
k=O 

03 

= $)(t  + 1) + y E ykr?)(t  + k + 2) 

= rl“’(t + 1) + yp?)(t + 1) 
k=O 

(90) 

When the output is linguistic, we have 

de dr 

de ar 

-- 0: - = ?(t + l)($?’(t) - yp’(t)), (96) 

(97) 

ay?) ay?) 

ay?) a y p  
-- 0: - = i ( t  + l)(f?’(t) - y?’(t)). 

According to (95), before the external reinforcement signal 
occurs (i.e., r ( t )  = 0), the reinforcement ? sent to the action 
network is the difference between the predicted reinforcement 
signal of the current time step (discounted by y) and the 
predicted reinforcement signal of the previous time step (i.e., 
yp(t+ 1) - p ( t ) ) .  That is, (95) becomes dr/dy = ( y p ( t  + 1) - 
p ( t ) ) ( $ ( t )  - y(t)), where p ( t )  is the predicted reinforcement 
signal for the output y(t) of the action network, and p ( t  + 1) 
is the predicted reinforcement signal for output ~ ( t  + 1). 
Because both external reinforcement signals and input patterns 
depend on the past history, y(t) will influence the predicted 
reinforcement signal p(t + 1) for output y(t + 1); that is, the 
output $(t)  at time step t will influence the output y(t + 1) at 
time step t + 1. Thus, p ( t  + 1) can be viewed as the predicted 
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Fig. 19. The fuzzy reinforcement signals used in Example 3. 

reinforcement signal for the actual output $(t) at time step 
t. From the above description, we know that the value of 
dr/dy is always positive. Namely, if y = 1, increases in 
reinforcement prediction become rewarding events (i.e., P > 0), 
and decreases become penalizing events (i.e.. P < 0). 

When the external reinforcement signal occurs, the situation 
is slightly different. When the external reinforcement signal 
comes at time step t + 1, we let the corresponding predicted 
reinforcement signal, p ( t  + l), be zero. In this situation, (95) 
becomes dr/dy = ( r ( t+  1) - p ( t ) ) ( y ( t )  - y ( t ) ) .  The external 
reinforcement signal r(t+l) is the actual critic score for y, and 
p ( t )  is the predicted reinforcement signal of y ( t ) .  Thus, the 
value of &/ay will be positive. From the above observation, 
we understand that (95)-(97) are appropriate for the action 
network. 

Until now, we have developed the parameter learning algo- 
rithms for the action network and the evaluation network for 
multistep prediction problems. The structure learning in these 
two networks is the same as that described in Section IV for 
supervised learning. The following simple example illustrates 
the proposed fuzzy reinforcement learning model. 

Example 3: In this example, we transform the supervised 
learning problem in Example 1 (in Section IV) to a reinforce- 
ment learning problem. We use the same training data as in 
Example 1 except that we assume the desired outputs are not 
known to the learning system. In this example, we have three 
fuzzy input data as follows 

XI:  z is very small, (the desired output: y is very 

XZ: z is small, (the desired output: y is large (Dz)), 
X3: z is large, (the desired output: y is small (03) )  

where the fuzzy numbers “small,” “large,” and “very large” 
in inputs are shown in Fig. 6, and the fuzzy numbers “very 
large,” “ large,” and “small” in desired outputs (Dl, D2,03) 
are shown in Fig. 8. The actual output El(E2, E3) is supposed 
to equal Dl(D2,03) in Fig. 8. These desired outputs are not 
known to the neural network. Only the reinforcement signal 
defined below is imported to the learning system at each time 
step t 

R(t) = good, if 0.05 5 Error 5 0.5, { bad, if Error >0.5 

where Error = 1/2C, [(z,’:) - d!:’)2 + (xi;) - d!;))2], i = 
1,2,3. The reinforcement signals are shown in Fig. 19. 

very good, if Error < 0.05, 

Expccted (-)/Actual (..) output 

Fig. 20. 
learning in Example 3. 

The desired outputs (E) and actual outputs (Y) after reinforcement 

weight x (-)/weight Y (..) 

The learned fuzzy weights in Example 3. Fig. 21. 

