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Abstract. In a wavelength division multiplexed-passive optical network
(WDM-PON), different fiber lengths and optical components would intro-
duce different power budgets to different optical networking units (ONUSs).
Besides, the power decay of the distributed optical carrier from the optical
line terminal owing to aging of the optical transmitter could also reduce the
injected power into the ONU. In this work, we propose and demonstrate
a carrier distributed WDM-PON using a reflective semiconductor optical
amplifier-based ONU that can adjust its upstream data rate to accom-
modate different injected optical powers. The WDM-PON is evaluated at
standard-reach (25 km) and long-reach (100 km). Bit-error rate measure-
ments at different injected optical powers and transmission lengths show
that by adjusting the upstream data rate of the system (622 Mb/s, 1.25
and 2.5 Gb/s), error-free (<10~°) operation can still be achieved when
the power budget drops. © 2011 Society of Photo-Optical Instrumentation Engineers
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1 Introduction

The passive optical network (PON) has been considered
an attractive solution for the last mile access network.
Its advantages include high capacity, easy upgradeability,
and cost-effectiveness.' A variation of PON, wavelength
division multiplexed (WDM)-PON, is promising for
meeting the demand of rapid increase in bandwidth. A
colorless optical network unit (ONU) is desirable for the
WDM-PON.* Different methods, such as using tunable
light source,” spectral-sliced light source,® amplified
spontaneous emission- injected Fabry—Pérot laser diodes,’
and remodulated light sources®® have been proposed for the
colorless ONU. Recently, we proposed and demonstrated
the use of a distributed optical carrier from the optical
line terminal (OLT) and reflective semiconductor optical
amplifier (RSOA) as the colorless ONU.!%1 RSOA can
serve as a wideband data modulator and a gain medium at
the same time. Besides, the low polarization dependency
and compact size of this approach are also attractive.

Inthe WDM-PON, different fiber lengths and optical com-
ponents would introduce different power budgets to different
ONUs. Besides, the power decay of the distributed optical
carrier from the OLT owing to aging of the optical transmitter
(Tx) could reduce the injected power into the RSOA. In this
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work, we propose and demonstrate a WDM-PON that can ad-
just its upstream data rate to accommodate different injected
optical powers into the ONU. The WDM-PON is evaluated
at standard-reach (25 km) and long-reach (LR) (100 km).
The upstream data rates can be switched to 622 Mb/s, 1.25
and 2.5 Gb/s, depending on the injected continuous wave
(cw) optical powers. Bit-error rate (BER) measurements at
different injected optical powers, data rates, and transmission
lengths are analyzed and discussed. The results show that by
adjusting the upstream data rate of the system, error free (bit
error rate of <10~?) operation can still be achieved when
the power budget drops.

2 Experiment and Results

Figure 1 shows the experimental setup for the RSOA-based
WDM-PON. Inside the central office, a 1550 nm distributed
feedback laser diode was used to generate the distributed cw
carrier. For the standard-reach PON (25 km), the cw signal
was propagated through 15 km of feeder fiber and 10 km of
distribution fiber via an optical circulator (OC) in the remote
node (RN). For the LR-PON, the cw signal was propagated
through 90 km of feeder fiber and 10 km of distribution fiber.
Two erbium-doped fiber amplifiers (EDFAs) were used in
RN to compensate for the transmission loss.

In each ONU, 1% of the injected optical power was tapped
and monitored. The medium access control (MAC) of each
ONU could manage and dynamically adjust the data rate of
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Central Office

Exchange Node

Fig. 1 Experimental setup for a RSOA-based WDM-PON system
with data rate adjustment of upstream traffic. cw: continuous wave;
OC: optical circulator; RN: remote node; OLT: optical line terminal;
MAC: medium access control; EDFA: erbium-doped fiber amplifier;
RSOA: reflective semiconductor optical amplifier.

the RSOA depending on the injected optical power levels.
The rest of the cw carrier was launched into the RSOA to
produce the upstream signal, as shown in Fig. 1. The up-
stream signal was then sent to the receiver at the OLT via
another feeder fiber. Dual-feeder fiber architecture was used
to mitigate the Rayleigh backscattering noise.
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Fig. 2 BER performance of upstream signal in 25 km transmission
when the RSOA is directly modulated at 622 Mb/s, 1.25 Gb/s, and
2.5 Gb/s, respectively, under different downstream injection powers.
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As mentioned before, different fiber lengths and optical
components would introduce different power budgets to dif-
ferent ONUs in the WDM-PON. Here, the relationship be-
tween the direct modulation speeds and the injection powers
of the RSOA was analyzed. A variable optical attenuator was
used to adjust the input power levels from —21to 1 dBm. The
RSOA was an InP buried heterostructure device with modu-
lation bandwidth of about 1.2 GHz (manufactured by CIP).
It exhibits a small signal gain of 20 dB and noise figure of
7 dB. It has a low polarization dependent gain of < 1 dB.

