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A b s t r a c t - - D i s t r i b u t e d  Computing Systems (DCS) have become a major trend in today's com- 
puter system design because of their high speed and high reliability. Reliability is an important 
performance parameter in DCS design. Usually, designers add redundant copies of software and/or 
hardware to increase the system's reliability. Thus, the distribution of data files can affect the pro- 
gram reliability and system reliability. The reliability-oriented file assignment problem is to find a 
file distribution such that the program reliability or system reliability is maximized. 

In this paper, we develop a heuristic algorithm for the reliability-oriented file assignment prob- 
lem (HROFA), which uses a careful reduction method to reduce the problem space. Our numerical 
results indicate that the HROFA algorithm obtains the exact solution in most cases and the compu- 
tation time is significantly shorter than that needed for an exact method. When HROFA fails to give 
an exact solution, the derivation from the exact solution is very small. 

K e y w o r d s - - F i l e  assignment, Distributed computer system (DCS), Memory capacity constraint, 
Heuristic, Program reliability. 

1. I N T R O D U C T I O N  

D i s t r i b u t e d  c o m p u t i n g  sys tems  (DCS) have become increas ingly  popu l a r  in recent  years ,  for t he  

adven t  of  VLSI  t echno logy  and  low-cost  microprocessors  has  made  d i s t r i b u t e d  c o m p u t i n g  eco- 

nomica l ly  p rac t i ca l  in t o d a y ' s  compu t ing  envi ronment .  The  DCS provides  po ten t i a l  increases  in 

re l iabi l i ty ,  t h r o u g h p u t ,  faul t  to lerance,  resource shar ing  and ex tend ib i l i t y  [1-5]. To improve  these  

pe r fo rmance  charac ter i s t ics ,  we require  a careful  design of the  DCS. To increase  rel iabi l i ty ,  we can 

add  r e d u n d a n t  copies of  ha rdware  and software,  such as process ing e lements  (PE) ,  p rograms ,  and  

d a t a  files in different  processors .  The  d i s t r ibu t ion  of d a t a  files can  affect t he  p r o g r a m  re l iab i l i ty  

and  overal l  re l i ab i l i ty  in t he  DCS. Hence,  an i m p o r t a n t  p rob lem in DCS design is to  find a d a t a  

file d i s t r i b u t i o n  t h a t  maximizes  a cer ta in  re l iab i l i ty  measure .  

Several  ne twork  re l iab i l i ty  measures  have been  defined and  assoc ia ted  eva lua t ion  m e t h o d s  

have been  developed.  Two of them,  D i s t r i bu t ed  P r o g r a m  Rel iab i l i ty  (DPR)  [6,7] and  D i s t r i b u t e d  

S y s t e m  Re l i ab i l i ty  (DSR) [8-10], are  adop t ed  in th is  paper .  For  a given d i s t r ibu t ion  of p r o g r a m s  

and  d a t a  files in a DCS,  D P R  is the  p robab i l i t y  t h a t  a given p r o g r a m  can be run  successful ly and  

will be able  to  access all the  files it  requires  from remote  si tes  in spi te  of faul ts  occur r ing  among  

tAuthor to whom all correspondence should be addressed. 
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the processing elements and communication links. The second measure, DSR, is defined to be 
the probability that  all the programs in the system can be run successfully. 

The file assignment problem and related problems such as task assignment and job scheduling 
have been studied for many years [11-14]. They have been studied by using techniques from 
graphic theory, queuing theory, mathematical programming, and various heuristic and algorithmic 

techniques. 
The file assignment problem is a special case of the task assignment problem. The problem we 

are concerned with in this paper is to assign files in a DCS so that  all the programs are allocated 
to reading data  or outputt ing data. The file assignment problem is inherently NP-complete [15] 
in complexity. This implies that  optimum solutions can be found only for small problems. For 
larger problems, it is necessary to introduce heuristics to produce algorithms which generate 
near-optimum solutions. Several techniques, such as dynamic programming [16], branch-and- 
bound [17], backtracking [18] and heuristic programming [19], can be used to avoid the complete 
enumeration of the problem space. The choice of a particular technique depends on the structure 

of the problem. 
The reliability-oriented file assignment problem has been studied for many years. In [18], 

a reliability-oriented file assignment algorithm (ROFA) was proposed to solve the optimal file 
assignment problem under a memory space constraint. Tha t  method first generates all the 
maximum feasible file combinations (MFFC) of each node, then constructs a space state tree 
according to each nodes' MFFCs and travels the state space tree in a depth-first manner by 
applying a back-tracking algorithm. 

The back-tracking algorithm first finds a feasible solution as a lower bound and then back tracks 
to level n - 1 of the space state tree. If the reliability upper bound (let the unvisited child nodes 
contain all required files) is smaller than the lower bound, the downward searching in the space 
state tree is fathomed. The reliability was measured by the SYREL algorithm [20]. Although 
this method is capable of finding the optimum solution, it is not efficient, so it is probably not a 

practical approach. 
In this paper, we present a heuristic algorithm for the reliability-oriented file assignment prob- 

lem (HROFA) which uses a careful heuristic pruning method to reduce the solution space. Unlike 
other assignment strategies, the proposed reduction method is a reasonable one. The HROFA al- 
gorithm works in a manner similar to that  used to find a minimal file spanning tree; the complete 
algorithm and the justification for our reduction techniques are described in this paper. Numer- 
ical results show that  the HROFA algorithm obtains the exact solution in most cases, and when 
it fails to give an exact solution, the deviation from the exact solution is quite small. 