This problem belongs to the single-step prediction problem, 
thus a single-step predictor is required for our proposed 
system. Moreover, owing to the desired linguistic output, the 
procedure of fuzzy stochastic exploration in Subsection V-B is 
used for the system. The simulation results are shown in Figs. 
20 and 21. Fig. 20 indicates that the actual outputs coincide 
the desired outputs quite well. 

VI. ILLUSTRATIVE EXAMPLES 

Two typical examples are presented in this section to show 
the fundamental applications of the proposed neural fuzzy 
system. First, a fuzzified cart-pole balancing problem is used 
to demonstrate the proposed fuzzy reinforcement learning 
model developed in Section V. Second, we apply our fuzzy 
supervised learning model derived in Section IV to a practical 
fuzzy expert system for rule concentration. 

Example 4: Cart-Pole Balancing Problem 
In this example, we apply the proposed fuzzy reinforcement 

learning model to the fuzzified cart-pole balancing system. In 
this system, a pole is hinged to a moter-driven cart that moves 
on rail tracks to its right or its left as shown in Fig. 22. The 
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Membership + 

4 
0 1 Fig. 22. The cart-pole balancing system in Example 4. 

Fig. 23. 
ample 4. 

The membership functions of fuzzy reinforcement signals in Ex- 

pole has only one degree of freedom ( rotation about the hinge 
point). The primary control tasks are to keep the pole vertically 
balanced keep the 

Four state variables are used to describe the system status, 
one control variable represents the force applied to the 

within the rail track boundaries. available after a long sequence of time steps in this failure 
avoidance task, this cart-pole balancing problem belongs to 
the multistep prediction problem discussed in Subsection V-C. 
The fuzzy reinforcement signal is defined as cart. They are 

bad, if lO(t)l > 12degrees or Ix(t)l > 2.4m, e angle of the pole from an upright position (in radian); 
8 angular velocity of the pole (in radiads); 
x horizontal position of the cart’s center (in meters); 

R(t) = otherwise. 

x velocity of the cart (in meter&); 
f the amount of force (N) applied to the cart to move it 

toward left or right. 
The goal of this learning problem is to train the proposed 

reinforcement learning model such that it can determine a 
sequence of forces with proper magnitudes to apply to the cart 
to balance the pole for as long as possible without failure. The 
dynamics of the cart-pole balancing system are modeled by 
the following equations [14] as shown in (98) at the bottom 
of the page and where 
9-9.8 m/s2, acceleration due to the gravity, 
m, 1.0 kg, the mass of the cart, 
m 0.1 kg, the mass of the pole, 
1 0.5 m, the half-pole length, 
pc 0.0005, the coefficient of friction of cart on track, 
p p  0.000002, the coefficient of friction of pole on cart, 
A 0.02, sampling interval. 
The constraints on the variables are -12degrees 5 0 5 

12degrees, -2.4 m 5 x 5 2.4 m, and -10N 5 f 5 10N. 
A more challenging part of this problem is that the only 
available feedback is a reinforcement signal that notifies the 
controller when a failure occurs; that is, either 181 > 12 degrees 
or 1x1 > 2.4 m. Since a reinforcement signal may only be 

The membership function of R(t)  are shown in Fig. 23. 
Because the control action required for the cart-pole balancing 
system is numerical, we use an FCNO as the action network. 
The simulation results shown in Fig. 24 indicate that the 
proposed reinforcement learning model can learn the control 
task in less than 12 trials, where a trial is ended by a failure 
signal. 

This example successfully demonstrates the applicability 
of the proposed technique to the learning problems with 
semantic-level error signal. Such learning problems are usually 
found in the human-machine interactive systems. Currently, 
we are applying the proposed fuzzy reinforcement learning 
technique to the adaptive spoken language acquisition sys- 
tem with semantic-level error feedback for automated call 
routining. 

