
P e r g a m o n
Computers Math. Applic. Vol. 29, No. 10, pp. 85-104, 1995

Copyright©1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0898-1221(95)00049-6 0898-1221/95 $9.50 + 0.00

A Heuristic Algorithm for
the Reliabil ity-Oriented File Ass ignment

in a Distributed Comput ing System

D . - J . C H E N , W . C . H O L AND R . - S . C H E N t
Inst i tute of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

D. T. K. CHEN
Department of Computer & Information Science

Fordham University, Bronx, NY, U.S.A.

(Received and accepted February 1994)

A b s t r a c t - - D i s t r i b u t e d Computing Systems (DCS) have become a major trend in today's com-
puter system design because of their high speed and high reliability. Reliability is an important
performance parameter in DCS design. Usually, designers add redundant copies of software and/or
hardware to increase the system's reliability. Thus, the distribution of data files can affect the pro-
gram reliability and system reliability. The reliability-oriented file assignment problem is to find a
file distribution such that the program reliability or system reliability is maximized.

In this paper, we develop a heuristic algorithm for the reliability-oriented file assignment prob-
lem (HROFA), which uses a careful reduction method to reduce the problem space. Our numerical
results indicate that the HROFA algorithm obtains the exact solution in most cases and the compu-
tation time is significantly shorter than that needed for an exact method. When HROFA fails to give
an exact solution, the derivation from the exact solution is very small.

K e y w o r d s - - F i l e assignment, Distributed computer system (DCS), Memory capacity constraint,
Heuristic, Program reliability.

1. I N T R O D U C T I O N

D i s t r i b u t e d c o m p u t i n g sys tems (DCS) have become increas ingly popu l a r in recent years , for t he

adven t of VLSI t echno logy and low-cost microprocessors has made d i s t r i b u t e d c o m p u t i n g eco-

nomica l ly p rac t i ca l in t o d a y ' s compu t ing envi ronment . The DCS provides po ten t i a l increases in

re l iabi l i ty , t h r o u g h p u t , faul t to lerance, resource shar ing and ex tend ib i l i t y [1-5]. To improve these

pe r fo rmance charac ter i s t ics , we require a careful design of the DCS. To increase rel iabi l i ty , we can

add r e d u n d a n t copies of ha rdware and software, such as process ing e lements (PE) , p rograms , and

d a t a files in different processors . The d i s t r ibu t ion of d a t a files can affect t he p r o g r a m re l iab i l i ty

and overal l re l i ab i l i ty in t he DCS. Hence, an i m p o r t a n t p rob lem in DCS design is to find a d a t a

file d i s t r i b u t i o n t h a t maximizes a cer ta in re l iab i l i ty measure .

Several ne twork re l iab i l i ty measures have been defined and assoc ia ted eva lua t ion m e t h o d s

have been developed. Two of them, D i s t r i bu t ed P r o g r a m Rel iab i l i ty (DPR) [6,7] and D i s t r i b u t e d

S y s t e m Re l i ab i l i ty (DSR) [8-10], are adop t ed in th is paper . For a given d i s t r ibu t ion of p r o g r a m s

and d a t a files in a DCS, D P R is the p robab i l i t y t h a t a given p r o g r a m can be run successful ly and

will be able to access all the files it requires from remote si tes in spi te of faul ts occur r ing among

tAuthor to whom all correspondence should be addressed.

Typeset by .AA/~-TEX

85

86 D.-J. CHEN et al.

the processing elements and communication links. The second measure, DSR, is defined to be
the probability that all the programs in the system can be run successfully.

The file assignment problem and related problems such as task assignment and job scheduling
have been studied for many years [11-14]. They have been studied by using techniques from
graphic theory, queuing theory, mathematical programming, and various heuristic and algorithmic

techniques.
The file assignment problem is a special case of the task assignment problem. The problem we

are concerned with in this paper is to assign files in a DCS so that all the programs are allocated
to reading data or outputt ing data. The file assignment problem is inherently NP-complete [15]
in complexity. This implies that optimum solutions can be found only for small problems. For
larger problems, it is necessary to introduce heuristics to produce algorithms which generate
near-optimum solutions. Several techniques, such as dynamic programming [16], branch-and-
bound [17], backtracking [18] and heuristic programming [19], can be used to avoid the complete
enumeration of the problem space. The choice of a particular technique depends on the structure

of the problem.
The reliability-oriented file assignment problem has been studied for many years. In [18],

a reliability-oriented file assignment algorithm (ROFA) was proposed to solve the optimal file
assignment problem under a memory space constraint. Tha t method first generates all the
maximum feasible file combinations (MFFC) of each node, then constructs a space state tree
according to each nodes' MFFCs and travels the state space tree in a depth-first manner by
applying a back-tracking algorithm.

The back-tracking algorithm first finds a feasible solution as a lower bound and then back tracks
to level n - 1 of the space state tree. If the reliability upper bound (let the unvisited child nodes
contain all required files) is smaller than the lower bound, the downward searching in the space
state tree is fathomed. The reliability was measured by the SYREL algorithm [20]. Although
this method is capable of finding the optimum solution, it is not efficient, so it is probably not a

practical approach.
In this paper, we present a heuristic algorithm for the reliability-oriented file assignment prob-

lem (HROFA) which uses a careful heuristic pruning method to reduce the solution space. Unlike
other assignment strategies, the proposed reduction method is a reasonable one. The HROFA al-
gorithm works in a manner similar to that used to find a minimal file spanning tree; the complete
algorithm and the justification for our reduction techniques are described in this paper. Numer-
ical results show that the HROFA algorithm obtains the exact solution in most cases, and when
it fails to give an exact solution, the deviation from the exact solution is quite small.