The organization of the rest of this paper is as follows. In Section 2, the problem statement, 
notation, and definitions that  will be used throughout this paper are given. Section 3 states the 
reliability oriented file assignment problem in distributed computing systems. The derivation, 
correctness, and some examples of application of the HROFA algorithm are described in Section 4. 

Section 5 concludes the paper. 

2. PROBLEM STATEMENT, NOTATION, A N D  D E F I N I T I O N S  

PaOBLEM STATEMENT. The reliability-oriented file-assignment problem can be characterized as 

follows: 

GIVEN. 
Network topology 
Distribution of programs in the network 
Files required by programs for execution 
The size of each file 
The available memory space of each processing element 
The reliability of each communication link 
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C O N S T R A I N T .  The limitation of memory space of each processing element 

V A R I A B L E .  File assignment 

GOAL. Maximize DPR of a given program (or Maximize DSR of the system) 

N O T A T I O N  AND D E F I N I T I O N S .  

c(v, E) 

N~ 

P R G  

F~ 

P R G p  

D P R p  

F~ 

F ~  

F S T  

M F S T  

An  undi rec ted  g raph  in which V M F F C  
represen ts  the  node  set  of  process-  
ing e lements  and  E represents  t he  
edge set  of c o m m u n i c a t i o n  links for 
t he  network unde r  cons idera t ion  

n 
a node  i in V 

k 
t he  set  of  p rog rams  al located in t he  
network for execut ion  P(q) 

t h e  set  of  files required by P R G  Ip 
a p r o g r a m  p in P R G  

8i 

t h e  reliability of d i s t r ibu ted  
c~ 

p r o g r a m  p 

the  file i in Fs xi,j 

t h e  set  of  files required by P R Gp  
for execut ion  X}t) 

a s p a n n i n g  t ree  t h a t  connec ts  the  
root  node  (processing e lements  
t h a t  runs  t he  p rog ram under  FAr 
considera t ion)  to o ther  nodes  such  E ( P R G p )  
t h a t  i ts  vert ices  hold all t h e  needed 
files 

an  F S T  such  t h a t  t he re  exis ts  no 
o the r  F S T  which is a subse t  of  it 

P r (E )  

P(i, k) 

a feasible file combina t ion  such  
t h a t  there  exis ts  no o the r  feasible 
file combina t ion  which is a supe r se t  
of it 

t h e  n u m b e r  of  nodes  in G; n -- IVI 

t h e  n u m b e r s  of  files in Fs 

the  probabi l i ty  t h a t  t h e  c o m m u n i -  
ca t ion  link works (fails) 

t he  index set  of FNp 

t h e  size of  Fi 

the  available m e m o r y  space  of N~ 

the  indicator  of  file a s s i gnmen t  
x~,j = 1 if Fj is ass igned to Ni ,  
else 0 

a feasible file combina t ion  of Ni;  

~ ,  i l  i2 ' ' ' ~  

a set  of M F F C s  for Ni  

event  t h a t  P R G p  can  successful ly  
run  and  files in FNp can  be  
successful ly  accessed by P R G p  

probabi l i ty  of  event  E 

a two-d imens iona l  a r ray  such  t h a t  
if the re  is a solut ion to  t h e  file 
combina t ion  p rob lem wi th  t h e  first 
i e lements  and  size k 

3. T H E  R E L I A B I L I T Y - O R I E N T E D  FILE A S S I G N M E N T  
P R O B L E M  IN D I S T R I B U T E D  C O M P U T I N G  S Y S T E M  

We shall now formally define the reliability-oriented file assignment problem. The reliability 
oriented file assignment problem can be stated mathematically as follows: 

PROBLEM 1. (Maximizing DPR subject to memory space constraint) 

Maximize DPRp = Pr [E (PRGB)] 
k { ~ sjx/j < C~, 

j = l  

subject to ~ X~j > 1, 

4=1 

x~j = 0 o r  1, i = l  . . . .  ,n. 

i = 1 , 2 , . . . , n .  
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PROBLEM 2. (Maximizing DSR subject to memory  space constraint) 

Maximize DSR = Pr [i=Q E (PRG~) ] 

j= l  

subject to X~j _> 1, 
i=1 
x i j = O o r  1, i = l , . . . , n ,  j = 1 , 2 , . . . , k .  

i = 1 , 2 , . . . , n .  

j = 1 , 2 , . . . , k .  

First, we present a back-tracking algorithm [18] for solving Problem 1. The algorithm has two 
steps: 

(1) For each node Ni, find all of the maximal feasible file combinations (MFFC). 
(2) Apply a back-tracking algorithm to find the optimal file assignment. 

The following numerical example illustrates the operation of the back-tracking algorithm. 
Consider the distributed processing system shown in Figure 1, which consists of six nodes and 
the PRG1. 