Example 5: Rule Base Concentration for KBE. 
In this example, we apply an FCLO with supervised learning 

to a practical application, the KBE, for rule concentration. The 
KBE [37] is an expert system that evaluates expert system 
application. In KBE, an expert system decides whether or not 
an application with certain characteristics is a good expert 
system application. Selecting good applications for expert 
system is crucial not only to the success of a particular project, 

qt  + 1) = e( t )  + ne@), 
e(t + 1) = e(t) + Ae(t) 

I ,  - f ( t )  - mae2(t) sinO(t) + p,sgn(i(t)) 
m,+m 

1 4 mcos2 8 ( t )  
3 m , + m  

l [ -  - 

g sin 8 ( t )  + cos 8 ( t )  
= d(t) + A 

x( t  + 1) = x ( t )  + Ai( t ) ,  
i ( t  + 1) = i ( t )  + A?(t) 

f ( t )  + m1[h2(t) sinB(t) - e(t) c o s ~ ( t ) ]  - p,sgn[i(t)] 
m , + m  

= k ( t )  + n 
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Fig. 24. Learning curves of the proposed fuzzy reinforcement learning 
system on the cart-pole balancing problem in Example 4. 

but to the long term view of knowledge-based system work 
which develops in your company. 

In D E ,  inputs of each feature are linguistic terms describ- 
ing the characteristics of the application, and the output of 
KBE is suitability which indicates whether the application of 
the expert system on a domain is good or bad. These features 
are described as follows: 

TABLE I 
THE KBE TRAINING RULES IN EXAMPLE 5 

Membership Membership 

1~~ ~~~ 

Worth: The worth for doing any software project based 
on a payoff of some kinds. 
Employee Acceptance: How will employees react to the 
system? That is, the effects of the system on corporate 
culture. 0 

Solution Available: How good is an existing solution? 0 1 0 1 

Easier Solution: Is there an easier way to solve the 

Teachability: How easily is the skill taught? 
Risk The likelihood of not being able to complete a 
project. 

(a) (b) 

problem? Membership Membership 

Because all the inputs and output are linguistic, we use 
FCLO and supervised learning scheme in Section IV for rule 
base concentration for D E .  We are given 486 fuzzy if-then 
rules from experts in advance. These fuzzy if-then rules and 
the membership functions used for each attribute are illustrated 
in Table I, Fig. 25, and Fig. 26. In Table I, the star (*) means 
“don’t care.” Hence, for example, the first rule in the table in 
fact includes 54 (3 x 3 x 3 x 2) rules. The learned fuzzy logic 
rules and fuzzy weights are shown in Table 11, Figs. 27 and 
28. We use only 13 fuzzy if-then rules to represent the 486 
fuzzy if-then rules in the original knowledge base. 

VII. CONCLUSION 

In this paper, we proposed a neural fuzzy system that 
can process both numerical and linguistic information. The 
proposed system has some characteristics and advantages: 1) 
The inputs and outputs can be fuzzy numbers or numerical 
numbers; 2) The weights of the proposed neural fuzzy system 
are fuzzy weights; 3) Owing to the representation forms of 
the a-level sets, the fuzzy weights, fuzzy inputs, and fuzzy 

0 1 0 1 

(C) (4 
Membership Membershio 

0 1 0 1 

(e) (0 

Fig. 25. The input membership functions for training in Example 5. 

outputs can be fuzzy numbers of any shape; 4) Except the 
input and output layers, numerical numbers are propagated 
through the whole neural fuzzy system; thus the operations in 
the proposed neural fuzzy system are not time consuming and 
the required memory capacity is small. The proposed system 
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Membership 

0 1 

Fig. 26. The output membership functions for training in Example 5. 

TABLE I1 
THE LEARNED Fuzzy RULES IN EXAMPLE 5 

Membership 

0 1 

(b) 

MembershiD Memhershb 

0 1 

(c) 

0 1 

(d) 
Membership 

0 1 

(e)  

0 1 

(0 
Fig. 27. The learned input fuzzy weights in Example 5. 

has both supervised and reinforcement learning capabilities. 
With supervised learning, the proposed system can be used 
for a fuzzy expert system, fuzzy system modeling, or rule 
base concentration. With reinforcement learning, the proposed 
system can be used as an adaptive fuzzy controller. It can 

Fig. 28. The learned output fuzzy weights in Example 5. 

learn proper fuzzy control rules and membership functions 
through experts’ linguistic instructions. Computer simulations 
satisfactorily verified the performance of the proposed neural 
fuzzy system. 
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