
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995 169

A Neural Fuzzy System with
Linguistic Teaching Signals

Chin-Teng Lin, Member, ZEEE, and Ya-Ching Lu

Abstract-A neural fuzzy system learning with linguistic teach-
ing signals is proposed in this paper. This system is able to process
and learn numerical information as well as linguistic information.
It can be used either as an adaptive fuzzy expert system or
as an adaptive fuzzy controller. At first, we propose a five-
layered neural network for the connectionist realization of a fuzzy
inference system. The connectionist structure can house fuzzy
logic rules and membership functions for fuzzy inference. We use
a-level sets of fuzzy numbers to represent linguistic information.
The inputs, outputs, and weights of the proposed network can be
fuzzy numbers of any shape. Furthermore, they can be hybrid of
fuzzy numbers and numerical numbers through the use of fuzzy
singletons. Based on interval arithmetics, two kinds of learning
schemes are developed for the proposed system: fuzzy supervised
learning and fuzzy reinforcement learning. They extend the
normal supervised and reinforcement learning techniques to the
learning problems where only linguistic teaching signals are
available. The fuzzy supervised learning scheme can train the
proposed system with desired fuzzy input-output pairs which
are fuzzy numbers instead of the normal numerical values. With
fuzzy supervised learning, the proposed system can be used for
rule base concentration to reduce the number of rules in a fuzzy
rule base. In the fuzzy reinforcement learning problem that
we consider, the reinforcement signal from the environment is
linguistic information (fuzzy critic signal) such as “good,” “very
good,” or “bad,” instead of the normal numerical critic values
such as “0” (success) or “-1” (failure). With the fuzzy critic
signal from the environment, the proposed system can learn
proper fuzzy control rules and membership functions. We discuss
two kinds of fuzzy reinforcement learning problems: single-
step prediction problems and multistep prediction problems.
Simulation results are presented to illustrate the performance and
applicability of the proposed system.

I. INTRODUCTION
OME observations obtained from a system are precise, S while some cannot be measured at all. Namely, two kinds

of information are available. One is numerical information
from measuring instruments and the other is linguistic informa-
tion from human experts. Some data obtained in this manner
are hybrid; that is, their components are not homogeneous but
a blend of precise and fuzzy information.

Neural networks adopt numerical computations with fault-
tolerance, massively parallel computing, and trainable prop-
erties; however, numerical quantities evidently suffer from a
lack of representation power. Therefore, it is useful for neural
networks to be capable of symbolic processing. Most learning

Manuscript received July 8, 1994; revised December 9, 1994. This work
was supported by the National Science Council, Republic of China, Contract

The authors are with the Department of Control Engineering, National

IEEE Log Number 9410129.

NSC 82-0408-E-009-429.

Chiao-Tung University, Hsinchu, Taiwan, Republic of China.

methods in neural networks are designed for real vectors.
There are many applications that the information cannot be
represented meaningfully or measured directly as real vectors.
That is, we have to deal with fuzzy information in the learning
process of neural networks. Fuzzy set is a good representation
form for linguistic data. Therefore, combining neural networks
with fuzzy set could combine the advantages of symbolic and
numerical processing. In this paper, we propose a new model
of neural fuzzy system that can process the hybrid of numerical
and fuzzy information.

In general, the learning methods can be distinguished into
three classes: supervised learning, reinforcement learning, and
unsupervised learning. In supervised learning, a teacher pro-
vides the desired objective at each time step to the learning
system. In reinforcement learning, the teacher’s response is
not as direct, immediate, and informative as that in supervised
learning and serves more to evaluate the state of system. The
presence of a teacher or a supervisor to provide the correct
response is not assumed in unsupervised learning, which
is called “learning by observation.” Unsupervised learning
does not require any feedback, but the disadvantage is that
the learner cannot receive any external guidance and thus
is inefficient, especially for the applications in control and
decisionmaking. Hence, in this paper we are interested in
the supervised and reinforcement learning capabilities of the
neural fuzzy system.

Most of the supervised and reinforcement learning meth-
ods of neural networks, for exaxnple the perception [l], the
BP (backpropagation) algorithm [2] and [3], and the AR-p
algorithm [4], process only numerical data. For supervised
learning problems, some approaches have been proposed to
process linguistic information with fuzzy inputs, fuzzy outputs,
or fuzzy weights. Ishibuchi and his colleagues have proposed
a series of approaches and applications with the capacity of
processing linguistic input or/and linguistic output [5]-[7].
In their methods, the weights, inputs, and outputs of the
neural network are fuzzified using fuzzy numbers represented
by a-level sets. They derived learning algorithms from a
cost function defined by the a-level sets of actual fuzzy
outputs and target fuzzy outputs. Hayashi et al. [8] presented a
similar method with fuzzy signals and fuzzy weights by using
triangular fuzzy numbers. A learning algorithm was derived
from a nonfuzzy cost function. Hayashi et al. [9] also proposed
a similar architecture of neural network with fuzzy weights
and fuzzy signals, but the learning algorithm was complete
different from the proposed methods of Ishibuchi. In their
method, the BP learning algorithm is directly fuzzified based

1063-6706/95$04.00 0 1995 IEEE

I70 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

on a fuzzy-valued cost function; i.e., the rule for changing
fuzzy weights is defined by fuzzy numbers.

The common points of the above approaches are summa-
rized as follows: 1) The a-level sets of fuzzy numbers are used
to represent linguistic inputs, linguistic outputs, fuzzy weights,
or fuzzy biases. 2) The operations in neural networks are per-
formed by using interval arithmetic operations for a-level sets.
3) Fuzzy numbers are propagated through neural networks.
4) Fuzzy weights are usually triangular or trapezoidal fuzzy
numbers. Because the real number arithmetic operations in the
traditional neural networks are extended to interval arithmetic
operations for a-level sets in the above fuzzified networks,
the computations become complex (e.g., multiplication of
interval) and time-consuming. Moreover, since fuzzy numbers
are propagated through the whole neural network, the time of
computations and the required memory capacities are 2h times
of those in the traditional neural networks, where h represents
the number of quantized membership grade. In this paper, we
attack this problem by allowing numerical signals to flow in
the proposed network internally and reach the same purpose
of processing fuzzy numbers.

For reinforcement learning problems, almost all existing
learning methods of neural networks focus their attention on
numerical evaluative information [4], [101-[22]. Inspired by
Klopf s [22] work and earlier simulation results [19], Barto
and his colleagues used neuron-like adaptive elements to solve
difficult learning control problems with only scalar reinforce-
ment signal feedback [14]. They also proposed the associative
reward-penalty (AR-P) algorithm for adaptive elements called
AR-P elements [12]. Several generalizations of AR-P al-
gorithm have been proposed [20]. Williams formulated the
reinforcement learning problem as a gradient-following pro-
cedure [18], and he identified a class of algorithms, called
REINFORCE algorithms, that possess the gradient ascent
property; however, these algorithms still do not include the
full AR-P algorithms. Recently, Berenji and Khedkar [15]
proposed a fuzzy logic controller and its associated learning
algorithm. Their architecture extends Anderson’s method [161
by including a priori control knowledge of expert operators in
terms of fuzzy control rules. Lin and Lee [lo] also proposed a
connectionist architecture, called R”-FLCS, for solving vari-
ous reinforcement learning problems. The R”-FLCS can find
proper network structure and parameters simultaneously and
dynamically. All the above reinforcement learning schemes
assume scalar critic feedback (scalar reinforcement signal)
from the environment. In this paper, we shall attack the fuzzy
reinforcement learning problem where only fuzzy critic signal
(e.g., “good,” “very good,” “bad.”) is available. This problem
is much closer to the expert-instructing learning system in real
world than the original one with scalar critic signal.

The objective of this paper is to explore the approaches
to supervised learning and reinforcement learning of neural
fuzzy systems which receive only linguistic teaching signals.
At first, we propose a five-layered feedforward network for
the network realization of a fuzzy inference system. This
connectionist structure can house fuzzy logic rules and mem-
bership functions, and perform fuzzy inference. We use a-level
sets of fuzzy numbers to represent linguistic information. The

inputs, outputs, and weights of the proposed network can be
fuzzy numbers of any shape. Since numerical values can be
represented by fuzzy singletons, the proposed system can in
fact process and learn hybrid of fuzzy numbers and numerical
numbers. Based on interval arithmetics, two kinds of learning
schemes are developed for the proposed system. They are
fuzzy supervised learning and fuzzy reinforcement learning.
They generalize the normal supervised and reinforcement
learning techniques to the learning problems where only
linguistic teaching signals are available. The fuzzy super-
vised learning scheme can train the proposed network with
desired fuzzy input-output pairs (or, equivalently, desired
fuzzy IF-THEN rules) represented by fuzzy numbers instead
of numerical values. With supervised learning, the proposed
system can be used for rule base concentration to reduce the
number of rules in a fuzzy rule base.

In the fuzzy reinforcement learning problem that we con-
sider, the reinforcement signal from the environment is lin-
guistic information (a fuzzy critic signal) such as “good,”
“very good,” or “bad,” instead of the normal numerical critic
values such as “0’ (success) or “-1” (failure). There are
two major problems embedded in the reinforcement learning
problems [lo]: 1) there is no instructive feedback from the
environment to tell the network how to adapt itself, and
2) (fuzzy) reinforcement signal may only be available at
a time long after a sequence of actions has occurred (the
credit assignment problem). To solve reinforcement learning
problems in neural fuzzy systems, we integrate two of the
proposed five-layered networks into a function unit. One net-
work (action network) acts as a fuzzy controller that performs
fuzzy stochastic exploration to find out its output errors. The
other network (evaluation network) acts as a fuzzy predictor
that uses the fuzzy temporal difference technique to predict
the output errors for either single or multistep prediction. It
also provides a more informative and in-time internal fuzzy
reinforcement signal to the action network for its learning.
After finding the output errors, the developed supervised
learning scheme can be applied directly to train both the action
and evaluation networks. Hence, with fuzzy critic signal from
the environment, the proposed fuzzy reinforcement learning
system can learn proper fuzzy control rules and membership
functions.