"s 

P1 needs F1, F2, F3 
File size: 2, 3, 5 
Node capacity: 2, 3, 5, 4, 5, 2 
for NI,N2,N3,N4.N5 and N6 
respectively 
Edge reliability: 0.9 

File Combinations: 
FAI= { (1,0,0) } 
FA2= { (0,1,0), (1,0,0)) 
FA3= ((1,1,0), (0,0,1)) 
FA4= { (0,1,0), (1,0,0) } 
FAS= ( (1,1,0), (0,0,1) } 
FA6= ( (1,0,0) } 

Figure 1. A simple DCS for illustration of the back-tracking algorithm. 

Two copies of program PRG1 are allocated in node N1 and N6, respectively. The files required 
for executing program PRG1 are F1, F2, and F3. The file sizes of F1, F2, and F3 are 2, 3, and 5. 
Assume that all the communication links have the same reliability, 0.9. The available memory 
space for N1 to N 6 i s  M1 = 2, M2 = 3, M3 = 5, M4 = 4, M5 = 5, and M6 = 2. In Step 1, 
we generate all MFFCs for each node. These are FA1 = {(1, 0, 0)}, FA2 = {(0, 1,0), (1, 0, 0)}, 
FA3 = {(1,1,0), (0,0,1)}, FA4 = {(0,1,0), (1,0,0)}, FA5 = {(1,1,0), (0,0,1)}, and FA6 = 
{(1,0,0)}. The nodes in Figure 2 have been numbered according to the sequence of the back- 
tracking procedure. The bounding function is applied at number 9 of the state space tree. The 
reliability upper bound 0.982 is less than the lower bound 0.988 found so far, so then node 9 
is fathomed. The more precise upper bound will be estimated at the lower level of the state 
space tree. The optimal solution is [(xn, X12, X13), (X21, 3g22, X23), (X31, X32, X33), (X41, X42, X43), 
(Xsl,X52,Z53), (X61,X62, Z63)] = [(1,0,0), (0, 1,0), (1, 1,0), (0, 1,0), (0,0, 1), (1,0,0)]. The opti- 
mal value of DPR1 is equal to 0.988. 

The back-tracking process is an elegant method. In real cases, however, the reliability difference 
between all feasible solutions is not so clear. A small reliability difference is easily obtained by 
the reliability contribution of the Fullfile nodes (the unvisited nodes) which are assumed in the 
back-tracking algorithm. The more Fullfile nodes a state assumes, the higher its reliability. So 
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Figure 2. Generation of the state space tree for Figure 1. 

the pruning will rarely occur in the high levels of the state space tree; most of the pruning will 
occur in the last few levels of the state space tree (because there are fewer Fullfile nodes in tha t  
pathset) .  Hence, this method may take more time than  an exhaustive search. The example 
shown in Figure 2 provides the evidence for this conclusion (there are only 16 pathsets,  but the 
back-tracking algorithm travels 23 states). So the branch-and-bound method is not well suited 
for the ROFA problem. 

Also, the connection of a network has an important  influence on the certain reliability. This 
fact motivates us to develop a heuristic algorithm, which we call HROFA, that  uses information 
on network connections and analyzes D P R  formulas to avoid exhaustive enumeration of the state 

space tree. 

4. DERIVATION OF THE HROFA A L G O R I T H M  

Nair [12] proposed a heuristic method for choosing the pathset  with the highest possible relia- 
bility (under some assignment). Let the path  be assigned according to this method. Then choose 
the pathset  with the next highest reliability and assign the pa th  to it, and so on. The maximal  
error rate of this method is under 4.8%, and in most cases, it successfully derives the correct 

answer. 
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We can s tar t  spanning our state space tree by constructing the most reliable MFST. Tha t  is, 
spanning the state space tree is just like finding its MFST. Using this basic idea for analyzing 
the D P R  formula, we propose a heuristic algorithm for the reliability oriented file assignment 
problem. We call the algorithm HROFA (Heuristic algorithm for ROFA). 

4.1.  T h e  P r o p o s e d  H e u r i s t i c  A l g o r i t h m  ( H R O F A )  

In the HROFA algorithm, we span the state space tree like ROFA does. We reduce the s tate  
space tree in a top-down manner by checking its file combination, and the nodes are spanned in 

different order. The following is an outline of HROFA: 

(1) Generate  the spanning order of each node. 
(2) Perform HROFA algorithm to span the state tree. 

STEP 1. 

(a) Calculate the spanning order of each node. 
The order is measured by the node reliable degree (RD). 

RDi = Xs# * Ff~n/~ 
where X,, i  is the average link reliability from Node i to Node s (the start ing nodes). 
F/nn A is the average number of needed files contained in Node i. 
Example: If  the MFFCs of Ni are (1,1,0), (0,0,1) and the file needed is (1,1,1), then 

Finny ̀  = (2 + 1)/2 = 3/2. 
The X,#  = 0.9 (suppose the reliability of all links is 0.9), and RDi = 0.9 • 3/2 = 1.35. 

(b) Find the node that  has the highest RD and add this node to StartNode. Repeat  the 
process until the spanning order of all nodes is found. 

For example, consider the network below: 

Link Reliability : 0.9 
File Needed: (1,1,0) 
Rle Combinations: 

N1 (1,0, 0) 
N2 (1, 1,0) 
N3 (0,1,1) 
N4 (0, 1, 1) 

Figure 3. A simple DCS. 