The organization of the rest of this paper is as follows. In Section 2, the problem statement,
notation, and definitions that will be used throughout this paper are given. Section 3 states the
reliability oriented file assignment problem in distributed computing systems. The derivation,
correctness, and some examples of application of the HROFA algorithm are described in Section 4.

Section 5 concludes the paper.

2. PROBLEM STATEMENT, NOTATION, A N D D E F I N I T I O N S

PaOBLEM STATEMENT. The reliability-oriented file-assignment problem can be characterized as

follows:

GIVEN.
Network topology
Distribution of programs in the network
Files required by programs for execution
The size of each file
The available memory space of each processing element
The reliability of each communication link

A Heurist ic A lgo r i t hm 87

C O N S T R A I N T . The limitation of memory space of each processing element

V A R I A B L E . File assignment

GOAL. Maximize DPR of a given program (or Maximize DSR of the system)

N O T A T I O N AND D E F I N I T I O N S .

c(v, E)

N~

P R G

F~

P R G p

D P R p

F~

F ~

F S T

M F S T

An undi rec ted g raph in which V M F F C
represen ts the node set of process-
ing e lements and E represents t he
edge set of c o m m u n i c a t i o n links for
t he network unde r cons idera t ion

n
a node i in V

k
t he set of p rog rams al located in t he
network for execut ion P(q)

t h e set of files required by P R G Ip
a p r o g r a m p in P R G

8i

t h e reliability of d i s t r ibu ted
c~

p r o g r a m p

the file i in Fs xi,j

t h e set of files required by P R Gp
for execut ion X}t)

a s p a n n i n g t ree t h a t connec ts the
root node (processing e lements
t h a t runs t he p rog ram under FAr
considera t ion) to o ther nodes such E (P R G p)
t h a t i ts vert ices hold all t h e needed
files

an F S T such t h a t t he re exis ts no
o the r F S T which is a subse t of it

P r (E)

P(i, k)

a feasible file combina t ion such
t h a t there exis ts no o the r feasible
file combina t ion which is a supe r se t
of it

t h e n u m b e r of nodes in G; n -- IVI

t h e n u m b e r s of files in Fs

the probabi l i ty t h a t t h e c o m m u n i -
ca t ion link works (fails)

t he index set of FNp

t h e size of Fi

the available m e m o r y space of N~

the indicator of file a s s i gnmen t
x~,j = 1 if Fj is ass igned to Ni ,
else 0

a feasible file combina t ion of Ni;

~ , i l i2 ' ' ' ~

a set of M F F C s for Ni

event t h a t P R G p can successful ly
run and files in FNp can be
successful ly accessed by P R G p

probabi l i ty of event E

a two-d imens iona l a r ray such t h a t
if the re is a solut ion to t h e file
combina t ion p rob lem wi th t h e first
i e lements and size k

3. T H E R E L I A B I L I T Y - O R I E N T E D FILE A S S I G N M E N T
P R O B L E M IN D I S T R I B U T E D C O M P U T I N G S Y S T E M

We shall now formally define the reliability-oriented file assignment problem. The reliability
oriented file assignment problem can be stated mathematically as follows:

PROBLEM 1. (Maximizing DPR subject to memory space constraint)

Maximize DPRp = Pr [E (PRGB)]
k { ~ sjx/j < C~,

j = l

subject to ~ X~j > 1,

4=1

x~j = 0 o r 1, i = l ,n.

i = 1 , 2 , . . . , n .

88 D.-J. CHEN et al.

PROBLEM 2. (Maximizing DSR subject to memory space constraint)

Maximize DSR = Pr [i=Q E (PRG~)]

j= l

subject to X~j _> 1,
i=1
x i j = O o r 1, i = l , . . . , n , j = 1 , 2 , . . . , k .

i = 1 , 2 , . . . , n .

j = 1 , 2 , . . . , k .

First, we present a back-tracking algorithm [18] for solving Problem 1. The algorithm has two
steps:

(1) For each node Ni, find all of the maximal feasible file combinations (MFFC).
(2) Apply a back-tracking algorithm to find the optimal file assignment.

The following numerical example illustrates the operation of the back-tracking algorithm.
Consider the distributed processing system shown in Figure 1, which consists of six nodes and
the PRG1.

"s

P1 needs F1, F2, F3
File size: 2, 3, 5
Node capacity: 2, 3, 5, 4, 5, 2
for NI,N2,N3,N4.N5 and N6
respectively
Edge reliability: 0.9

File Combinations:
FAI= { (1,0,0) }
FA2= { (0,1,0), (1,0,0))
FA3= ((1,1,0), (0,0,1))
FA4= { (0,1,0), (1,0,0) }
FAS= ((1,1,0), (0,0,1) }
FA6= ((1,0,0) }

Figure 1. A simple DCS for illustration of the back-tracking algorithm.