This paper is organized as follows: Section I1 describes the
fundamental properties and operations of fuzzy numbers and
their a-level sets. These operations and properties will be
used in later derivation. In Section 111, the structure of our
neural fuzzy system is proposed. A fuzzy supervised learning
algorithm for the proposed system is presented in Section
IV. The learning algorithm contains structure and parameter
learning phases. In Section V, a fuzzy reinforcement learning
scheme is developed. We consider the learning methods in two
situations: single-step prediction problems and multistep pre-
diction problems. In Section VI, two applications are simulated
to illustrate the practical effect of the proposed neural fuzzy
system. One is rule base concentration for knowledge-based
evaluator (KBE) with fuzzy supervised learning. The other
is the cart-pole balancing problem with fuzzy reinforcement
learning. Finally, conclusions are summarized in Section VII.

LIN AND LU: A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

membership grade
4

X d x‘i
(a) (b)

Fig. 1. Representations of fuzzy number. (a) d e v e l sets of fuzzy number.
(b) discretized (pointwise) membership function.

n. REPRESENTATION OF LINGUISTIC INFORMATION

When constructing information processing systems such
as classifiers and controllers, two kinds of information are
available. One is numerical information from measuring in-
struments and the other is linguistic information from human
experts. We can naturally indicate the numerical information
using real numbers. But, how to represent the linguistic data?
It has been popular for using fuzzy sets defined by discretized
(pointwise) membership functions to represent linguistic infor-
mation (see Fig. l(b)). Fuzzy sets, however, can be defined by
the families of their a-level sets according to the resolution
identity theorem (see Fig. l(a)). In this paper, we use a-
level sets of fuzzy numbers to represent linguistic information
because of their advantages in both theoretical and practical
considerations [23]-[25]. From theoretical point of view, they
effectively study the effects of the fuzziness and the position of
a fuzzy number in a universe of discourse. From practical point
of view, they provide fast inference computations by using
hardware construction in parallel and require less memory
capacity for fuzzy numbers defined in universes of discourse
with a large number of elements; they easily interface with
two-valued logic; and they allow good matching with systems
that include fuzzy number operations based on the extension
principle.

Let us first review some notations and basic definitions of
fuzzy sets. We use the uppercase letter to represent a fuzzy set
and the lowercase letter to represent a real number. Let x be
an element in a universe of discourse X. A fuzzy set, P, is
defined by a membership function, p p (z) , as pp: X -+ [0, 11.
When X is continuum rather than a countable or finite set, the
fuzzy set P is represented as P = sx p p (z) / z , where x E X.
When X is a countable or finite set, P = Z ; p p (x ;) / z ; ,
where z; E X . We call the latter form as a discretized or
pointwise membership function. A fuzzy set, P, is normal
when its membership function, p p (z) , satisfies the condition
max,: p p (x) = 1. A fuzzy set P is convex if and only

0 5 X 5 1,z1 E X , x 2 E X . The a-level set of a fuzzy
set P, P,, is defined by

if IlP(XZ1 + (1 - X) Q) 2 m i n [P P (x l) , P P (Q)] , where

= { 4 P P (Z) 2 a> (1)
where 0 4 a 5 l , x E X. A fuzzy set P is convex if and
only if every P, is convex; that is, P, is a closed interval of
R. It can be represented by

P, = [P p , P ‘ p] (2)
where a E [0 , 1] . A convex and normalized fuzzy set whose

~

171

membership function is piecewise continuous is called a fuzzy
number. Thus, a fuzzy number can be considered as containing
the real numbers within some interval to varying degrees.
Namely, a fuzzy number P may be decomposed into its a-
level set, Pa, according to the resolution identity theorem [26]
as follows

P = UaP,, = u a [p j “) , p p)]
01 (2

= s, StP aPPa (%I/.. (3)

We shall next introduce some basic operations of a-level
sets of fuzzy numbers. These operations will be used in
the derivation of our model in the following sections. More
detailed operations of fuzzy numbers can be found in [27].

Addition: Let A and B be two fuzzy numbers
and A, and B, their a-level sets, A = U,aA, =
U,a[up),up)],B = U,aB, = U,a[bj”),bp)]. Then we
can write

A,(+)B, = [u p ’ , up’] (+)[bp) , b p)]

= [U?) + b p , up) + b p] . (4)
Subtraction: The definition of addition can be extended

to the definition of subtraction as follows.

A,(-)B, = [u ~ ’ , u ~)] (-) [b ~) , b ~)]

= (a) - b p , $1 - bl“)]. (5)
Multiplication by an Ordinary Number: Let A be a

fuzzy number in R and k an ordinary number k E R. We have

Multiplication: Here we consider multiplication of fuzzy
numbers in Rf , Consider two fuzzy numbers A and B in R+ .
For the level a, we have

The reader is referred to [27] for the general case that A and
B are fuzzy numbers in R.

Difference: We can compute the difference between
fuzzy numbers A and B by

diff(A, B) = ~ [(U Y ’ - bp))’ + (u p) - b p)) ’] . (8)

Defuuijication: In many practical applications such as
control and classification, numerical (crisp) data are required.
That is, it is essential to transform a fuzzy number to a
numerical value. The process of mapping a fuzzy number
into a nonfuzzy number is called “defuzzification.” Various
defuzzification strategies have been suggested in [28], [29].
In this section, we describe two methods (MOM, COA) that
transform a fuzzy number in the form of a-level sets into a
crisp value.

0

Mean of Maximum Method (MOM)
The mean of maximum method (MOM) generates

a crisp value by averaging the support values whose

172 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

membership values reach the maximum. For a discrete
universe of discourse, this is calculated based on the
membership function by

2

where 1 is the number of quantized z values which reach
their maximum membership value.

For a fuzzy number 2 in the form of a-level sets, the
defuzzification method can be expressed according to (9)
as

where defuzzifier represents a defuzzification operation.
Center of Area Method (COA)

Assuming that a fuzzy number with a pointwise mem-
bership function pz has been produced, the center of area
method calculates the center of gravity of the distribution
for the nonfuzzy value. Assuming a discrete universe of
discourse, we have

j = 1

For a fuzzy number 2 in the form of a-level sets, it
can be expressed according to (1 1) as

defuzzifier(2) = zo = ’ (12)
a l a
&

cy

111. BASIC STRUCTURE OF THE NEURAL FUZZY SYSTEM

In this section, we construct an architecture of neural fuzzy
system that can process fuzzy and crisp information. Fig. 2
shows the proposed network structure which has a total of
five layers. This five-layered connectionist structure performs
fuzzy inference effectively. Similar architectures have been
proposed in [lo], [30], and [31]. Nodes at layer one are input
nodes whose imports are fuzzy numbers or crisp numbers.
Each input node corresponds to one input linguistic variable.
Layer five consists of output nodes whose export are also fuzzy
numbers or crisp numbers. Each output node corresponds to
one output linguistic variable. Nodes at layers two and four are
term nodes which define membership functions representing
the fuzzy terms of the respective linguistic variable. Only the
nodes at layer two and four have fuzzy weights. Each node in
layer two executes a “match” action to find the match degree
between the input fuzzy number and the fuzzy weight if the
input is linguistic information. If the input is a crisp number,
they execute a “fuzzification” operation to map the input value
from an observed input space to the fuzzy weights in nodes
at layer two. Each node at layer three is a rule node which

Layer 5 : Merging
Defuzzification

Layer 4 : MAX

h h *.. Layer 3 : MIN

om. Layer 2 : Matching
Fuzzification

0 0 0 Layer 1 : Input

Fig. 2. The five-layered architecture of the proposed neural fuzzy system.

represents one fuzzy rule. Hence, all the layer-3 nodes form
a fuzzy rule base. Links from layers two to three define the
preconditions of the fuzzy rules, and links from layer three to
four define the consequents of the fuzzy rules. Therefore, for
each rule node, there is at most one link (maybe none) from or
to some term node of a linguistic node. This is true both for
precondition links and consequent links. The links at layers
two and five are fully connected between linguistic nodes
and their corresponding term nodes. If linguistic outputs are
expected, each node in layer five “merges” all fuzzy weights
connected to it, scaled by the output values of layer four,
to produce a new fuzzy number. If numerical output values
are required, each layer-5 node executes a “defuzzification”
operation to obtain a crisp decision.

We shall next describe the signal propagation in the pro-
posed network layer by layer following the arrow directions
shown in Fig. 2. This is done by defining the transfer function
of a node in each layer, Signal may flow in the reserve
direction in the learning process as we shall discuss in the
following sections. In the following description, we shall
consider the case of single output node for clarity. It can be
easily extended to the case of multiple output nodes. A typical
neural network consists of nodes, each of which has some
finite fan-in of connections represented by weight values from
other nodes and fan-out of connections to other nodes (see
Fig. 3). The notations U and U represent the input crisp and
fuzzy numbers of a node, respectively. The notations o and
0 represent, respectively, the output crisp and fuzzy numbers
of a node. The superscript in the following formulas indicates
the layer number.

Layer 1 (Input): If the input is a fuzzy number, each
node in this layer only transmits input fuzzy number X; to
the next layer directly. No computation is done in this layer.
That is

0: = U a [~ : , (~) , o:icy)] = X; = U cx[xL:), x!;’]. (13)
cy cy

LIN AND L U A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

-

173

Fig. 3. Basic structure of a node in the proposed neural fuzzy system.