Since the link reliability is 0.9, the Xs,i for each node is 0.9, and the F/,,nl, for each node is 

{1,2,1,1}. 

Table 1. The generation of spanning order for Figure 3. 

StartNode 1 2 3 4 

1 - 0.9*2 0.9.1 - 

1,2 - - 0.9.1 0.9.1 

1, 2, 3 - - - 0.9 * 1 

1, 2, 3, 4 . . . .  

So the spanning order is N1, N2, N3, N4. Let the node sequence be Nil,  Ni2, N~3 . . . .  N~n, and 
span the state space tree in that  sequence. Spanning to some node, if we find paths tha t  contain 
all the needed files, then we delete their brother paths which do not contain all the needed files, 
i.e., we mask the Fg.n. We then continue spanning, and if we find pathsets that  can be reduced, 
then we mask FN~2. We repeat the above reduction method until no pathset  can be reduced or 
all nodes have been masked. 
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ancestor 

The pruned 
node 

l~ul  
(Does not contain all the (Contain all the needed 
needed files.) files.) 

Figure 4. The pruned pathsets and the super pathsets. 

4.2. A l g o r i t h m  

Now we present a heuristic algorithm for computing the ROFA problem under memory space 
constraints. This is an enumerative algorithm which uses heuristic reduction to reduce the state 
space tree. The algorithm consists of four steps, as follows: 

Step 0. 
Step 1. 
Step 2. 
Step 3. 
Step 4. 

Initialization. 
Generate all MFFCs of all nodes. 
Generate the spanning order of each node. 
Span the state space tree by the spanning order and perform heuristic reduction. 
Compute the reliability of each pathset spanned in Step 3 and output  the best file 
assignment. 

Step  0. In i t ia l izat ion  

We read the data  from the file which contains the system parameters to obtaining the following 
information: 

N = number of nodes 
L -- number of links 
F = number of files 
P = number of programs 

C ( i )  = capacity of node i 
S ( i )  = size of file i 

P N ( i )  = file needed for program i to be executed 

Step  1. G e n e r a t e  all M F F C s  o f  all nodes  

We solve this problem using a dynamic programming technique. Since the problem constraints 
are 
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XIS(1) + X2S(2) +... + XFS(F) <_ C(i), 

where Zj = 1, if file j is contained in node, else 0. 
I t  can be divided into several subproblems as follows: 

x,s(1) + x s(2) +... + X S(F) = C(i) 

XIS(1) + X2S(2) +... + XFS(F) = C(i) - 1 

X1S(1) + X2S(2) + . . .  + X F S ( F )  = C(i)-MaxFileSize. 

Each of these problems is just the Knapsack problem and the feasible solution is a file assign- 
ment of it. 

(C(i)-MaxFileSize) is set as a bound because, if there exists an MFFC in which 

X1S(1) + X2S(2) + . . .  + X F S ( F )  < C(i)-MaxFileSize, 

then we can add another file not included in this MFFC and the total  file size will still be 

smaller than N(i) ,  which is a contradiction. So there is no MFFC with total size smaller than  
(C(i)-MaxFileSize). 

We use a dynamic programming technique to generate a table which indicates if there exists a 
solution in the size of (see Table 2). 

Table 2. Table generated by Knapsack algorithm. 

0 

$1 o 

$2 o 

s3 o 

1 2 3 4 5 

- I - - - 

- 0 I - I 

- 0 0 - 0 

T:  a solution containing this item has been found 
'O': a solution without this item has been found 
' - "  no solution of this size T 

If there is a solution in the entry P(i,  k), then we will check whether P(i  - 1, k - Si) has a 
solution in it. If  so, we continue checking until we check P(0, 0). When we find a feasible file 

combination, we will check whether it is covered by or covers the FFCs found before. We then 
delete the FFC if it is covered by other FFCs, or add the FFC to FOUND, if it is not covered. 
The following is a formal description of Step h 

M F F C ( K ) .  

/*S(the array that  stores the file size). K,  the node capacity, P (a two-dimensional array such 

that  p[i, k]E = true if there exists a solution to the file combination problem with the first i 
elements and size k, and P[i, k]B -- true if the ith element belongs to tha t  solution*/ 
begin 

if ~ S[i] < K then  
begin 

M F F C  = (1, 1, 1 . . . .  ) 
r e t u r n  

end 
Knapsack(K)  
F F C  = 0 
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f o r  t ---- K downto K-MaxFileSize do 

check(K, t, FFC) 

end 

function Knapsack(K) 

begin 

P[0, 0]E -- true 

f o r  k = l t o K  do 

P[0, k]E = false 

f o r  i : l t o F  do 

f o r  k = 0 t o K  do 

P[i, k]E = false 

if P [ i - 1 , k ] E  then 

begin 

P[i, k]E = true 

P[i, k]B = false 

end 

e l s e  i f  k - S[i] >_0 then 

i f  P[i - 1, k - S[i]]E then 

begin 

P[i, k]E = true 

P[i, k]B = true 
end 

od 

end 

function CHECK(K,  t, FFC) 

begin 

if K -- 0 then 

check if FFC is covered or covers other elements in FOUND, add 

to FOUND if the FFC is not covered 

f o r  i = t to N do 

if P[t,K]E then  

beg in  

FFC[ = 1 << i 

check(g  - S[t], t - 1, FFC) 

end 

e l s e  i f  K - S I t ]  >_0 then  

begin 

FFCI= I << i 

check(K - S[t]), t, FFC) 

end 

end 

od 

S t e p  2. G e n e r a t e  t h e  s p a n n i n g  o r d e r  o f  each  n o d e  