Two copies of program PRG1 are allocated in node N1 and N6, respectively. The files required
for executing program PRG1 are F1, F2, and F3. The file sizes of F1, F2, and F3 are 2, 3, and 5.
Assume that all the communication links have the same reliability, 0.9. The available memory
space for N1 to N 6 i s M1 = 2, M2 = 3, M3 = 5, M4 = 4, M5 = 5, and M6 = 2. In Step 1,
we generate all MFFCs for each node. These are FA1 = {(1, 0, 0)}, FA2 = {(0, 1,0), (1, 0, 0)},
FA3 = {(1,1,0), (0,0,1)}, FA4 = {(0,1,0), (1,0,0)}, FA5 = {(1,1,0), (0,0,1)}, and FA6 =
{(1,0,0)}. The nodes in Figure 2 have been numbered according to the sequence of the back-
tracking procedure. The bounding function is applied at number 9 of the state space tree. The
reliability upper bound 0.982 is less than the lower bound 0.988 found so far, so then node 9
is fathomed. The more precise upper bound will be estimated at the lower level of the state
space tree. The optimal solution is [(xn, X12, X13), (X21, 3g22, X23), (X31, X32, X33), (X41, X42, X43),
(Xsl,X52,Z53), (X61,X62, Z63)] = [(1,0,0), (0, 1,0), (1, 1,0), (0, 1,0), (0,0, 1), (1,0,0)]. The opti-
mal value of DPR1 is equal to 0.988.

The back-tracking process is an elegant method. In real cases, however, the reliability difference
between all feasible solutions is not so clear. A small reliability difference is easily obtained by
the reliability contribution of the Fullfile nodes (the unvisited nodes) which are assumed in the
back-tracking algorithm. The more Fullfile nodes a state assumes, the higher its reliability. So

N1

N6

A Heuristic Algorithm

¢)

(1 ,o,o)

(1 ,o,o)

89

N2
(O,l,O) 7 ~ (1,o,o)

N3

N4 (0,1

N5

(1,1 ,o)

(1 ,o,o)

!o,o,1) (1,1,o) / \,(o,o,1)

)0.999 ~'~10.999 ~ 0 . 9 9 9

0.988

(1,1;¢~ t <i,i,<~ +X ' i , ,4 "X ;,'., ,(,'V;:., I,''~'.'! I t~,+,:,?, l!o,~,?>, l(O,V,)

0.0 0.988 0.986 0.982 0.982 0.987
Figure 2. Generation of the state space tree for Figure 1.

the pruning will rarely occur in the high levels of the state space tree; most of the pruning will
occur in the last few levels of the state space tree (because there are fewer Fullfile nodes in tha t
pathset) . Hence, this method may take more time than an exhaustive search. The example
shown in Figure 2 provides the evidence for this conclusion (there are only 16 pathsets, but the
back-tracking algorithm travels 23 states). So the branch-and-bound method is not well suited
for the ROFA problem.

Also, the connection of a network has an important influence on the certain reliability. This
fact motivates us to develop a heuristic algorithm, which we call HROFA, that uses information
on network connections and analyzes D P R formulas to avoid exhaustive enumeration of the state

space tree.

4. DERIVATION OF THE HROFA A L G O R I T H M

Nair [12] proposed a heuristic method for choosing the pathset with the highest possible relia-
bility (under some assignment). Let the path be assigned according to this method. Then choose
the pathset with the next highest reliability and assign the pa th to it, and so on. The maximal
error rate of this method is under 4.8%, and in most cases, it successfully derives the correct

answer.

90 D.-J. CHEN et al.

We can s tar t spanning our state space tree by constructing the most reliable MFST. Tha t is,
spanning the state space tree is just like finding its MFST. Using this basic idea for analyzing
the D P R formula, we propose a heuristic algorithm for the reliability oriented file assignment
problem. We call the algorithm HROFA (Heuristic algorithm for ROFA).

4.1. T h e P r o p o s e d H e u r i s t i c A l g o r i t h m (H R O F A)

In the HROFA algorithm, we span the state space tree like ROFA does. We reduce the s tate
space tree in a top-down manner by checking its file combination, and the nodes are spanned in

different order. The following is an outline of HROFA:

(1) Generate the spanning order of each node.
(2) Perform HROFA algorithm to span the state tree.

STEP 1.

(a) Calculate the spanning order of each node.
The order is measured by the node reliable degree (RD).

RDi = Xs# * Ff~n/~
where X,, i is the average link reliability from Node i to Node s (the start ing nodes).
F/nn A is the average number of needed files contained in Node i.
Example: If the MFFCs of Ni are (1,1,0), (0,0,1) and the file needed is (1,1,1), then

Finny ̀ = (2 + 1)/2 = 3/2.
The X,# = 0.9 (suppose the reliability of all links is 0.9), and RDi = 0.9 • 3/2 = 1.35.

(b) Find the node that has the highest RD and add this node to StartNode. Repeat the
process until the spanning order of all nodes is found.

For example, consider the network below:

Link Reliability : 0.9
File Needed: (1,1,0)
Rle Combinations:

N1 (1,0, 0)
N2 (1, 1,0)
N3 (0,1,1)
N4 (0, 1, 1)

Figure 3. A simple DCS.

Since the link reliability is 0.9, the Xs,i for each node is 0.9, and the F/,,nl, for each node is

{1,2,1,1}.

Table 1. The generation of spanning order for Figure 3.

StartNode 1 2 3 4

1 - 0.9*2 0.9.1 -

1,2 - - 0.9.1 0.9.1

1, 2, 3 - - - 0.9 * 1

1, 2, 3, 4

So the spanning order is N1, N2, N3, N4. Let the node sequence be Nil, Ni2, N~3 N~n, and
span the state space tree in that sequence. Spanning to some node, if we find paths tha t contain
all the needed files, then we delete their brother paths which do not contain all the needed files,
i.e., we mask the Fg.n. We then continue spanning, and if we find pathsets that can be reduced,
then we mask FN~2. We repeat the above reduction method until no pathset can be reduced or
all nodes have been masked.