First, we studied the WDM-PON at standard-reach
[25 km single mode fiber (SMF) transmission]. Figure 2
shows the measured BER performances of upstream sig-
nals when the RSOA was directly modulated at 622 Mb/s,
1.25 Gb/s, and 2.5 Gb/s nonreturn to zero data, respectively,
with the pseudorandom binary sequence pattern length of
23! to 1. The corresponding eye diagrams are shown in the
insets. The injected powers varied from —8to —21 dBm. In
the measurements, the minimum injected powers were —21,
—18, and —10 dBm to achieve the modulation rates of 622
Mb/s, 1.25 Gb/s, and 2.5 Gb/s, respectively, as shown in Fig.
2. However, these injection powers produced power penal-
ties of 4.8, 4, and 2.4 dB, respectively. If the power penalty
of 1 dB is required in the access system, higher cw injection
power is needed. In the experiment, injection powers of —15,
— 14, and —8 dBm were required at data rates of 622 Mb/s,
1.25 Gb/s, and 2.5 Gb/s, respectively, to obtain a power
penalty of 1 dB.

In order to achieve long-reach operation, injection powers
of —17, —16, and —5 dBm into the RSOA were needed for
the data rates of 622 Mb/s, 1.25 Gb/s, and 2.5 Gb/s, respec-
tively, as shown in Fig. 3. The received powers of —27.5,
—26.8, and —25.7 dBm were measured at the BER of 109,
respectively. These injection powers produced power penal-
ties of 4.3, 3.6, and 3.4 dB, respectively. When the injection
powers were — 13, —14, and — 1 dBm, respectively, at 622
Mb/s, 1.25 Gb/s, and 2.5 Gb/s, the power penalty was within
1 dB, as also shown in Fig. 3. According to the measurement
results of Figs. 2 and 3, higher modulation speed and lower
power penalty can be obtained by increasing the injection
optical power into the RSOA. This is due to the increase
in relaxation oscillation frequency of the RSOA. However,
as each wavelength channel may experience different optical
losses between the central office and ONU, particularly in the
long-reach transmission (100 km), it is difficult to maintain
a high level of injection power into the RSOA. Hence, in this
case, we may need to dynamically adjust the upstream data
rate in order to maintain the upstream signal performance.

To reduce the power penalty within 1 dB at BER of 107,
larger injection powers into RSOA are required. Figure 4
shows the injection powers versus the measured penalties at
the BER of 102 under 622 Mb/s, 1.25 Gb/s, and 2.5 Gb/s in
25 and 100 km fiber transmissions, respectively. We can see
from Fig. 4 that in both 25 and 100 km fiber transmissions,
the power penalty of <1 dB can be achieved at 1.25 Gb/s
while the injection power was <14 dBm. A higher data rate
(2.5 Gb/s) with power penalty of 1 dB is also possible by
increasing the injection optical power. The results show that
by adjusting the upstream data rate of the system, error-free
(<107?) operation can still be achieved when the power
budget drops.

For example, in our proposed 25 km PON scheme, the
insertion losses of two WDM multiplexers, an OC, and
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Fig. 3 BER performance of upstream signal in 100 km transmission

when the RSOA is directly modulated at 622 Mb/s, 1.25 Gb/s, and
2.5 Gb/s, respectively, under different downstream injection powers.
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Fig. 4 The downstream injection power versus the measured penalty
at the BER of 10~ 2 under 622 Mb/s, 1.25 Gb/s, and 2.5 Gb/s modu-
lations, respectively, in 25 and 100 km fiber transmissions.
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25 km SMF before the RSOA are 12, 1, and 4 dB, respec-
tively, as illustrated in Fig. 1. Since we can use a high gain
EDFA (+ 30 dBm) and no split-ratio is considered, we can
have a high power budget. Moreover, a detailed analysis
about the optical signal to noise ratio (OSNR) and the fiber
length at a different optical gain of a RSOA has been reported
in Ref. 12. In our experiment shown in Fig. 4, we also dis-
covered that the power penalty increases (OSNR decreases)
when the fiber length increases for the same optical injection
power. For example, in Fig. 4, at the bit-rate of 622 Mb/s
and the injection power of —17 dBm, the power penalty in-
creases from <2 dB to >4 dB when the fiber length increases
from 25 to 100 km. Hence, when the fiber length increases,
the RSOA should be operated at a lower bit-rate (as reported
in this paper), or operated at higher gain (as reported in
Ref. 12).

3 Conclusion

In the WDM-PON, different fiber lengths and optical com-
ponents would introduce different power budgets to different
ONUs. Besides, the power decay of the distributed optical
carrier from the OLT owing to the aging of the optical Tx
could reduce the injected power into the RSOA. Here, we
proposed and demonstrated a WDM-PON that can adjust its
upstream data rate to accommodate different injected opti-
cal powers into the ONU. The WDM-PON is evaluated at
standard-reach (25 km) and LR (100 km). The upstream
data rates can be switched to 622 Mb/s, 1.25 Gb/s, and
2.5 Gb/s, depending on different injected cw optical pow-
ers. To achieve transmissions over 25 and 100 km at the
three data rates, at least —21, —18, and —10 dBm, and
—16, —15, and —5 dBm injection powers are required, re-
spectively, with the corresponding power penalties of 4.8, 4,
and 2.4 dB and 4.3, 3.6, and 3.4 dB. The results show that
by adjusting the upstream data rate of the system, error-free
(<10~?) operation can still be achieved when the power
budget drops.
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