In Step 2, we choose a starting node which contains the program to be executed and add 

that  starting node to StaxtNode(0). We then compute the Reliable degree (RD) of each node 
to the StartNode and choose the most reliable node to add to StartNode(1). According to the 
new StartNode, we find the most reliable node from among the rest of the nodes and add it 
to StartNode(2). We repeat the process until all nodes have been added to StartNode. The 

StartNode records the spanning order of each node. 
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S t e p  3. Perform HROFA algorithm 

The HROFA algorithm acts as follows: According to the spanning order, we span the state 
space tree in DFS manner. While spanning to a node, if we find there exist pathsets which 
contain all the needed files, we eliminate the other pathsets that  do not contain all the needed 
files. Then we mask the MFFCs of the node which is in StartNode(1) and continue spanning to 
other nodes not yet spanned. If we find there exist pathsets that  contain all the needed files, we 
cut the other pathsets which do not contain all the needed files. We then mask the MFFCs in 
StartNode(2), and continue the spanning and cutting process described above. We repeat the 
process until all MFFCs of each node have been spanned. The formal HROFA algorithm is given 
below. 

H R O F A  (SPANNODE, MASKNODE, PATHSET). 

/* The SpanNode is the node to be spanned. The MaskNode is the node whose MFFCs are 

masked */  

begin 

i f  SpanNode = 0 t hen  

beg in  

add the Pathset to FOUND 

r e t u r n  

end 

f o r  all the MFFCs of the SpanNode do 

i f  the file included in the pathset contains all the needed files t hen  

begin 

temp = Pathset I the MFFC 

HROFA(the next node of the SpanNode, the 

next node of the MaskNode, temp) 

end 

od 

i f  there does not exist a pathset which contains all the needed files t hen  

begin 

f o r  all MFFC in SpanNode do 

temp = Pathset I the MFFC 

HROFA(the next node of SpanNode, MaskNode, temp) 

od 

end 

end 

Step 4. Compute the r e l i ab i l i ty  o f  each  pathset 

Since the system parameters have been read in Step 0, we know the network topology, the 
program distribution, the files needed for each program to be executed, and the link reliability. 
We still need to know the file distribution of each node in order to compute the pathset reliability. 
In this step, we simply pass the file distribution of each node according to the pathset in the 
FOUND. Then we call the reliability evaluating program FREA [21] to compute the pathset 
reliability. After computing all the reliabilities, we will output  the file assignment with the 
highest reliability. 

The complete algorithm 

A formal description of the HROFA algorithm is given below. 
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H R O F A  ALGORITHM. 

S T E P  0 .  I n i t i a l i z a t i o n .  

read system parameters  

FOUND = 

F N =  (.J Fj 

S T E P  

S T E P  

S T E P  

S T E P  

Pj EPN 

find a node xi in the DCS that  contains the program to be executed 
Star tNode = xi 
MaskNode = 0 

1. Generate  MFFCs of all nodes. 

f o r  all nodes do 

MFFC(node capacity) 

2. Generate  the spanning order of each node. 

NextNode(StartNode) 

3. Perform HROFA algorithm. 

pathset  -- 0 
HROFA(Star tNode,  MaskNode, pathset) 

4. Compute  pathset  reliability. 

f o r  each pathset  in FOUND do 

call FREA to evaluate the pathset  reliability 
output  the assignment which has the highest reliability 

4.3. Examples 

We use the DCS shown in Figure 1 as an example to show how the HROFA works. 

STEP 0. Initialization. 

The system parameters  are known. The node capacity for node 1 to node 6 is 2,3,5,4,5,2. The 
file sizes for F1 to F3 are 2, 3, and 5. All the link reliabilities are the same and equal 0.9. Two 

copies of program PRG1 are allocated in node 1 and node 6. The files needed for PRG1 are F1, 

F2, and F3. 

STEP 1. Generate  the MFFCs of each node. 

The Knapsack generates a table as follows: 

Table  3. Table genera ted  for t he  example.  

NodeSize 

FileSize 

$1 

82 

83 

0 1 2 3 4 5 

O - I - - 

0 - 0 I - I 

0 0 0 - 0 

Node[l]. MFFC = {(1,0,0)} 
Node[2 I. MFFC = {(0,1,0),(1,0,0)} 
Node[3]. MFFC = {(1,1,0),(0,0,1)} 
Node[4]. MFFC = {(0,1,0),(1,0,0)} 
Node[5]. MFFC = {(1,1,0),(0,0,1)} 
Node[6]. MFFC = {(1,0,0)} 
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S T E P  2.  G e n e r a t e  t h e  s p a n n i n g  o r d e r  o f  e a c h  n o d e .  

Table  4. Table  genera ted  for the  example  in Step 2. 