If the input is a crisp number xi, it can be viewed as a fuzzy
singleton, i.e.,

a a

Note that there is no weight to be adjusted in this layer.
Layer 2 (Matching): Each node in this layer has exactly

one input from some input linguistic node, and feeds its output
to rule node(s). For each layer-2 node, the input is a fuzzy
number and the output is a numerical number. The weight in
this layer is a fuzzy number W X i j . The index i, j means the
j th term of the ith input linguistic variable Xi. The transfer
function of each layer-2 node is,

a

+ (W s g - ? p) 2] , (15)

02. 2.7 a (f ? ,) 23 = e - (f , 2 ,) 2 / 2 g 2 (16)

where o is the variance of the activation function a(.) . It is
a constant given in advance. The activation function U (.) is
a nonnegative, monotonically decreasing function of f$ E
[0, CO], and a(0) is equal to 1. For example, a(.) can also be
given alternatively as

02, 23 a(f?.) 23 = rf."J (17)

where O < r < l , or

where X is a nonnegative constant. The output of a layer-2
node indicates the matching degree of input and fuzzy weight.
It is noted that the matching process in this layer is different
from that in the conventional fuzzy control systems [29]. In
the conventional fuzzy control systems, we usually consider
numerical input data, and thus the matching process is simply
the calculation of a membership function value. If we view
a numerical value as a fuzzy singleton, then our formula in
the above will achieve the same result as the conventional
approach dose.

Layer 3 (MZN): The input and output of a node in this
layer are both numerical. The links in this layer perform pre-
condition matching of fuzzy logic rules. Hence, the rule nodes
should perform fuzzy AND operation. The most commonly
used fuzzy AND operations are intersection and algebraic
product [29]. If intersection is used, we have

(19) 03 = min(u;, U ; , . . . , U",.

On the other hand, if algebraic product is used, we have

0; = U:.;. . .U;. (20)

Similar to layer one, there is no weight to be adjusted in this
layer.

Layer 4 (MAX): The nodes in this layer should perform
fuzzy OR operation to integrate the fired rules which have
the same consequent. The most commonly used fuzzy OR
operations are union and bounded sum 129). If the union
operation is used, we have

of = max(u;,ui,...,u:) . (21)

If the bounded sum is used, we have

04 = min(1, ut + U ; + . . . + U",. (22)

The input and output of each layer-4 node are both numerical
values.

Layer 5 (MergingDefuuiJcation): In this layer, each
node has a fuzzy weight WU,. There are two kinds of
operations in this layer. When we need a fuzzy output Y,
the following formula is executed to perform a "merging"
action

xu:. wu,
0 5 = U'a[O:(a),O;(a)~ y = . (23)

a
i

Namely

Y = U 'a[yp), yp'], WU; = U '~[wY,!;', wy,!;)] (24)
a a

where

a

a

If the output of the neural fuzzy system is required to be a
numerical value, the output node executes the defuzzification
action. The following formulas simulate the Tsulcumoto' s
defuzzification method 1321

fi =defuzzifier(WY,) = a 1 (27)
2 T ' a
L
a

xu: ui f i

2

where

174 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3. NO. 2, MAY 1995

In the rest of this paper, we call the above proposed
five-layered neural network with fuzzy output as “Fuzzy
Connectionist Architecture with Linguistic Output” (FCLO),
and that with numerical output as “Fuzzy Connectionist Ar-
chitecture with Numerical Output” (FCNO). From the above
description we observe that only layer-1 inputs and layer-5
outputs of the FCLO and FCNO are possibly fuzzy numbers
(in the form of a-level sets). Real numbers are propagated
internally from layer two to layer four in the FCLO and
FCNO. This makes the operations in our proposed network less
time-consuming as compared to the neural networks that can
also process fuzzy input/output data but require fuzzy signals
flowing in them.

IV. SUPERVISED LEARNING ALGORITHM
In this section, we shall derive supervised learning al-

gorithms for the proposed neural fuzzy system (FCLO and
FCNO). These algorithms are applicable to the situations that
pairs of input-output training data are available. We allow the
training data (either input or output) to be numerical values
(vectors), fuzzy numbers, or mixture of them. When the system
is trained to be a fuzzy controller or fuzzy classifier, the
input and desired output are usually numerical values. On
the other hand, when the system is trained to be a fuzzy
expert system, the input and desired output are usually fuzzy
numbers (linguistic information). In this case, the fuzzy input-
output training pairs can be regarded as fuzzy if-then rules
and the trained neural fuzzy system is like a (condensed)
fuzzy knowledge base. Consider for example the following
two training fuzzy if-then rules

R I : IF z1 is small and 2 2 is large, THEN y is good,
R2: IF 2 1 is large and z2 is small, THEN y is bad.

Then the corresponding two input-output training pairs are
“(small, large; good)” and “(large, small; bad),” where the
fuzzy terms are defined by given fuzzy numbers in the form
of a-level sets. In general, the fuzzy rules for training are

Rp: IF z1 is X,, and . . . and 2, is X,,,, THEN y is Yp

where p = 1 ,2 , . . . , m, and m is the total number of train-
ing rules. These fuzzy if-then rules can be viewed as the
fuzzy input-output pairs, (X,I , X,,, . . . , X,,,; Y,), where p =
1 ,2 , . . . , m. If the input or output are crisp data, the corre-
sponding fuzzy elements in the training pairs become numer-
ical elements.

With the supervised learning algorithm that we shall de-
velop, the proposed system can learn fuzzy if-then rules from
numerical data. Moreover, it can learn fuzzy if-then rules
from experts’ linguistic knowledge represented by fuzzy if-
then rules. This means that it can learn to represent a set of
training fuzzy if-then rules using another smaller set of fuzzy
if-then rules. This is a novel and efficient approach to rule
combination. The proposed neural fuzzy system can thus be
used for rule base concentration to reduce the number of rules.
This provides a useful tool for designing a fuzzy knowledge
base. A knowledge base is usually contributed by several
domain experts, so duplication of if-then rules is inevitable.

We thus usually need to compress the rule base by combining
similar rules into representative rules.

Before the learning of the neural fuzzy system, an initial
network structure is first constructed. Then during the learning
process, some nodes and links in the initial network are deleted
or combined to form the final structure of the network. At
first, the number of input (output) nodes is set equal to the
number of input (output) linguistic variables. The number of
nodes in the second layer is decided by the number of fuzzy
partitions of each input linguistic variable z;, IT(zz)I, which
must be assigned by the user. The fuzzy weights W X ; j in
layer two are initialized randomly as fuzzy numbers. One
better way is to distribute the initial fuzzy weights evenly
on the interested domain of the corresponding input linguistic
variable. As for layer three of the initial network, there are
II;lT(x;)l rule nodes with the inputs of each rule node coming
from one possible combination of the terms of input linguistic
variables under the constraint that only one term in a term
set can be a rule node’s input. This gives the preconditions
of initial fuzzy rules. Finally, let us consider the structure
of layer four in the initial network. This is equivalent to
determining the consequents of initial fuzzy rules. Let the
number of nodes in layer four be the same as the number of
rule nodes in layer three. Also, the fuzzy weights in layer four
are assigned randomly. The connections from layer-3 nodes to
layer-4 nodes is one-to-one initially. That is, each layer-3 node
is connected to its respective layer-4 node. Some of layer-4
links and nodes will be eliminated properly in the structure
learning process which will be described in Subsections IV-B.

With the above initialization process, the network is ready
for learning. We shall next propose a two-phase supervised
learning algorithm for our five-layered neural fuzzy system.
In phase one, a parameter learning scheme is used to adjust
the fuzzy weights. In phase two, a structure learning scheme is
used to delete or combine some nodes and links in the neural
fuzzy system.

A. Parameter Learning Phase

A gradient-descent-based backpropagation algorithm pre-
sented in [33] and [34], is employed to adjust fuzzy weights
in layer two and layer four of the proposed network. If the
FCLO is used, the error function to be minimized is

where Y = U , a [y p) , y p)] is the current fuzzy output and
D = U , a [d p) , d p)] is the desired fuzzy output. If the FCNO
is used, the error function to be minimized is

e = i (d - y), (31)

where y is the current output and d is the desired output. We
assume that W = U , a [w ~) , w ~)] is the adjustable fuzzy
parameter in layer two and layer four. Then to update fuzzy
weights means to update the parameters tup) and tup). we
shall next derive the update rules for these parameters layer

I75
LIN AND L U A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

by layer based on the general learning rule

(32) w(t + 1) = w(t) + 77

where w represents w p) or w g) , and Q is the learning rate.
Layer 5: If an FCLO is used and the desired output is

fuzzy number Y, the update rules of wy,!;' and wyj;) are
derived from (25) and (26) as follows

The error signal to be propagated to the preceding layer is

de
(43)

Layer 4: In this layer, there is no weights to be adjusted.
Only the error signals need to be computed and propagated.
If an FCLO is used, the error signal 6: is derived form (21)

b5 = - = (y - d) .
de de ay?) U: dY - (yl") - d?)) - -- ' (33)

xu:
(a) -7- - dwyil ay, a w y p

Up . (34) as follows -- - (& Y) - @))

2 aC(ep) + e?))
d w y p dyd") dwyj;)

6: = - de -

i

de de

The error signals to be propagated to the preceding layer are = C(6y + 6 p) (44) do! -

where

(37)

(38)
If an FCNO is used and the desired output is numerical

value y, the update rules of the parameters are derived form
(27) and (28) as follows

= 1 (0) 2(YI - d1"')2, ep) = 1. (a)
JY2 - dd"')2.

where

and

where

(45)

(46)

If FCNO is used, the error signal 6: is derived from (21)
as follows

Layer 3: As in layer four, only the error signals need to
be computed. According to (19), this error signal 6: can be
derived as

de de do4 63 =- - -2
dog - do4 do?

(48) S,", if 04 = max(u;1,. . . , U",,,

= { 0, otherwise.

176 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

where

and

When fuzzy weights are adjusted by (33)-(53), two unde-
sirable situations may happen. That is, the lower limits of the
a-level sets of fuzzy weights may exceed the upper limits,
and the updated fuzzy weighted may become nonconvex. To
cope with these undesirable situations, we perform necessary
modifications on the updated fuzzy weights to make sure that
they are legal fuzzy numbers after updating. This process is
described as follows.

Procedure: F u u y Number Restoration:
Inputs: Fuzzy weights W = U , a [w p) , w P)] adjusted

Outputs: The modified fuzzy weights W =
by (33)-(53).

U c u a [6 p) , wp)] which are legal fuzzy numbers.