A Heuristic Algorithm 91

ancestor

The pruned
node

l~ul
(Does not contain all the (Contain all the needed
needed files.) files.)

Figure 4. The pruned pathsets and the super pathsets.

4.2. A l g o r i t h m

Now we present a heuristic algorithm for computing the ROFA problem under memory space
constraints. This is an enumerative algorithm which uses heuristic reduction to reduce the state
space tree. The algorithm consists of four steps, as follows:

Step 0.
Step 1.
Step 2.
Step 3.
Step 4.

Initialization.
Generate all MFFCs of all nodes.
Generate the spanning order of each node.
Span the state space tree by the spanning order and perform heuristic reduction.
Compute the reliability of each pathset spanned in Step 3 and output the best file
assignment.

Step 0. In i t ia l izat ion

We read the data from the file which contains the system parameters to obtaining the following
information:

N = number of nodes
L -- number of links
F = number of files
P = number of programs

C (i) = capacity of node i
S (i) = size of file i

P N (i) = file needed for program i to be executed

Step 1. G e n e r a t e all M F F C s o f all nodes

We solve this problem using a dynamic programming technique. Since the problem constraints
are

92 D.-J. CHEN et al.

XIS(1) + X2S(2) +... + XFS(F) <_ C(i),

where Zj = 1, if file j is contained in node, else 0.
I t can be divided into several subproblems as follows:

x,s(1) + x s(2) +... + X S(F) = C(i)

XIS(1) + X2S(2) +... + XFS(F) = C(i) - 1

X1S(1) + X2S(2) + . . . + X F S (F) = C(i)-MaxFileSize.

Each of these problems is just the Knapsack problem and the feasible solution is a file assign-
ment of it.

(C(i)-MaxFileSize) is set as a bound because, if there exists an MFFC in which

X1S(1) + X2S(2) + . . . + X F S (F) < C(i)-MaxFileSize,

then we can add another file not included in this MFFC and the total file size will still be

smaller than N(i) , which is a contradiction. So there is no MFFC with total size smaller than
(C(i)-MaxFileSize).

We use a dynamic programming technique to generate a table which indicates if there exists a
solution in the size of (see Table 2).

Table 2. Table generated by Knapsack algorithm.

0

$1 o

$2 o

s3 o

1 2 3 4 5

- I - - -

- 0 I - I

- 0 0 - 0

T: a solution containing this item has been found
'O': a solution without this item has been found
' - " no solution of this size T

If there is a solution in the entry P(i, k), then we will check whether P(i - 1, k - Si) has a
solution in it. If so, we continue checking until we check P(0, 0). When we find a feasible file

combination, we will check whether it is covered by or covers the FFCs found before. We then
delete the FFC if it is covered by other FFCs, or add the FFC to FOUND, if it is not covered.
The following is a formal description of Step h

M F F C (K) .

/*S(the array that stores the file size). K, the node capacity, P (a two-dimensional array such

that p[i, k]E = true if there exists a solution to the file combination problem with the first i
elements and size k, and P[i, k]B -- true if the ith element belongs to tha t solution*/
begin

if ~ S[i] < K then
begin

M F F C = (1, 1, 1)
r e t u r n

end
Knapsack(K)
F F C = 0

A Heuristic Algorithm 93

f o r t ---- K downto K-MaxFileSize do

check(K, t, FFC)

end

function Knapsack(K)

begin

P[0, 0]E -- true

f o r k = l t o K do

P[0, k]E = false

f o r i : l t o F do

f o r k = 0 t o K do

P[i, k]E = false

if P [i - 1 , k] E then

begin

P[i, k]E = true

P[i, k]B = false

end

e l s e i f k - S[i] >_0 then

i f P[i - 1, k - S[i]]E then

begin

P[i, k]E = true

P[i, k]B = true
end

od

end

function CHECK(K, t, FFC)

begin

if K -- 0 then

check if FFC is covered or covers other elements in FOUND, add

to FOUND if the FFC is not covered

f o r i = t to N do

if P[t,K]E then

beg in

FFC[= 1 << i

check(g - S[t], t - 1, FFC)

end

e l s e i f K - S I t] >_0 then

begin

FFCI= I << i

check(K - S[t]), t, FFC)

end

end

od

S t e p 2. G e n e r a t e t h e s p a n n i n g o r d e r o f each n o d e

In Step 2, we choose a starting node which contains the program to be executed and add

that starting node to StaxtNode(0). We then compute the Reliable degree (RD) of each node
to the StartNode and choose the most reliable node to add to StartNode(1). According to the
new StartNode, we find the most reliable node from among the rest of the nodes and add it
to StartNode(2). We repeat the process until all nodes have been added to StartNode. The

StartNode records the spanning order of each node.

94 D.-J. CHEN et al.

S t e p 3. Perform HROFA algorithm

The HROFA algorithm acts as follows: According to the spanning order, we span the state
space tree in DFS manner. While spanning to a node, if we find there exist pathsets which
contain all the needed files, we eliminate the other pathsets that do not contain all the needed
files. Then we mask the MFFCs of the node which is in StartNode(1) and continue spanning to
other nodes not yet spanned. If we find there exist pathsets that contain all the needed files, we
cut the other pathsets which do not contain all the needed files. We then mask the MFFCs in
StartNode(2), and continue the spanning and cutting process described above. We repeat the
process until all MFFCs of each node have been spanned. The formal HROFA algorithm is given
below.