S ta r tNodeSe t  RD1 RD2 

1 - 0.9 

1,3 - 0.9 

1,3,5 - 0.9 

1,3,5,2 - - 

1,3,5,2,4 - - 

1,3,5,2,4,6 

RD3 RD4 RD5 RD6 

1.35 0 0 0 

- 0 1 . 3 5  0 

- 0 . 9  - 0 . 9  

- 0 . 9  - 0.9 

- - - 0.9 

The spanning order is {1, 3, 5, 2, 4, 6}. 

STEP 3. Perform heuristic reduction. 

N1 ~ ( 1 , 0 , 0 )  

N1 ~(1,0,0) 

N3 ( 1 ' 1 ' ~  0'1) 

(a) SpanNode  = N1, MaskNode  = 0. (b) SpanNode  = N3, MaskNode  = 0. 

F igure  5. The  resul t  in HROFA Step 3a. 

RIo Include 

N1 (~)(.~,o,o) 

N3 o,~,o1~1 
(1,1,0) (1,1,1) (1,1,1) (1,0,1) 

(c) SpanNode  = N5, MaskNode  = O. 

N1 

N3 

N5 

N2 

R ]  o L ~ l e  

Figure  6. The  result  in HROFA Step 3b. 

( 

J 
(1,1,1) 

() 
(1 ,o,o) 

( 

/ 
(o,o,1) o) 

,o) (o,l,o) / \ 

(1,0,1) 11,1,0) 11,1,0) 

(d) SpanNode  = N2, MaskNode  = N3. 

F igure  7. The  resul t  in HROFA Step 3c. F igure  8. The  resul t  in HROFA Step  3d. 
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% 
(1.1,0) £ . u , u )  

| I1.1 .o) 
N5 ( ) ( ° ' ° '1 )  

N 2  (o,1 ,o) (o,1 o,.) j~ ~,o,o) 
Q i ~ - ~  

N4 (o~~,....,) ~,) (o.1.~ ~ . ~ ~ . .  ) 

File Include (1,1.O) (1,1,O) (1,1,0) (1,1,0) (1,1,0) (1,1,0) 
(e) SpanNode = N4, MaskNode = N3, N5. 

Figure 9. The result in HROFA Step 3e. 
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N1 I (1,0.0) 

N3 

N5 
(0,0.1) (1,1,0) 

N2 I (0.1,0) (0,1,0) 

N4 (O.l.O) / ~1~1,o,o) (O,l,O) / ~(1,o.o) 

N6 

(1 ,o.o) ~ 0) 

(f) SpanNode = N6, MaskNode = N3, N5. 

Figure 10. The result after HROFA Step 3. 

STEP 4. Compu t e  the pathset  reliability. 
The  best  assignments for N1, N2, N3, N4, N5, N6 are {(1,0,0), (0,1,0), (1,1,0), (0,1,0), (0,0,1), 

(1,0,0)} (see Figure 11). 

OW~ 29:10-H 
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N1 

N3 

N5 

N2 

N4 

N6 
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© 

~ ~,(0,0,1) ~,1,0) 
() ( 

10,1,0) 10,1,01 

,,,; .o., 
0.gg7800g 0.g88080g 0.gg7800g 

o.gg7eoog 
Figure 11. The result in HROFA Step 4. 

pathget A B 

~ ~I,0,0) 

i ,0) (~,0,0) 
o.g880eog 

0.g664115 

NI 

C 

Figure 12. Example showing correspouding pathsets. 

4.4 .  T h e  C o r r e c t n e s s  o f  t h e  H R O F A  A l g o r i t h m  

To perform the pruning described above, the reliability of each pathset of the pruned subtree 
must be less than or equal to the corresponding super pathsets. 

What  are the corresponding pathsets? Consider Figure 12. 
Pathsets A, B, and C are corresponding pathsets, i.e., these pathsets differ in only one MFFC, 

which is on the pruned level (node Nj). This means all these file assignments of the corresponding 
pathsets are different in only one node and that  node is on the level where pruning occurred. 
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Figure 13. 
pathsets. 

(1,0,1) (1,0,1) 
Example showing the different file assignments between corresponding 

(~~,~) (~)  (~,o,~) 
reduceto - (1,1,0) N ~  

( l ,  o, 1) 
Figure 14. Example showing different file assignments between corresponding path- 
sets. 
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In Figure 13, the two networks are different in the file-assignment of Nj. Since there is only 
one node difference, we divide all the MFSTs of a pathset  into three cases. We then observe the 
following facts: 

CASE 1. The MFST does not include the pruned node, and the reliability of the corresponding 
pathsets  is the same. 

We can regard the network as if it were reduced to a subgraph (Figure 14). The MFSTs of 
the corresponding pathsets  are generated from the same file assignment, and the pathsets  have 
the same MFSTs. If we span the MFSTs '  probability in the same path  order, the same MFST 
should have the same probability. So the total  reliability of the MFSTs which do not include the 
pruned node is the same. We denote the reliability difference between the super pathset  and the 
pruned pathset  in Case 1 by D1. 

CASE 2. The MFST contains the pruned node. 

We divided the problem into two parts. 

CASE 2A. The MFST contains all the ancestor nodes. The reliability of the Super pathset  is 

superior. 