Step 1. k = 1,
if wrk) > wp), then wik) - - w2 (‘I

and wp) = (k c) w1 7

1 w1 w2 . else ,&(‘I = (k) and wp) = (‘1
Step 2. For IC = h - 1 downto 0, do

if w (k / h) > ,,jjy+l/h) then ,&iklh) = A(k+l /h) , w1 >
else w(”W = (k / h) w1 ,

(a)

Fig. 4. Illustration of consequent combination.

A. Term-node combination scheme: Term-node combina-
tion is to combine similar fuzzy terms in the term sets of
input and output linguistic variables. We shall present this
technique on the term set of output linguistic variables. It is
applied to the term set of input linguistic variables in exactly
the same way. The whole learning procedure is described as
follows:

Step 1. Perform parameter learning until the output error
is smaller than a given value; i.e., e 5 errordimit, where
error-limit is a small positive constant.

Step 2. If diff(WY,,WY,) 5 similar-limit and
similar-limit is a given positive constant, remove term
node j with fuzzy weight WU, and its fan-out links, and
connect rule node j in layer 3 to term node i in layer four
(see Fig. 4).

Step 3: Perform the parameter learning again to optimally
adjust the network weights.

The term-set combination scheme in Step 2 can automati-
cally find the number of fuzzy partitions of output linguistic
variables.

The operations in Step 2 can be equally applied to the term
set of input linguistic variables.

B. Rule combination scheme: After the fuzzy parameters
and the consequents of the rule nodes are determined, the
rule combination scheme is performed to reduce the number
of rules. The idea of rule combination is easily understood
through the following example. Consider a system contains
the following fuzzy if-then rules

RI: IF 21 is small and 22 is small, THEN y is good,
R2: IF 21 is medium and 22 is small, THEN y is good,
RJ: IF 21 is large and 5 2 is small, THEN y is good

and
if w p l h) < cp+l/h), then &?Ih) = w2

else @ / h) = (k l h) w2 .
Step 3. Output W , and stop.

where the fuzzy partitions of input linguistic variable 51 are
“small,” “medium,” and “large.” The three rules RI , R2 and
RJ can be merged to one rule as follows

R: IF 2 2 is small, THEN y is good.

That is, the input variable 51 is not necessary in this SitUa-
tion. The conditions for applying rule combination has been
explored in [301 and are given as follows.

1) These rule nodes have exactly the same consequents.
2) Some preconditions are common to all the rule nodes,

that is, the rule nodes are associated with the same term
nodes.

B. Structure Leurning Phase

In this subsection, we propose a structure learning algorithm
for the proposed neural fuzzy system to reduce its node and
link number. This structure learning algorithm is divided into
two parts: One is to merge the fuzzy terms of input and output
linguistic variables (term-node combination). The other is to
do rule combination to reduce the number of rules. We shall
discuss these two parts separately in the following.

LIN AND L U A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

- \ U I U U

X I x2 x , X I x , x ,

Illustration of rule combination. Fig. 5. B

Input

Fig. 6. The membership functions of the input linguistic value “very small”
(Xl), “small” (X 2) , ‘‘large’’ (X 3) in Example 1 .

3) The union of other preconditions of these rule nodes
composes the whole terms set of some input linguistic
variables.

If some rule nodes satisfy these three conditions, then these
rules can be combined into a single rule. Another example of
rule combination is shown in Fig. 5.

The following simple examples illustrates the performance
of the proposed supervised learning algorithm on the FCLO.
One practical application of this technique is to do rule base
concentration in fuzzy rule base. It can effectively find a small
set of representative rules from a bunch of fuzzy if-then rules
by removing redundancy and finding similarity. One practical
example of rule base concentration will be given in Section VI.

Example 1: Consider the following three fuzzy if-then
rules for training

RI: IF z is very small (Xl) , THEN y is very large (Dl) ,
Rz: IF z is small (X2), THEN y is large (D2),
RJ: IF z is large (X3), THEN y is small (D3),

where the fuzzy numbers “small”, “large”, “very small” are
given in Fig. 6. Because input and desired output are linguistic,
an FCLO is used in this example. According to the initializa-
tion process, we set up a FCLO with two layer-2 nodes and
two layer-4 nodes (and thus two layer-3 (rule) nodes). Fig.
7 shows the learning curves. The error tolerance is 0.0001
and the number of a-cuts is 6. After supervised learning, the
fuzzy outputs of the learned FCLO and the corresponding
desired outputs are shown in Fig. 8. The figure shows that
they match closely. The two learned (representative) fuzzy

iterations

Fig. 7. The learning curve in Example 1.

Dsired (-l/Actual(..) output

Fig. 8. The actual fuzzy outputs, Y1, Y2, Y 3 of the learned neural fuzzy
system and the corresponding desired fuzzy outputs, D l I D 2 , D 3 in Example
1.

rules after learning (condensing) are

IF z is WX1, THEN y is WY1,
IF z is WX2, THEN y is WY2

and

where the fuzzy weights after learning are shown in Fig. 9. For
illustration, Figs. 10 and 11 show the change of fuzzy weights
in the learning process. Hence the original three fuzzy rules
have been condensed to two rules, and these two sets of fuzzy
rules represent equivalent knowledge.

Example 2: In this exampie, we train an FCLO with five
training fuzzy number pairs shown in Fig. 12. In this figure, the
stacked rectangles represent different a-level sets. Five level
sets corresponding to a = 0,0.25,0.5,0.75,1 are used for
each fuzzy number. In the initial FCLO, there are four nodes
in each of layers 2,3, and 4. That is, there are four fuzzy rules
initially. After the structure and parameter learning, we obtain
an FCLO containing three fuzzy rules (i.e., there are three
nodes in each of layers 2, 3, and 4). Fig. 13 shows the learned
fuzzy weights. To examine the generalization capability of the
trained FCLO, we present three novel fuzzy numbers to its

178

1 -

0.8

*
3 0.6

0.4 A
0.2

0 -

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

-

-

-

-

Weight X (-)/Weight Y (..)

Fig. 9. The learned fuzzy weights of the FCLO in Example 1.

The change in Weights WXl(..), WXZ(-)

Fig. 10. Time evolving graph of fuzzy weights WXI, W X 2 during the
learning process in Example 1.

The change in Weights WYl(..), WYZ(-)

Fig. 11.
learning process m Example 1.

Time evolving graph of fuzzy weights W Y 1 , WY2 during the

input nodes for testing. The results shown in Fig. 14 (the
dashed rectangles) indicate the good generalization capability
of the learned FCLO.

l a
0 0.2 0.4 0.6 0.8 1

Inputs x

Fig. 12.
Example 2.

The training fuzzy pairs (X , Y) in the form of a-level sets in

1 -

0.8 -

0.6 - s ’ 0.4 -

4.2 0 0.2 0.4 0.6 0.8 I

Weight X

Fig. 13. The learned fuzzy weights in Example 2.

b
a
9

1

0.8

0.6

0.4

0.2

a

2

0 0.2 0.4 0.6 0.8 1

Inputs x for testing

Fig. 14. Generalization test of the learned neural fuzzy system in Example 2.

V. REINFORCEMENT LEARNING WITH FUZZY CRITIC SIGNAL
In the previous section, we considered the supervised learn-

ing of the proposed neural fuzzy system and assumed that

LIN AND LU: A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

membership value

-1 0

Fig. 15. An example of fuzzy reinforcement signals.

the precise “target” output for each input pattern was always
available; however, in some real-world applications, precise
training data are usually difficult and expensive to obtain. In
this section, we extend the supervised learning of the pro-
posed system to reinforcement learning. In the reinforcement
learning problem, we get only evaluative feedback (called
the reinforcement signal) from the environment. Because the
reinforcement signal is only evaluative and not instructive,
reinforcement learning is sometimes called “learning with a
critic” as opposed to “learning with a teacher” in supervised
learning.

Conventionally, the reinforcement signal is regarded as a
real number. For example, the reinforcement signal, r (t) , can
be one of the following forms: 1) a two-valued number,
~ (t) E {-l ,O}, such that r (t) = 0 means “a reward”
and r (t) = -1 means “a penalty”; 2) a multivalued dis-
crete number in the range [-1, 01, for example, ~ (t) E
{-1, -0.25, -0.5, -0 .25,O) which corresponds to different
degrees of reward or penalty; 3) a real number, r(t) E [- 1,0],
which represents a more detailed and continuous degrees of
reward or penalty.

The reinforcement signal given by the external environment
(e.g., an expert), however, may be fuzzy feedback information
such as “good,” “very good,’’ “bad,” “too bad.” This is
true especially in the human-iterative learning environment,
where human instructor is available. We call the reinforcement
learning problem with fuzzy critic feedback as the fuzzy
reinforcement learning problem. In this section, we shall attack
this problem by considering the reinforcement signal R(t) as a
fuzzy number in the form of a-level sets. We also assume that
R(t) is the fuzzy signal available at time step t and caused by
the input and action chosen at time step t - 1 or even affected
by earlier inputs and actions. Namely, the reinforcement signal
is a fuzzy number such that

where

-1 5 defuzzifier(R1) 5 defuzzifier(R2)
< - e . . 5 defuzzifier(R,) 5 0 (55)

where defuzzifier(R(t)) represents discrete degree of reward
or penalty. For example (see Fig. 15), we may have
R(t) €(very bad, bad, good, very good).

In the reinforcement learning problems, it is common to
think explicitly of a network functioning in an environment.

-

179

The environment supplies the inputs to the network, receives
its output, and then provides the reinforcement signal. There
are several different reinforcement learning problems, depend-
ing on the nature of environment:

Class I: In the simplest case, the reinforcement signal is
always the same for a given input-output pair. Thus there is
a definite input-output mapping that the network must learn.
Moreover, the reinforcement signals and input patterns do not
depend on previous network outputs.

Class II: In a stochastic environment, a particular input-
output pair determines only the probability of positive rein-
forcement. This probability is fixed for each input-output pair
and again the input sequence does not depend on past history.

Class IIk In the most general case, the environment may
itself be governed by a complicated dynamical process. Both
reinforcement signals and input patterns may depend on the
past history of the network outputs.