H R O F A (SPANNODE, MASKNODE, PATHSET).

/* The SpanNode is the node to be spanned. The MaskNode is the node whose MFFCs are

masked */

begin

i f SpanNode = 0 t hen

beg in

add the Pathset to FOUND

r e t u r n

end

f o r all the MFFCs of the SpanNode do

i f the file included in the pathset contains all the needed files t hen

begin

temp = Pathset I the MFFC

HROFA(the next node of the SpanNode, the

next node of the MaskNode, temp)

end

od

i f there does not exist a pathset which contains all the needed files t hen

begin

f o r all MFFC in SpanNode do

temp = Pathset I the MFFC

HROFA(the next node of SpanNode, MaskNode, temp)

od

end

end

Step 4. Compute the r e l i ab i l i ty o f each pathset

Since the system parameters have been read in Step 0, we know the network topology, the
program distribution, the files needed for each program to be executed, and the link reliability.
We still need to know the file distribution of each node in order to compute the pathset reliability.
In this step, we simply pass the file distribution of each node according to the pathset in the
FOUND. Then we call the reliability evaluating program FREA [21] to compute the pathset
reliability. After computing all the reliabilities, we will output the file assignment with the
highest reliability.

The complete algorithm

A formal description of the HROFA algorithm is given below.

A Heuris t ic A lgo r i t hm 95

H R O F A ALGORITHM.

S T E P 0 . I n i t i a l i z a t i o n .

read system parameters

FOUND =

F N = (.J Fj

S T E P

S T E P

S T E P

S T E P

Pj EPN

find a node xi in the DCS that contains the program to be executed
Star tNode = xi
MaskNode = 0

1. Generate MFFCs of all nodes.

f o r all nodes do

MFFC(node capacity)

2. Generate the spanning order of each node.

NextNode(StartNode)

3. Perform HROFA algorithm.

pathset -- 0
HROFA(Star tNode, MaskNode, pathset)

4. Compute pathset reliability.

f o r each pathset in FOUND do

call FREA to evaluate the pathset reliability
output the assignment which has the highest reliability

4.3. Examples

We use the DCS shown in Figure 1 as an example to show how the HROFA works.

STEP 0. Initialization.

The system parameters are known. The node capacity for node 1 to node 6 is 2,3,5,4,5,2. The
file sizes for F1 to F3 are 2, 3, and 5. All the link reliabilities are the same and equal 0.9. Two

copies of program PRG1 are allocated in node 1 and node 6. The files needed for PRG1 are F1,

F2, and F3.

STEP 1. Generate the MFFCs of each node.

The Knapsack generates a table as follows:

Table 3. Table genera ted for t he example.

NodeSize

FileSize

$1

82

83

0 1 2 3 4 5

O - I - -

0 - 0 I - I

0 0 0 - 0

Node[l]. MFFC = {(1,0,0)}
Node[2 I. MFFC = {(0,1,0),(1,0,0)}
Node[3]. MFFC = {(1,1,0),(0,0,1)}
Node[4]. MFFC = {(0,1,0),(1,0,0)}
Node[5]. MFFC = {(1,1,0),(0,0,1)}
Node[6]. MFFC = {(1,0,0)}

96 D.-J. CHEN et al.

S T E P 2. G e n e r a t e t h e s p a n n i n g o r d e r o f e a c h n o d e .

Table 4. Table genera ted for the example in Step 2.

S ta r tNodeSe t RD1 RD2

1 - 0.9

1,3 - 0.9

1,3,5 - 0.9

1,3,5,2 - -

1,3,5,2,4 - -

1,3,5,2,4,6

RD3 RD4 RD5 RD6

1.35 0 0 0

- 0 1 . 3 5 0

- 0 . 9 - 0 . 9

- 0 . 9 - 0.9

- - - 0.9

The spanning order is {1, 3, 5, 2, 4, 6}.

STEP 3. Perform heuristic reduction.

N1 ~ (1 , 0 , 0)

N1 ~(1,0,0)

N3 (1 ' 1 ' ~ 0'1)

(a) SpanNode = N1, MaskNode = 0. (b) SpanNode = N3, MaskNode = 0.

F igure 5. The resul t in HROFA Step 3a.

RIo Include

N1 (~)(.~,o,o)

N3 o,~,o1~1
(1,1,0) (1,1,1) (1,1,1) (1,0,1)

(c) SpanNode = N5, MaskNode = O.

N1

N3

N5

N2

R] o L ~ l e

Figure 6. The result in HROFA Step 3b.

(

J
(1,1,1)

()
(1 ,o,o)

(

/
(o,o,1) o)

,o) (o,l,o) / \

(1,0,1) 11,1,0) 11,1,0)

(d) SpanNode = N2, MaskNode = N3.

F igure 7. The resul t in HROFA Step 3c. F igure 8. The resul t in HROFA Step 3d.

N 1

N 3

A Heuristic Algorithm

%
(1.1,0) £ . u , u)

| I1.1 .o)
N5 () (° ' ° '1)

N 2 (o,1 ,o) (o,1 o,.) j~ ~,o,o)
Q i ~ - ~

N4 (o~~,....,) ~,) (o.1.~ ~ . ~ ~ . .)