Since it spans the state space tree from the start  node to all of the ancestor nodes and the 
pruned node, the super pathset  already has all the needed files, but the pruned pathset  must 
connect to other nodes so as to contain all the needed files. So the probabili ty of the MFSTs 
of a pruned pathset  must be smaller than that  of the super pathset.  For example, from the file 
assignment of the super pathset,  one can generate as MFST like that  shown in Figure 15. 

As shown in Figure 16, however, the pruned pathset  should have more nodes to generate 
an MFST. Even if the pruned pathset  has more MFSTs, its total  probabili ty is still smaller than  
tha t  of the super pathset.  No mat ter  how many MFSTs the pruned pathset  has (even if it has 
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Figure 15. An MFST of the super pathset. 

Figure 16. Possible MFSTs of the pruned pathset. 

Figure 17. A five-node fully connected network. 

infinitely many  MFSTs),  the total  probability is 

0.93 + 0.1 * 0.93 -~ 0.12 * 0.93 -t- . . . .  0.92(0.9 + 0.09 + 0.009 + - .. ), 

which is still smaller than the 0.92 of the super pathset (by measuring Figure 16 and Figure 17 
and supposing the reliability of all links is 0.9). 

We let the reliability difference between the corresponding pathsets in Case 2a be Da. 

CASE 2B. At least one ancestor node is not included in the MFST. The reliability difference 

between the pathset  is small. 
The probability of Case 2b is given by a te rm of the form HqiHpj. Because each MFST in 

Case 2b probability derivation is multiplied by more than one term q, the reliability difference 

between the super pathset  and the pruned pathset in Case 2b is very small. Let the difference 
between the corresponding pathsets be Db. 

Today, link reliability of more than 0.9 is quite common, and the te rm q is typically smaller 
than  0.1. Since the probability of each MFST in Case 2b is multiplied by more than  one such q, 
Case 2b contributes less to the probability than Case 2a does. We cannot say the total  reliability 
contribution of Case 2b must be smaller than that  of Case 1, for there may be many  variations 
in the network topology, file distribution, and program distribution in a DCS, so there could 
be exceptions. However, we can say that  in most cases the total  probabili ty contribution is 
approximately equal to Case 2b and is about 5% of a system's reliability. So Db is typically quite 
small. 

The worst case for our reduction could be that  the super pathsets of Case 2b have no MFST 
and the pruned pathsets have many MFSTs. Even in this case, however, the error rate is still 
quite small (because Da reduce the error, and Db is inherently very small, about  5% of system 
reliability). 

The restriction of Case 1 is that  one node (the done node) is not included, but in Case 2b, 
at least one ancestor node is not included and this node is connected to the pruned node. This 
means tha t  in Case 2b, the DCS is reduced to a subgraph that  is smaller than tha t  of Case 1. 
Each condition in Case 2b is likely to have fewer MFSTs than Case 1, and the probabili ty of 
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their MFSTs is multiplied by more q's. If the link reliability is 0.9, ten similar MFSTs may be 
needed to save a q term. In Case 1, the MFST's  probability expression could be 0.12 • 0.93, but 
in Case 2b, it is 0.13 • 0.93. So ten such MFSTs may be needed. In other words, the reduction 

process is just like 

DPR =pi + q , p j  +q2 ,pk + . . . +  
qZ, (pi + q , p j  + q 2 , p k  + . . . )  + 

qm, (. . .)+ 

HROFA (no mask node) 

HROFA (mask StartNode[1]) 

HROFA (mask StartNode[2]), 

w h e r e l < m < n  . . . .  
We cut the pathsets which are less reliable in each span level. In HROFA (no mask node), 

we cut the pathsets which have the smaller product for the term (pi + q • /P  + q2 , pk + . . .  +). 
In HROFA, (mask StartNode[1]), we cut the pathsets which have the same value for term 1 
(pi + q,  pj + q2, pk +. . .  ), but have a smaller value for term 2 (ql , (pi + q ,  pj + q2, pk +. . . ) ) .  
The HROFA (mask StartNode[2]) cuts the pathsets which have the same value for term 1 and 
term 2 but a smaller value for term 3, and so on. If an exception occurs, it must be that  the Da 
is quite small and the pruned pathset has many more MFSTs than the super pathset in Case 2b. 
Such a condition will occur in a fully connected network. 

In a fully connected network, there are many MFSTs in each possible file assignment for a 
certain program. Thus, when we execute the HROFA algorithm, the reliability difference between 
the corresponding pathsets in Case 2a will be very small. Tha t  is, D~ will probably be reduced 
to be a value like 0.0000081, or else Da will no longer be a great advantage to Db, for the pruned 
pathset would probably have many more MFSTs than the super pathset in such a topology. 

In such a topology, the most important  parameter influencing the reliability is the load bal- 
anced. Because there are many paths that  connect two different nodes, under the limitation of 
memory space constraints, the more load-balanced the network is, the more choices there are for 
a program to access the needed files, and thus the more MFSTs exist. 

To sum up, our method is to reduce the pathsets whose reliability in Case 1 (about 90% 
of system reliability) is smaller than that  of the other super pathsets, and thus for which the 
difference D~ is bigger than Db. It is highly unlikely that  the reliability of the reduced pathset 
will be greater than that  of the super pathsets. This is the main justification for this reduction 
method. 