If a reinforcement signal indicates that a particular output is
wrong, it gives no hint as to what the right answer should be;
in terms of a cost function, there is no gradient information.
It is therefore important in a reinforcement learning network
for there to be some source of randomness in this network,
so that the space of possible outputs can be explored until a
correct value is found. This is usually done by using stochastic
units. Several approaches have been proposed for the above
three different classes of reinforcement learning problems.
Barto and Anandan [12] proposed the associative reward-
penalty algorithm AR-P, which is applicable to Class I and
11 problems. Its essential ingredient is the stochastic output
unit. Another approach to reinforcement learning involves
modeling the environment with an auxiliary network, which
can then be used to produce a target for each output of
the main network 1171, [35], [36]. This scheme reduces the
reinforcement learning problem to a two-stage supervised
learning problem with known targets. This approach can be
used to resolve reinforcement learning problems of Class
I and 11, and the general idea of this separate modeling
network can be also applied to Class 111 problems. Another
approach aiming at solving Class 111 reinforcement learning
problems is “learning with predictor.” In Class III problems,
a reinforcement signal may only be available at a time long
after a sequence of actions has occurred. To solve the long
time-delay problem, prediction capabilities are necessary in
a reinforcement learning system. In this scheme, a predictor
(critic) receives the raw reinforcement signal T from the
environment and feeds a processed signal ? on to the main
network. The i signal represents an evaluation of the current
behavior of the main network, whereas T typically involves
the past history. Recently, more and more researchers devote
the reinforcement learning problems using this method [lo],
[12]-[15]. In this paper, we also use this scheme in our
reinforcement learning model.

A. Architecture of Reinforcement Learning Model

The proposed reinforcement learning model, as shown in
Fig. 16, integrates two previously proposed five-layered net-
works (FCLOs or FCNOs developed in Section 111) into a

180 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

Predictor

Fig. 16. The proposed fuzzy reinforcement learning system.

learning system. One (FCLO or FCNO) serving as the action
network can choose a proper action or decision according
to the current input. The action network acts as a fuzzy
controller. The other (FCLO) serving as the evaluation network
performs single or multistep prediction of the external fuzzy
reinforcement signal. The evaluation network acts as a fuzzy
predictor. The fuzzy predictor provides the action network
with more informative and beforehand internal reinforcement
signal for learning. Because the reinforcement signal is a fuzzy
number, an FCLO is used for fuzzy predictor. The action
network can be FCLO or FCNO depending on the actual
requirement. Structurally, these two networks share the first
two layers of the original FCNO or FCLO (see Fig. 16). This
means that they partition the input space in the same way.

We distinguish two kinds of prediction-learning problems
for the fuzzy predictor. In the single-step prediction problems,
all information about the correctness of each prediction is
revealed at once. In the multistep prediction problems, cor-
rectness is not revealed until more than one time step after
the prediction is made, but partial information relevant to its
correctness may be revealed at each time step. In the single-
step prediction problems, data naturally comes in observation-
output pairs; these problems are ideally suited to the pairwise
supervised learning approach. We shall discuss these problems
in Subsection V-B. For the multistep prediction problems, we
use the temporal difference (TD) prediction technique, which
is a class of incremental learning procedures introduced by
Sutton [ll]. The main characteristic of this technique is that
they learn from successive predictions, whereas in supervised
learning methods, learning occurs only when the difference
between the predicted outcome and actual outcome is revealed.
Hence the learning in TD does not have to wait until the actual
outcome is known and can update its parameters at each time
step. We shall explore these problems in our proposed model
in Subsection V-C.

For the action network, the reinforcement learning algorithm
allows its output nodes to perform stochastic exploration.
With the internal fuzzy reinforcement signals from the fuzzy
predictor, the output nodes of the action network can perform
more effective stochastic searches with a higher probability of
choosing a good action as well as discovering its output error
accurately. The detailed learning procedure will be discussed
in the following subsections.

In a word, the architecture of the proposed reinforcement
learning model schematically shown in Fig. 16 has three
components:

The action network maps a state vector into a recom-
mended actions, Y or y, using FCLO or FCNO.
The evaluation network (predictor) maps a state vector
and an external fuzzy reinforcement signal into a pre-
dicted fuzzy reinforcement signal which indicates state
goodness. This is also used to produce internal reinforce-
ment signal.
The stochastic unit using both Y (or y) F d the internal
reinforcement signal to produce an action Y (or y), which
is applied to the environment.

Since the action network and the evaluation network are in
fact the FCLO or FCNO introduced in Section 111, their node
operations in five layers are the same as those in the original
structure. Let us now describe the operations in the stochastic
unit in Fig. 16.

To estimate the gradient information of error function in a
reinforcement learning network, there needs to be some source
of randomness such that the space of possible output can be
explored to find a correct value. Thus, the stochastic unit is
necessary for the action network. In estimating the gradient
information, the output Y(y) of the action network does not
directly act on the environment. Instead, the stochastic unit
uses the predicted fuzzy reinforcement signal P(t) of the
evaluation network and the action Y(y) recommended by the
action network to stochastically generate an attual action Y (5)
acting on the environment. The actual action Y (9) is a random
variable with mean Y(y) and variance cr(t). The variance (or
width) a(t) representing the amount of exploration is some
nonnegative, monotonically decreasing function of P(t) . In
our model, a(t) is chosen as

(56)
2k

a(t) = ~ - k, 1 + e X P (t)

p (t) = defuzzifier(P(t)) (57)

where X is a search-range scaling constant which can be simply
set to 1, and P(t) is the predicted fuzzy reinforcement signal
used to predict R(t + 1) when the environment state is X (t) or
z(t) . The magnitude of a(t) is large when p (t) is low. Because
we restrict the highest degree of reward to p (t) = 0, the value
of a(t) is 0 whenp(t) = 0. The action Y, or y, is what actually
applied to the environment. The stochastic perturbation in the
suggested approach leads to a better exploration of action
space and better generalization ability.

Once the amount of exploration, cr(t), has been decided, the
next problem is how to generate the actual output. Because
the output of the learning system can be fuzzy number or
numerical number, we discuss these two situations separately
in the followings.

I) Numerical Stochastic Unit: When the action is a numer-
ical value y (i.e., a FCNO is used as the action network), the
actual output 6 of the stochastic unit can be set as

181 LIN AND L U A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

membership grade 7 Y

t

y d
search rangle

Fig. 17. Illustration of fuzzy stochastic exploration.

That is, $(t) is a normal or Gaussian random variable with
variance o(t), mean y(t) , and the density function

(59)

The actual output y can be also set simply as a uniform
random variable with width 20, mean y, and the density
function

(60)
-, if (y - 0) I Y I (y + a) ,

f(Y) = 2a
{ l 0, otherwise.

2) Fuzzy Stochastic Unit: When the action is a fuzzy num-
ber Y = U, a[y?),yp’] (i.e., a FCLO is used as the action
network), the fuzzy stochastic unit generates a fuzzy action,
Y = U, a[$?), $?)I, based on the amount of exploration a.
The parameter $p)(yp)) is set as a uniform random variable
with mean y p) (y p)) , width 20, and the density function as
the same as above. After having decided these parameters, yp’
and yp), we must then maintain the convex property of the
fuzzy action. We propose the following procedure to complete
the fuzzy stochastic exploration. In this procedure, the notation
h is the number of quantized membership grade. As shown in
Fig. 17, the actual fuzzy action Y must falls in the shadow
region randomly in the fuzzy stochastic exploration.

Procedure: Fuzzy Stochastic Exploration:
Input: Y = ~ , a [y ~) , y ~) l .
output: Y = U”a[yp),gp)].

Step 1. For k = 1 to h, find $ik) such that

Step 3. Output Y and stop.
Like the supervised learning process introduced in Section

IV, we need to perform two kinds of initialization: structure
initialization and parameter initialization before performing the
reinforcement learning algorithm. The initialization process
is exactly the same as that for the supervised learning (see
Section IV). It should be done on both the action network
and the evaluation network. After the initialization process,
the reinforcement learning algorithms are performed on both
networks. These learning algorithms for both the action net-
work and the evaluation network are derived below. Again,
we discuss the single step and multistep prediction problems
separately in the following subsections.

B. Leaming Algorithm for Single-Step Prediction Problems

In this subsection, a reinforcement learning algorithm is
proposed to solve the Class I and Class II reinforcement
learning problems described previously using a single-step
fuzzy predictor. The function of the single-step fuzzy predictor
is to predict the external fuzzy reinforcement signal, R(t + 1) ,
one time step ahead, that is, at time t. Here, R(t + 1) is the
external fuzzy reinforcement signal resulting from the inputs
and actions chosen at time step t , but it can only be known
at time step t + 1. If the fuzzy predictor can produce a fuzzy
signal P(t) at time step t , which is the prediction of R(t + l),
a better action can be chosen by the action network at time
step t , and the corresponding learning can be performed in the
action network at time step t + 1 upon receiving the external
reinforcement signal R(t + 1).

Basically, the reinforcement learning of a single-step fuzzy
predictor is simply a supervised learning problem. The goal is
to minimize the squared error

e = + C [(p p) (t) - r p) (t + 1>>2
LI

+ (p?’(t) - r p (t + 1))2] (61)

where R(t + 1) = U,a[rp)(t + l) ,r?)(t + l)] represents
the desired fuzzy output, and P (t) = U,a[pp’(t),p?)(t)]
is the current predictor output. Similar to the supervised
learning algorithm developed for FCLO in Subsection IV-A,
we can derive the learning algorithm for the single-step fuzzy
predictor. The update rules are the same as (33)-(53) if Y is
replaced by P(t) and D is replaced by R(t + 1).

We next develop the learning algorithm for the action
network. The goal of the reinforcement learning algorithm is
to adjust the parameters wp’ and wp) of the action network
such that the fuzzy reinforcement signal R is maximum; that is

dr
A W N -

dW

where w = wp) or wp) and r = defuzzifier(R). There are
two different reinforcement learning algorithms for the action
network depending on either FCNO or FCLO being used as the
action network. We describe these two reinforcement learning
algorithms for the action network in the followings.