File Include (1,1.O) (1,1,O) (1,1,0) (1,1,0) (1,1,0) (1,1,0)
(e) SpanNode = N4, MaskNode = N3, N5.

Figure 9. The result in HROFA Step 3e.

97

N1 I (1,0.0)

N3

N5
(0,0.1) (1,1,0)

N2 I (0.1,0) (0,1,0)

N4 (O.l.O) / ~1~1,o,o) (O,l,O) / ~(1,o.o)

N6

(1 ,o.o) ~ 0)

(f) SpanNode = N6, MaskNode = N3, N5.

Figure 10. The result after HROFA Step 3.

STEP 4. Compu t e the pathset reliability.
The best assignments for N1, N2, N3, N4, N5, N6 are {(1,0,0), (0,1,0), (1,1,0), (0,1,0), (0,0,1),

(1,0,0)} (see Figure 11).

OW~ 29:10-H

98

N1

N3

N5

N2

N4

N6

D.-J. CHEN et al.

©

~ ~,(0,0,1) ~,1,0)
() (

10,1,0) 10,1,01

,,,; .o.,
0.gg7800g 0.g88080g 0.gg7800g

o.gg7eoog
Figure 11. The result in HROFA Step 4.

pathget A B

~ ~I,0,0)

i ,0) (~,0,0)
o.g880eog

0.g664115

NI

C

Figure 12. Example showing correspouding pathsets.

4.4 . T h e C o r r e c t n e s s o f t h e H R O F A A l g o r i t h m

To perform the pruning described above, the reliability of each pathset of the pruned subtree
must be less than or equal to the corresponding super pathsets.

What are the corresponding pathsets? Consider Figure 12.
Pathsets A, B, and C are corresponding pathsets, i.e., these pathsets differ in only one MFFC,

which is on the pruned level (node Nj). This means all these file assignments of the corresponding
pathsets are different in only one node and that node is on the level where pruning occurred.

A Heuristic Algorithm

Figure 13.
pathsets.

(1,0,1) (1,0,1)
Example showing the different file assignments between corresponding

(~~,~) (~) (~,o,~)
reduceto - (1,1,0) N ~

(l , o, 1)
Figure 14. Example showing different file assignments between corresponding path-
sets.

99

In Figure 13, the two networks are different in the file-assignment of Nj. Since there is only
one node difference, we divide all the MFSTs of a pathset into three cases. We then observe the
following facts:

CASE 1. The MFST does not include the pruned node, and the reliability of the corresponding
pathsets is the same.

We can regard the network as if it were reduced to a subgraph (Figure 14). The MFSTs of
the corresponding pathsets are generated from the same file assignment, and the pathsets have
the same MFSTs. If we span the MFSTs ' probability in the same path order, the same MFST
should have the same probability. So the total reliability of the MFSTs which do not include the
pruned node is the same. We denote the reliability difference between the super pathset and the
pruned pathset in Case 1 by D1.

CASE 2. The MFST contains the pruned node.

We divided the problem into two parts.

CASE 2A. The MFST contains all the ancestor nodes. The reliability of the Super pathset is

superior.

Since it spans the state space tree from the start node to all of the ancestor nodes and the
pruned node, the super pathset already has all the needed files, but the pruned pathset must
connect to other nodes so as to contain all the needed files. So the probabili ty of the MFSTs
of a pruned pathset must be smaller than that of the super pathset. For example, from the file
assignment of the super pathset, one can generate as MFST like that shown in Figure 15.

As shown in Figure 16, however, the pruned pathset should have more nodes to generate
an MFST. Even if the pruned pathset has more MFSTs, its total probabili ty is still smaller than
tha t of the super pathset. No mat ter how many MFSTs the pruned pathset has (even if it has

100 D.-J. CHEN et al.

Figure 15. An MFST of the super pathset.

Figure 16. Possible MFSTs of the pruned pathset.

Figure 17. A five-node fully connected network.

infinitely many MFSTs), the total probability is

0.93 + 0.1 * 0.93 -~ 0.12 * 0.93 -t- 0.92(0.9 + 0.09 + 0.009 + - ..),

which is still smaller than the 0.92 of the super pathset (by measuring Figure 16 and Figure 17
and supposing the reliability of all links is 0.9).

We let the reliability difference between the corresponding pathsets in Case 2a be Da.

CASE 2B. At least one ancestor node is not included in the MFST. The reliability difference

between the pathset is small.
The probability of Case 2b is given by a te rm of the form HqiHpj. Because each MFST in

Case 2b probability derivation is multiplied by more than one term q, the reliability difference

between the super pathset and the pruned pathset in Case 2b is very small. Let the difference
between the corresponding pathsets be Db.

Today, link reliability of more than 0.9 is quite common, and the te rm q is typically smaller
than 0.1. Since the probability of each MFST in Case 2b is multiplied by more than one such q,
Case 2b contributes less to the probability than Case 2a does. We cannot say the total reliability
contribution of Case 2b must be smaller than that of Case 1, for there may be many variations
in the network topology, file distribution, and program distribution in a DCS, so there could
be exceptions. However, we can say that in most cases the total probabili ty contribution is
approximately equal to Case 2b and is about 5% of a system's reliability. So Db is typically quite
small.

The worst case for our reduction could be that the super pathsets of Case 2b have no MFST
and the pruned pathsets have many MFSTs. Even in this case, however, the error rate is still
quite small (because Da reduce the error, and Db is inherently very small, about 5% of system
reliability).