4.5. Some Numerical  Results  

We now compare the reliability given by the HROFA algorithm with the optimal reliability 
obtained by complete enumeration. For a given network topology, we compare the difference be- 
tween the optimal solution for the reliability and the reliability obtained by the HROFA algorithm 
under variations in the program distribution and link reliability. 

EXAMPLE 1. 

Figure 18. A 

P1 ne~ls F1, F2, F3,F4 

" ~  File size: 2, 3, 4, 5 

Node capacity: 
4, 5, 7 ,6 .7 ,4  

six node network topology. 
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Table 5. The numerical result for Example 1. 

P1 in 1 (1,2) (1,3) (1,4) (1,5) (1,6) 

p--0.9 

reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

difference 

p=0.8  

reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

difference 

p----0.7 

reliability 

difference 

OPT  reliability 

p - - 0 . 9  

p=0.8  

p=0.7  

0.0000000 

0.9882000 

0.9472000 

0.8722000 

0.0000000 

0.9987948 

0.9887744 

0.9575776 

0.0000000 

0.9988119 

0.9892352 

0.9604693 

0.0000000 

0.9999118 

0.9975398 

0.9839450 

0.0000000 

0.9999579 

0.9987379 

0.9820002 

0.0000000 

0.9998462 

0.9968845 

0.9820002 

Total pathsets: 1296 

After HROFA: 108 

EXAMPLE 2. 

P1 need F1, F2 ,F3 

Node capacity: 
2 3 5 4 5 2  

File Size: 2 3 5  

Figure 19. A six node fully connected network topology. 

Table 6. The result for Example 2. 

P1 in 1 (1,2) (1,3) (1,4) (1,5) (1,6) 

p = 0 . 9  

reliability 

difference 

p = 0 . 8  

reliability 

difference 

p=0.7  

reliability 

difference 

OPT REL 

p = 0 . 9  

p - - 0 . 8  
p = 0 . 7  

0.0000100 

0.0003228 

0.0024593 

0.9999899 

0.9996621 
0.9971307 

Total pathsets: 1296 

After HROFA: 108 

0.0000100 

0.0003219 

0.0024351 

0.9999999 

0.9999869 
0.9996398 

0.0000010 

0.0003040 

0.0022844 

0.9999999 

0.9999869 

0.9996398 

0.0000100 

0.0002040 

0.0024351 

0.9999999 

0.9999869 

0.9996398 

0.0000010 

0.0003160 

0.0022844 

0.9999999 

0.9999869 
0.9996398 

EXAMPLE 3. 

0.0000100 

0.0003240 

0.0024847 

0.9999999 

0.9999895 

0.9997050 

PI need FI, F2. F4 

Node ~ t y :  
4 5 6 8 1 0 5 6 4  

Fileslze: 2 3 4 5 

Figure 20. The system parameter for Example 4. 



A Heuristic Algorithm 

Table 7. The result for Example 3. 
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P1 in (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) 

p--0.9 
reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 
difference 

p=0 .8  
reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 
difference 

p=0 .7  

reliability 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

difference 

OPT REL 
p----0.9 
p--0.8 
p--0.7 

The number of total pathsets: 10935 

0.9989100 
0.9972122 
0.9836672 

After HROFA: 3329 

0.9989100 
0.9907200 
0.9673300 

0.99989100 
0.99072000 
0.96733000 

0.9999999 
0.9999999 
0.9941340 

0.9999776 
0.9992397 
0.9941340 

0.9999776 
0.9995397 
0.9941340 

0.9998608 
0.9972122 
0.9836672s 

When we apply the HROFA algorithm, an exception will occur when the network topology is 
fully connected. This is because the superior reliability part  (Case 2a contains the pruned node 
and all of the ancestor nodes) for Super pathsets becomes very small, and the reliability difference 
from Case 2b (containing the pruned node and at least one ancestor node not included) becomes 
significant for the many  MFSTs in it. Even so, the deviation is no more than 0.25% (at a link 

reliability of 0.7). 

5. C O N C L U S I O N  

Distributed Computing Systems (DCS) have become a major  trend in today 's  computer  sys- 
tem design for their high fault-tolerance, potential for parallel processing, and bet ter  reliability 

performance. One important  characteristic of a DCS is that  it offers redundant  copies of soft- 
ware and/or  hardware to improve the reliability of the system. One important  problem in DCS 
design is the file assignment problem. This problem has been proved to be an NP-complete  
problem. Traditional solution techniques such as the back-tracking algorithm and mathemat i -  
cal programming can give the optimal solution, but they cannot effectively reduce the problem 

space. Sometimes, an application requires a fast way to compute reliability because of resource 
considerations. In this situation, deriving the optimal reliability may not be a wise idea. Instead, 
a fast method yielding near optimal reliability is preferable. 

In this paper,  we develop a heuristic algorithm (HROFA) for the reliability-oriented file assign- 
ment problem that  uses a careful reduction method to reduce the problem space. Our numeral 
results show tha t  the HROFA algorithm obtains the exact solution in most case and the compu- 
tat ion t ime is significantly shorter than that  needed for an exact method. When HROFA fails to 
give an exact solution, the deviation from the exact solution is very small. 
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