182 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

numerical A - when p (t) # r(t + 1). Then we can define the error function as
output Y Y Y

- _ - - - - _ _ _ _ _ V , V n v e = c[(yp' - S',-')2 + (y p) - jjp')']. (67)

reinforcement
signal

4
r (t+ l)

4
0

(b)
Fig. 18. The concept of deciding desired outputs in the stochastic unit.

We first derive the reinforcement learning algorithm for
the action network with numerical output (FCNO). In this
situation, to determine dr ldw, we need to know dr ldy ,
where y is the output of the action network. Since the fuzzy
reinforcement signal does not provide any hint as to what the
right answer should be in terms of a cost function, the gradient,
dr ldy, can only be estimated using the stochastic unit.

The output of the single-step predictor, P (t) , is a predicted
fuzzy reinforcement signal for the output of the action network,
y(t), and the external fuzzy signal R(t + 1) is a critic score
from environment for actual output y(t) of the stochastic
unit. From these values, we can construct a desired target
output jj(t). Note that we restrict the values of defuzzified
reinforcement signals, P (t) and R(t + I) , in the range [- 1, 0] ,
that is, -1 5 p (t) 5 0 and -1 5 r (t + 1) 5 0, where
p (t) = defuzzifier(P(t)) and r(t+l) = defuzzifier(R(t+l)).
From Fig. 18, we find that the expected target output g should
fall on the position representing that the value of reinforcement
signal is 0. Hence, if p (t) # r (t + l), we let

Then, if p (t) # r (t + l), we can define

e = +(y - iJ2. (64)

When p (t) = ~ (t + l) , the weights are not changed, that is,
delay = 0. With this error function, the learning rules of
the FCNO-based action network can be derived. They are the
same as (33)-(53) if d is replaced by ij.

When the output of the action network is a fuzzy number Y,
we can derive the learning algorithm in a similar way as we
did in the above. We decide an expected fuzzy target output
Y = u,a[g',-',~p)] as
-

a

When p (t) = r (t + l), the weights are not changed, that is,
d e l d y p) = 0 and de/dyp) = 0. With this error function, the
learning equations of the FCLO-based action network are the
same as (33)-(53) if D is replaced by L.

There is another method to estimate the gradient information
[lo]. This method does not construct the expected target
output, but finds the gradient direction of the error function.
With this method, the output error gradient in (33)-(53) for
FCNO can be replaced by

and for FCLO, the gradient information is estimated by

where 1' is the internal reinforcement signal sent to the action
network. In (68), r(t + 1) is the actual fuzzy reinforcement
feedback for the actual action, jj(t), and p (t) is the predicted
fuzzy reinforcement signal for the expected action, y(t). The
ratiole behind the above equations is described as follows. If
r (t + 1) > p (t) , then y(t) is a better action than the expected
one, y(t), and y(t) should be moved closer to jj(t). That is,
this is a rewarding event when F (t + 1) > 0. If r (t+ 1) < p (t) ,
then y(t) is a worse action than the expected one, and y(t)
should be moved farther away from y(t). That is, this is a
penalizing event when 1'(t + 1) < 0.

In the proposed system, the action network and the evalu-
ation network are trained together, however, since the action
network relies on accurate prediction of the evaluation net-
work, it seems practical to train the fuzzy predictor first, at
least partially, or to let the fuzzy predictor have a higher
learning rate than the action network. Besides the above pa-
rameter learning phase, the structure learning phase described
in Section IV is executed to complete the whole learning
process.

C. Leaming Algorithm for Multistep Prediction Problems
The algorithms described in the last subsection work under

the assumption that the environment returns a fuzzy reinforce-
ment signal in response to every single action acting on it.
There are many applications in which the learning system
receives evaluation of its behavior only after a long sequence
of actions; that is, both reinforcement signals and environment
states may depend arbitrarily on the past history of the network
output. This kind of reinforcement scheme is called delayed
reinforcement. In this section we shall discuss how the problem
of learning with delayed reinforcement can be solved using
the multistep fuzzy predictor.

LIN AND LU: A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

~

183

In the delayed reinforcement learning problem, the temporal
credit assignment problem becomes severe because we have
to assign credit or blame individually to each action in a
sequence for an eventual success or failure. The solution to the
temporal credit assignment problem is to design a multistep
fuzzy predictor which can predict the reinforcement signal at
each time step. To achieve this purpose, the technique based on
the temporal difference (TD) method is used. The TD method
is a class of incremental learning procedures introduced by
Sutton [111. The main characteristic of the TD method is that
they learn from successive predictions, whereas in the case of
supervised learning, learning occurs only when the difference
between the predicted outcome and the actual outcome is
revealed. Hence the learning in TD does not have to wait until
the actual outcome is known, and can update its parameters
within a trial period. In the proposed reinforcement learning
system, we use TD methods in the evaluation network to
make it function as a multistep fuzzy predictor. We shall dis-
cuss three different cases of reinforcement learning problems
below. Note again that because the reinforcement signal is
linguistic, we use an FCLO as the multistep fuzzy predictor.

Case I: Prediction of final fuzzy outcome. Assume we
are given the fuzzyhumerical input sequences of the form,
X (l) , X (z) , . . . , X (m) , where each X (t) is an input vector
of fuzzy numbers or real numbers available at time step t
from the environment and the fuzzy reinforcement signal is
R(m + 1) at time step m + 1. For each input sequence,
the fuzzy predictor produces a corresponding sequence of
predictions P (l) , P (2) , . . . , P (m) , each of which is an es-
timate of R(m + 1). We assume that the fuzzy weights
W = U,cr[wp', w?)] in the evaluation network are updated
only once for each complete input sequence and does not
change during a sequence. After a complete sequence has been
processed, w(wp' or w?') is changed by the sum of all the
sequence's increments

m

w t w + Aw(t).
t = l

Because each P (t) is an estimate of R(m + l) , the error
function based on supervised learning approach in each time
step t is

and

a

- $'(m + 1)) 2]

de
Aw(t) oc --

dw(t).

Thus, the update rules of the Aw(t) are derived as

(73)

= (pl"'(t) - $'(m + 1))- dP?)(t) (74)
dw?'(t) '

In either case, note that all Aw(t) in (74) and (75) depend
critically on R(m + l) , and thus cannot be determined until
the end of the sequence when R(m + 1) becomes known.
Thus, all observations (inputs) and predictions made during a
sequence must be remembered until the end, and then all the
Aw(t)'s can be computed.

In fact, (74) and (75) can be computed incrementally as
shown below. First, consider the following facts

m

~ p ' (m + 1) - p v ' (t) = c (p p ' (k + 1) - p p ' (k)) , (76)

(77)

k = t
m

$'(m + 1) - p?'(t) = C (p ? ' (k + 1) - p?' (k))
k = t

wherepp'(m+l) = r p ' (m + l) andpp)(m+l) = ~?'(m+
1). By replacing r?'(m+l)--pm'(t) and r?'(m+l)-p?'(t)
by (76) and (77), (74) and (75) are transformed to

which can be computed incrementally at each time step. The
procedure given by (78) and (79) is the special case of the TD
procedure, called TD(l), in which all of the predictions are
altered to an equal extent. It can be extended to the following
general form

in which alterations to the predictions of input vectors occuring
k steps in the past are weighted according to At-' for 0 5
X 5 1. The formulas in (80) and (81) are called the TD(X)
procedure proposed by Sutton in [1 11. In the extreme case that
X = 0, called TD(O), the weight increment is determined only
by its effect on the prediction associated with the most recent
observation

184 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

Case 2: Prediction of finite cumulative fuzzy outcomes.
The TD method can be also used to predict a quantity that
accumulates over a sequence. That is, each step of a sequence
may incur a cost, and we wish to predict the expected total cost
over the sequence. In this problem, the predictor output P(t)
is to predict the remaining cumulative fuzzy cost given the tth
observation rather than the overall fuzzy cost for the sequence.
In OUT system, we consider the cost to be the value of the
reinforcement signal. Let ~ (t + 1) = ~,a[r?)(t+ 11, r?’(t+
l)] denote the actual fuzzy cost incurred between time steps t
and t +l. We would like P(t) to be equal to the expected value
of Z (t) = u,a[Z?’(t),Zp)(t)] = ETzt R(k + 1). Thus,

m

Z?’(t) = Cr?’(k + l), (84)
k = t
m

Z?’(t) = Er?’@ + 1). (85)
k=t

The prediction error can be represented in terms of temporal
difference as

m

Z? ’ (t) - p (t) = r y (k + 1) - p‘l“’(t)
k = t
m

k = t

m

k = t
m

k = t

and

p?’(t) = $)(t + 1) + yp?)(t + 1). (91)

The mismatch or TD error is the difference between the right
hand and left hand sides of these equations r?)(t + 1) +
ypy)(t + l>,rF)(t + 1) + y p p) (t + 1) and thus the update
rules are

- de = -(r?)(t + 1) + yp, (a) (t + 1)
dwi“’(t)

a p (“) (k) (92) - p P ’ (t)) A t - k L
t

k = l dw,(*)(k)’

Once the output error gradient information of the multistep
fuzzy predictor is obtained using the methods discussed in
the above three cases, its learning becomes a supervised
learning problem and thus (33)-(53) in Section IV can be used
here directly. Note that, the system only receives an external
reinforcement signal R(m + 1) after a sequence of inputs at
the time step m + 1. Hence, we can assume that the external
reinforcement signal R(t) is zero (nonexisting) at the other
time steps, that is, R(t) = U,a[O,O], for 2 5 t 5 m.

As for the action network, the learning algorithm of the
action network is similar to that derived in Subsection V-B.
When the output is numerical, we have

(87) and

de dr
ay

where P (m + 1) = U,a[O, 01. Thus, the update rules are
-- 0: - = (T (t + 1) + yp(t + 1) - P (t)) ($ (t) - de --

(95)
- -(r?)(t + 1) + pl“’(t + 1)

aw?) (t) = i (t + l)(Y(t) - l/(t)).