The restriction of Case 1 is that one node (the done node) is not included, but in Case 2b,
at least one ancestor node is not included and this node is connected to the pruned node. This
means tha t in Case 2b, the DCS is reduced to a subgraph that is smaller than tha t of Case 1.
Each condition in Case 2b is likely to have fewer MFSTs than Case 1, and the probabili ty of

A Heuristic Algorithm 101

their MFSTs is multiplied by more q's. If the link reliability is 0.9, ten similar MFSTs may be
needed to save a q term. In Case 1, the MFST's probability expression could be 0.12 • 0.93, but
in Case 2b, it is 0.13 • 0.93. So ten such MFSTs may be needed. In other words, the reduction

process is just like

DPR =pi + q , p j +q2 ,pk + . . . +
qZ, (pi + q , p j + q 2 , p k + . . .) +

qm, (. . .)+

HROFA (no mask node)

HROFA (mask StartNode[1])

HROFA (mask StartNode[2]),

w h e r e l < m < n
We cut the pathsets which are less reliable in each span level. In HROFA (no mask node),

we cut the pathsets which have the smaller product for the term (pi + q • /P + q2 , pk + . . . +).
In HROFA, (mask StartNode[1]), we cut the pathsets which have the same value for term 1
(pi + q, pj + q2, pk +. . .), but have a smaller value for term 2 (ql , (pi + q , pj + q2, pk +. . .)) .
The HROFA (mask StartNode[2]) cuts the pathsets which have the same value for term 1 and
term 2 but a smaller value for term 3, and so on. If an exception occurs, it must be that the Da
is quite small and the pruned pathset has many more MFSTs than the super pathset in Case 2b.
Such a condition will occur in a fully connected network.

In a fully connected network, there are many MFSTs in each possible file assignment for a
certain program. Thus, when we execute the HROFA algorithm, the reliability difference between
the corresponding pathsets in Case 2a will be very small. Tha t is, D~ will probably be reduced
to be a value like 0.0000081, or else Da will no longer be a great advantage to Db, for the pruned
pathset would probably have many more MFSTs than the super pathset in such a topology.

In such a topology, the most important parameter influencing the reliability is the load bal-
anced. Because there are many paths that connect two different nodes, under the limitation of
memory space constraints, the more load-balanced the network is, the more choices there are for
a program to access the needed files, and thus the more MFSTs exist.

To sum up, our method is to reduce the pathsets whose reliability in Case 1 (about 90%
of system reliability) is smaller than that of the other super pathsets, and thus for which the
difference D~ is bigger than Db. It is highly unlikely that the reliability of the reduced pathset
will be greater than that of the super pathsets. This is the main justification for this reduction
method.

4.5. Some Numerical Results

We now compare the reliability given by the HROFA algorithm with the optimal reliability
obtained by complete enumeration. For a given network topology, we compare the difference be-
tween the optimal solution for the reliability and the reliability obtained by the HROFA algorithm
under variations in the program distribution and link reliability.

EXAMPLE 1.

Figure 18. A

P1 ne~ls F1, F2, F3,F4

" ~ File size: 2, 3, 4, 5

Node capacity:
4, 5, 7 ,6 .7 ,4

six node network topology.

102 D.-J. CHEN et al.

Table 5. The numerical result for Example 1.

P1 in 1 (1,2) (1,3) (1,4) (1,5) (1,6)

p--0.9

reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

difference

p=0.8

reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

difference

p----0.7

reliability

difference

OPT reliability

p - - 0 . 9

p=0.8

p=0.7

0.0000000

0.9882000

0.9472000

0.8722000

0.0000000

0.9987948

0.9887744

0.9575776

0.0000000

0.9988119

0.9892352

0.9604693

0.0000000

0.9999118

0.9975398

0.9839450

0.0000000

0.9999579

0.9987379

0.9820002

0.0000000

0.9998462

0.9968845

0.9820002

Total pathsets: 1296

After HROFA: 108

EXAMPLE 2.

P1 need F1, F2 ,F3

Node capacity:
2 3 5 4 5 2

File Size: 2 3 5

Figure 19. A six node fully connected network topology.

Table 6. The result for Example 2.

P1 in 1 (1,2) (1,3) (1,4) (1,5) (1,6)

p = 0 . 9

reliability

difference

p = 0 . 8

reliability

difference

p=0.7

reliability

difference

OPT REL

p = 0 . 9

p - - 0 . 8
p = 0 . 7

0.0000100

0.0003228

0.0024593

0.9999899

0.9996621
0.9971307

Total pathsets: 1296

After HROFA: 108

0.0000100

0.0003219

0.0024351

0.9999999

0.9999869
0.9996398

0.0000010

0.0003040

0.0022844

0.9999999

0.9999869

0.9996398

0.0000100

0.0002040

0.0024351

0.9999999

0.9999869

0.9996398

0.0000010

0.0003160

0.0022844

0.9999999

0.9999869
0.9996398

EXAMPLE 3.

0.0000100

0.0003240

0.0024847

0.9999999

0.9999895

0.9997050

PI need FI, F2. F4

Node ~ t y :
4 5 6 8 1 0 5 6 4

Fileslze: 2 3 4 5

Figure 20. The system parameter for Example 4.

A Heuristic Algorithm

Table 7. The result for Example 3.