Case 3: Prediction of infinite discounted cumulative
fuzzy outcomes. In this case, P(t) predicts the discounted
sum ~ (t) = cg0 y k ~ (t + IC + 1); i.e., zia’(t) =
Er=.=, ykr?’(t + k I), Z?’(t) = Er=.=, y k r ?) (t + k + I),
where y,O 5 y 5 1, is the discounted rate parameter. If the
prediction is accurate, we can write

00

pr“’(t) = y k r ?) (t + k + 1)
k=O

03

= $)(t + 1) + y E ykr?)(t + k + 2)

= rl“’(t + 1) + yp?)(t + 1)
k=O

(90)

When the output is linguistic, we have

de dr

de ar

-- 0: - = ?(t + l)($?’(t) - yp’(t)), (96)

(97)

ay?) ay?)

ay?) a y p
-- 0: - = i (t + l)(f?’(t) - y?’(t)).

According to (95), before the external reinforcement signal
occurs (i.e., r (t) = 0), the reinforcement ? sent to the action
network is the difference between the predicted reinforcement
signal of the current time step (discounted by y) and the
predicted reinforcement signal of the previous time step (i.e.,
yp(t+ 1) - p (t)) . That is, (95) becomes dr/dy = (y p (t + 1) -
p (t)) ($ (t) - y(t)), where p (t) is the predicted reinforcement
signal for the output y(t) of the action network, and p (t + 1)
is the predicted reinforcement signal for output ~ (t + 1).
Because both external reinforcement signals and input patterns
depend on the past history, y(t) will influence the predicted
reinforcement signal p(t + 1) for output y(t + 1); that is, the
output $(t) at time step t will influence the output y(t + 1) at
time step t + 1. Thus, p (t + 1) can be viewed as the predicted

LIN AND L U A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS 185

Membership

4

0

0 1

Fig. 19. The fuzzy reinforcement signals used in Example 3.

reinforcement signal for the actual output $(t) at time step
t. From the above description, we know that the value of
dr/dy is always positive. Namely, if y = 1, increases in
reinforcement prediction become rewarding events (i.e., P > 0),
and decreases become penalizing events (i.e.. P < 0).

When the external reinforcement signal occurs, the situation
is slightly different. When the external reinforcement signal
comes at time step t + 1, we let the corresponding predicted
reinforcement signal, p (t + l), be zero. In this situation, (95)
becomes dr/dy = (r (t+ 1) - p (t)) (y (t) - y (t)) . The external
reinforcement signal r(t+l) is the actual critic score for y, and
p (t) is the predicted reinforcement signal of y (t) . Thus, the
value of &/ay will be positive. From the above observation,
we understand that (95)-(97) are appropriate for the action
network.

Until now, we have developed the parameter learning algo-
rithms for the action network and the evaluation network for
multistep prediction problems. The structure learning in these
two networks is the same as that described in Section IV for
supervised learning. The following simple example illustrates
the proposed fuzzy reinforcement learning model.

Example 3: In this example, we transform the supervised
learning problem in Example 1 (in Section IV) to a reinforce-
ment learning problem. We use the same training data as in
Example 1 except that we assume the desired outputs are not
known to the learning system. In this example, we have three
fuzzy input data as follows

XI: z is very small, (the desired output: y is very

XZ: z is small, (the desired output: y is large (Dz)),
X3: z is large, (the desired output: y is small (03))

where the fuzzy numbers “small,” “large,” and “very large”
in inputs are shown in Fig. 6, and the fuzzy numbers “very
large,” “ large,” and “small” in desired outputs (Dl, D2,03)
are shown in Fig. 8. The actual output El(E2, E3) is supposed
to equal Dl(D2,03) in Fig. 8. These desired outputs are not
known to the neural network. Only the reinforcement signal
defined below is imported to the learning system at each time
step t

R(t) = good, if 0.05 5 Error 5 0.5, { bad, if Error >0.5

where Error = 1/2C, [(z,’:) - d!:’)2 + (xi;) - d!;))2], i =
1,2,3. The reinforcement signals are shown in Fig. 19.

very good, if Error < 0.05,

Expccted (-)/Actual (..) output

Fig. 20.
learning in Example 3.

The desired outputs (E) and actual outputs (Y) after reinforcement

weight x (-)/weight Y (..)

The learned fuzzy weights in Example 3. Fig. 21.

This problem belongs to the single-step prediction problem,
thus a single-step predictor is required for our proposed
system. Moreover, owing to the desired linguistic output, the
procedure of fuzzy stochastic exploration in Subsection V-B is
used for the system. The simulation results are shown in Figs.
20 and 21. Fig. 20 indicates that the actual outputs coincide
the desired outputs quite well.

VI. ILLUSTRATIVE EXAMPLES

Two typical examples are presented in this section to show
the fundamental applications of the proposed neural fuzzy
system. First, a fuzzified cart-pole balancing problem is used
to demonstrate the proposed fuzzy reinforcement learning
model developed in Section V. Second, we apply our fuzzy
supervised learning model derived in Section IV to a practical
fuzzy expert system for rule concentration.

Example 4: Cart-Pole Balancing Problem
In this example, we apply the proposed fuzzy reinforcement

learning model to the fuzzified cart-pole balancing system. In
this system, a pole is hinged to a moter-driven cart that moves
on rail tracks to its right or its left as shown in Fig. 22. The

186 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

Membership +

4
0 1 Fig. 22. The cart-pole balancing system in Example 4.

Fig. 23.
ample 4.

The membership functions of fuzzy reinforcement signals in Ex-

pole has only one degree of freedom (rotation about the hinge
point). The primary control tasks are to keep the pole vertically
balanced keep the

Four state variables are used to describe the system status,
one control variable represents the force applied to the

within the rail track boundaries. available after a long sequence of time steps in this failure
avoidance task, this cart-pole balancing problem belongs to
the multistep prediction problem discussed in Subsection V-C.
The fuzzy reinforcement signal is defined as cart. They are

bad, if lO(t)l > 12degrees or Ix(t)l > 2.4m, e angle of the pole from an upright position (in radian);
8 angular velocity of the pole (in radiads);
x horizontal position of the cart’s center (in meters);

R(t) = otherwise.

x velocity of the cart (in meter&);
f the amount of force (N) applied to the cart to move it

toward left or right.
The goal of this learning problem is to train the proposed

reinforcement learning model such that it can determine a
sequence of forces with proper magnitudes to apply to the cart
to balance the pole for as long as possible without failure. The
dynamics of the cart-pole balancing system are modeled by
the following equations [14] as shown in (98) at the bottom
of the page and where
9-9.8 m/s2, acceleration due to the gravity,
m, 1.0 kg, the mass of the cart,
m 0.1 kg, the mass of the pole,
1 0.5 m, the half-pole length,
pc 0.0005, the coefficient of friction of cart on track,
p p 0.000002, the coefficient of friction of pole on cart,
A 0.02, sampling interval.
The constraints on the variables are -12degrees 5 0 5

12degrees, -2.4 m 5 x 5 2.4 m, and -10N 5 f 5 10N.
A more challenging part of this problem is that the only
available feedback is a reinforcement signal that notifies the
controller when a failure occurs; that is, either 181 > 12 degrees
or 1x1 > 2.4 m. Since a reinforcement signal may only be

The membership function of R(t) are shown in Fig. 23.
Because the control action required for the cart-pole balancing
system is numerical, we use an FCNO as the action network.
The simulation results shown in Fig. 24 indicate that the
proposed reinforcement learning model can learn the control
task in less than 12 trials, where a trial is ended by a failure
signal.

This example successfully demonstrates the applicability
of the proposed technique to the learning problems with
semantic-level error signal. Such learning problems are usually
found in the human-machine interactive systems. Currently,
we are applying the proposed fuzzy reinforcement learning
technique to the adaptive spoken language acquisition sys-
tem with semantic-level error feedback for automated call
routining.

Example 5: Rule Base Concentration for KBE.
In this example, we apply an FCLO with supervised learning

to a practical application, the KBE, for rule concentration. The
KBE [37] is an expert system that evaluates expert system
application. In KBE, an expert system decides whether or not
an application with certain characteristics is a good expert
system application. Selecting good applications for expert
system is crucial not only to the success of a particular project,

qt + 1) = e(t) + ne@),
e(t + 1) = e(t) + Ae(t)

I , - f (t) - mae2(t) sinO(t) + p,sgn(i(t))
m,+m

1 4 mcos2 8 (t)
3 m , + m

l [- -

g sin 8 (t) + cos 8 (t)
= d(t) + A

x(t + 1) = x (t) + Ai(t) ,
i (t + 1) = i (t) + A?(t)

f (t) + m1[h2(t) sinB(t) - e(t) c o s ~ (t)] - p,sgn[i(t)]
m , + m

= k (t) + n

LIN AND L U A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS 187

% -
I-/ 8 ”

16006.
m-
am- i

i
i
i
i
i
!

% --
I 8 ” =: i

J j
/

i 1
Iiab

Fig. 24. Learning curves of the proposed fuzzy reinforcement learning
system on the cart-pole balancing problem in Example 4.

but to the long term view of knowledge-based system work
which develops in your company.

In D E , inputs of each feature are linguistic terms describ-
ing the characteristics of the application, and the output of
KBE is suitability which indicates whether the application of
the expert system on a domain is good or bad. These features
are described as follows:

TABLE I
THE KBE TRAINING RULES IN EXAMPLE 5

Membership Membership

1~~ ~~~

Worth: The worth for doing any software project based
on a payoff of some kinds.
Employee Acceptance: How will employees react to the
system? That is, the effects of the system on corporate
culture. 0

Solution Available: How good is an existing solution? 0 1 0 1

Easier Solution: Is there an easier way to solve the

Teachability: How easily is the skill taught?
Risk The likelihood of not being able to complete a
project.

(a) (b)

problem? Membership Membership

Because all the inputs and output are linguistic, we use
FCLO and supervised learning scheme in Section IV for rule
base concentration for D E . We are given 486 fuzzy if-then
rules from experts in advance. These fuzzy if-then rules and
the membership functions used for each attribute are illustrated
in Table I, Fig. 25, and Fig. 26. In Table I, the star (*) means
“don’t care.” Hence, for example, the first rule in the table in
fact includes 54 (3 x 3 x 3 x 2) rules. The learned fuzzy logic
rules and fuzzy weights are shown in Table 11, Figs. 27 and
28. We use only 13 fuzzy if-then rules to represent the 486
fuzzy if-then rules in the original knowledge base.

VII. CONCLUSION

In this paper, we proposed a neural fuzzy system that
can process both numerical and linguistic information. The
proposed system has some characteristics and advantages: 1)
The inputs and outputs can be fuzzy numbers or numerical
numbers; 2) The weights of the proposed neural fuzzy system
are fuzzy weights; 3) Owing to the representation forms of
the a-level sets, the fuzzy weights, fuzzy inputs, and fuzzy

0 1 0 1

(C) (4
Membership Membershio

0 1 0 1

(e) (0

Fig. 25. The input membership functions for training in Example 5.

outputs can be fuzzy numbers of any shape; 4) Except the
input and output layers, numerical numbers are propagated
through the whole neural fuzzy system; thus the operations in
the proposed neural fuzzy system are not time consuming and
the required memory capacity is small. The proposed system

188

Membership

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

Membership

0 1

Fig. 26. The output membership functions for training in Example 5.

TABLE I1
THE LEARNED Fuzzy RULES IN EXAMPLE 5

Membership

0 1

(b)

MembershiD Memhershb

0 1

(c)

0 1

(d)
Membership

0 1

(e)

0 1

(0
Fig. 27. The learned input fuzzy weights in Example 5.

has both supervised and reinforcement learning capabilities.
With supervised learning, the proposed system can be used
for a fuzzy expert system, fuzzy system modeling, or rule
base concentration. With reinforcement learning, the proposed
system can be used as an adaptive fuzzy controller. It can

Fig. 28. The learned output fuzzy weights in Example 5.

learn proper fuzzy control rules and membership functions
through experts’ linguistic instructions. Computer simulations
satisfactorily verified the performance of the proposed neural
fuzzy system.

REFERENCES

[I] S . K. Pal and S . Mitra, “Multilayer perceptron, fuzzy sets and clas-
sification,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 683-696,
1992.

[2] J. M. Keller and H. Tahani, “Backpropagation neural networks for fuzzy
logic,” Inform. Sci., vol. 62, pp. 205-221, 1992.

[3] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using
fuzzy neural networks with the backpropagation algorithm,” IEEE Trans.
Neural Networks, vol. 3, no. 5, pp. 801-806, 1992.

[4] J. Hertz, A. Krogh and R. G. Palmer, Infroducfion to the Theory of
Neural Computation.

[5] H. Ishibuchi, R. Fujioka, and H. Tanaka, “Neural networks that learn
from fuzzy if-then rules,” IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp.

[6] H. Ishibuchi and H. Tanaka, “Fuzzy regression analysis using neural
networks,” Fuuy Sets and Systems, vol. 50, pp. 257-265, 1992.

[7] H. Ishibuchi, H. Tanaka, and H. Okada, “Fuzzy neural networks with
fuzzy weights and fuzzy biases,” in Proc. In?. Joint Con$ Neural
Networks, San Francisco, 1993, pp. 1650-1655.

[SI Y. Hayashi, J. J. Buckley, and E. Czogula, “Fuzzy neural network,” Inf .
J . Intelligent Syst., vol. 8, pp. 527-537, 1993.

[9] Y. Hayashi, J. J. Buckley, and E. Czogula, “Systems engineering
application of fuzzy neural networks,” in Proc. Inf. Joint Con$ on Neural
Networks, Baltimore, 1992, pp. 413418.

[101 C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning
for neural-network-based fuzzy logic control systems,” IEEE Trans.
Fuzzy Syst., vol. 2, no. 1, pp. 4 M 3 , 1995.

[l l] R. S . Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9 4 , 1988.

1121 A. Barto and P. Anandan, “Pattem-recognizing stochastic learning
automata,” IEEE Trans. Syst., Man, Cybem., vol. SMC-15, no. 3, pp.
360-375, 1985.

[13] H. R. Berenji, “A reinforcement learning-based architecture for fuzzy
control,” Inf. J. Approximate Reasoning, vol. 6, pp. 267-292, 1992.

1141 A. G. Barto, R. S . Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Syst., Man, Cybem., vol. SMC-13, no. 5, pp. 834-847, 1993.

1151 H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic
controllers through reinforcements,” IEEE Trans. Neural Networks, vol.
3, no. 5, pp. 724-740, 1992.

[16] C. W. Anderson, “Strategy learning with multilayer connectionist rep-
resentations,” in Proc. Fourth Int. Workshop Mach. Learn., Irvine, CA,
June 1987, pp. 103-114.

[I71 P. Munro, “A dual backpropagation scheme for scalar reward Learning,”
in Ninth Annual Con$ Cognitive Sci. Soc., Erlbaum, Seattle, 1987, pp.
165-176.

[18] R. J. Williams, “A class of gradient-estimating algorithms for rein-
forcement learning in neural networks,” in Proc. Inf. Joint Con$ Neural
Networks, San Diego, CA, vol. 11, 1987, pp. 601408.

1191 A. G. Barto and R. S. Sutton, “Landmark learning: An illustration of
association search,” Biol. Cerbem., vol. 42, pp. 1-8, 1981.

1201 A. G. Barto and M. I. Jordan, “Gradient following without backprop-
agation in layered networks,” in Proc. I987 Int. Joint Con$ Neural
Nerworks, San Diego, 1987, pp. 629-636.

[21] K. S . Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction.

New York Addison-Wesley, 1991.

85-97, 1993.

Englewood Cliffs, NJ: Prentice Hall, 1989.

189 LlN AND LU: A NEURAL FUZZY SYSTEM WITH LINGUISTIC TEACHING SIGNALS

[22] A. H. Klopf, The Headonistic Neuron: A Theory of Memory, Leaning
and Intelligence.

[23] K. Uehara and M. Fujise, “Fuzzy inference based on families of @-level
sets,” IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp. 111-124, 1993.

[24] K. Uehara, “Computational efficiency of fuzzy inference based on level

[25] -, “Fast operation of fuzzy inference based on level sets,” in Proc.
38th Ann. Conv. Rec. IPS Japan Rec., 1989, p. 3G-3.

[26] L. A. Zadeh, ‘The concept of a linguistic truth variable and its
application to approximate reasoning-I and 11,” Inform. Sci., vol. 8,

[27] A. Kaufmann and M. M. Gupta, Introduction to Fuuy Arithmetic. New
York Van Nostrand, 1985.

[28] M. Braae and D. A. Rutherford, “Fuzzy relations in a control setting,”
Kyberbetes, vol. 7, no. 3, pp. 185-188, 1978.

1291 C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller-Parts
I and 11,” IEEE Trans. Syst., Man, Cybern., vol. SMC-20, no. 2, pp.
404435, 1990.

[30] C. T. Lin and C. S . G. Lee, “Neural-network-based fuzzy logic control
and decision system,” IEEE Trans. Comput., vol. 40, no. 12, pp.
1320-1336, 1991.

[3 11 Jyh-Shing Jang, “Self-learning fuzzy controllers based on temporal
backpropagation,” IEEE Trans. Neural Networks, vol. 3, no. 5 , pp.
714-723, 1992.

[32] T. Tsukamoto, “An approach to fuzzy reasoning method,” in Advances
in Fuzzy Set Theory and Applications, M. M. Gupta, R. K. Regade and
R. R. Yager, Eds.

[33] G. E. Hinton, “Connectionist learning procedure,” Art. Intelligence, vol.
40, no. 1, pp. 143-150, 1989.

[34] J. M. Zurada, Introduction to Artificial Neural Systems. New York
West, 1992.

[35] P. J. Werbos, “Building and understanding adaptive systems: A statisti-
cdnumerical approach to factory automation and brain research,” IEEE
Trans. Syst., Man, Cybem., vol. 17, pp. 7-20, 1987.

[36] -, “Generalization of backpropagation with application to a re-
current gas market model,” Neural Networks, vol. 1, pp. 339-356,
1988.

[37] R. Keller, Expert System Technology-Development and Application.
Englewood, NJ: Prentice-Hall, 1987.

[38] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

Washington, DC: Hemisphere, 1982.

, sets,” in Proc. I989 Spring Nat. Conv. Rec., IEICE, Japan, p. D-400.

pp. 199-249, 301-357, 1975.

New York North-Holland, 1979.

Chin-Teng Lin (S’88-M’91) received the B.S.
degree in control engineering from the Na-
tional Chiao-Tung University, Taiwan, R.O.C.,
in 1986 and the M.S.E.E. and Ph.D. degrees in
electrical engineering from Purdue University,
West Lafayette, IN, in 1989 and 1992, respec-
tively.

Since August 1992, he has been with the
College of Electrical Engineering and Com-
puter Science, National Chiao-Tung University,

I Hsinchu, Taiwan, R.O.C., where he is an As-
sociate Professor of Control Engineering. His current research interests
are fuzzy systems, neural networks, intelligent control, human-machine
interface, and video and audio processing. He is the author of Neural
Fuzzy Control Systems with Structure and Parameter Leaming (World
Scientific).

Dr. Lin is a member of Tau Beta Pi and Eta Kappa Nu. He is
also a member of the IEEE Computer Society, the IEEE Robotics and
Automation Society, and the IEEE Systems, Man, Cybernetics Society.

Ya-Ching Lu received the B.S. and M.S.
degrees in computer and information science
from the National Chiao-Tung University,
Hsinchu, Taiwan, R.O.C., in 1992 and 1994,
respectively.

Since July 1994, she has been with the
Academia Sinica, Taipei, Taiwan, R.O.C.,
where she is currently a Research Assistant at
the Institute of Information Science. Her current
research interests include fuzzy systems, neural
networks, and pattern recognition.