103

P1 in (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)

p--0.9
reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
difference

p=0 .8
reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
difference

p=0 .7

reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

difference

OPT REL
p----0.9
p--0.8
p--0.7

The number of total pathsets: 10935

0.9989100
0.9972122
0.9836672

After HROFA: 3329

0.9989100
0.9907200
0.9673300

0.99989100
0.99072000
0.96733000

0.9999999
0.9999999
0.9941340

0.9999776
0.9992397
0.9941340

0.9999776
0.9995397
0.9941340

0.9998608
0.9972122
0.9836672s

When we apply the HROFA algorithm, an exception will occur when the network topology is
fully connected. This is because the superior reliability part (Case 2a contains the pruned node
and all of the ancestor nodes) for Super pathsets becomes very small, and the reliability difference
from Case 2b (containing the pruned node and at least one ancestor node not included) becomes
significant for the many MFSTs in it. Even so, the deviation is no more than 0.25% (at a link

reliability of 0.7).

5. C O N C L U S I O N

Distributed Computing Systems (DCS) have become a major trend in today 's computer sys-
tem design for their high fault-tolerance, potential for parallel processing, and bet ter reliability

performance. One important characteristic of a DCS is that it offers redundant copies of soft-
ware and/or hardware to improve the reliability of the system. One important problem in DCS
design is the file assignment problem. This problem has been proved to be an NP-complete
problem. Traditional solution techniques such as the back-tracking algorithm and mathemat i -
cal programming can give the optimal solution, but they cannot effectively reduce the problem

space. Sometimes, an application requires a fast way to compute reliability because of resource
considerations. In this situation, deriving the optimal reliability may not be a wise idea. Instead,
a fast method yielding near optimal reliability is preferable.

In this paper, we develop a heuristic algorithm (HROFA) for the reliability-oriented file assign-
ment problem that uses a careful reduction method to reduce the problem space. Our numeral
results show tha t the HROFA algorithm obtains the exact solution in most case and the compu-
tat ion t ime is significantly shorter than that needed for an exact method. When HROFA fails to
give an exact solution, the deviation from the exact solution is very small.

R E F E R E N C E S

1. D.P. Agrawal, Advanced Computer Architecture, 376 pages, Computer Society of the IEEE, (1988).
2. T.C.K. Chou and J.A. Abraham, Load redistribution under failure in distributed systems, IEEE Trans.

Comput. 32, 799-808 (1983).
3. D.W. Davies et al., Distributed systems architecture and implementation, Lecture Notes in Computer

Science, p. 105, Springer-Verlag, Berlin, Germany, (1981).
4. P. Enslow, What is a distributed data processing system, IEEE Computer 11 (1978).

104 D.-J. CHEN et al.

5. J. Garcia-Molina, Reliability issues for fully replicated distributed database, IEEE Computer 16, 34-42
(1982).

6. V.K. Prasnna Kumax, S. Hariri and C.S. Raghavendra, Distributed program reliability analysis, IEEE
Trans. Software Eng. 12 (I), 42-50 (1986).

7. A. Kumar, S. Rai and D.P. Agrawai, On computer communication network reliability under program
execution constraints, IEEE Journal on Selevted Areas in Communication 6 (8), 1393-1399 (1988).

8. S. Hariri, C.S. Raghavendra and V.K. Kumar, Reliability analysis in distributed systems, In IEEE '86
Distributed System Conf., pp. 564-571, (1986).

9. V.K. Kumar, S. Hariri and C.S. Raghavendra, Distributed program reliability analysis, IEEE Trans. Soft-
ware Engineering 12, 42-50 (1986).

10. C.S. Raghavendra, V.K. Kumar and S. Hariri, Reliability analysis in distributed systems, IEEE Trans.
Computer 37, 352-358 (1988).

11. W.W. Chu, L.J. Holloway, M.T. Lan and K. Ere, Task allocation in distributed data processing, IEEE
Computer Magazine, 57-69 (1980).

12. V. Rajendra Prasad, Y.P. Aneja and K.P.K. Nair, A heuristic approach to optimal assignment of components
to a parallel-series network, IEEE Trans. Reliability 40 (5) (1991).

13. C.V. Ramamoorthy, The isomorphism of simple file allocation, IEEE Trans. Computer 32 (1983).
14. W.W. Chu, Optimal file allocation in a multiple computer system, IEEE Trans. Computer 18 (10) (1969).
15. K.P. Eswaran, Placement of records in a file and file allocation in a computer network, In Information

Processing 74, IFIPS, North-Holland, New York, (1974).
16. S.H. Bohai, Dual processor scheduling with dymanic reassignment, IEEE Trans. on Software Enginnering

5 (4), 341-349 (1979).
17. J. Akoka, Bounded branch and bound method for mixed integer non-linear programming, Sloune-School of

Management, p. 77, MIT, (1977).
18. C.P. Wang, On the study of the file assignment in distributed system, NCTU Technical Report, (1990).
19. G. Hwang, A heuristic task assignment algorithm to maximize reliability of a distributed system, IEEE

Trans. on Reliability 42 (3), 408-415 (1993).
20. S. Hariri and C.S. Raghavendra, SYREL: A symbolic reliability algorithm based on path and cut set methods,

In Proceeding of INFOCOM. '86, pp. 293-302, (1986).
21. M.S. Lin and D.J. Chen, New reliability evaluation algorithms for distributed computing systems, Journal

of Information Science and Engineering 8 (3) (1992).

