IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

2211

A Power-Area Efficient Geometry Engine With
Low-Complexity Subdivision Algorithm
for 3-D Graphics System

Lan-Da Van, Member, IEEE, and Ten-Yao Sheu

Abstract—1In this paper, a power-area efficient geometry engine
(GE) using a low-complexity three-level subdivision algorithm is
presented. The proposed subdivision algorithm and architecture is
capable of providing low complexity, high power-area efficiency,
scalable and near-Phong shading quality. The forward difference,
edge function recovery, dual space subdivision, triangle filtering,
and triangle setup coefficient sharing schemes are employed to al-
leviate the redundant computation for the proposed algorithm. Ac-
cording to the low-complexity subdivision algorithm, one recon-
figurable datapath is proposed to save the area since the same set
of processing elements (PE) is reused for different operations of
GE. Compared with the conventional subdivision algorithm, the
proposed subdivision algorithm reduces the number of memory/
register accesses for subdivision by 40% and 60.32% for level-1
and level-2 subdivision, respectively. In terms of the number of
multiplications for transforms, the reduction can be attained by
27.5% and 60.27 % for level-1 and level-2 subdivision, respectively.
From the implementation results, the proposed GE can achieve the
power-area efficiency of 518.8 Kvertices/(semWemm?) for level-1
subdivision.

Index Terms—Forward difference, geometry engine, near-
Phong shading, power-area efficient, subdivision.

I. INTRODUCTION

OWADAYS, 3-D graphics functions are integrated into
N the wireless and wired terminals such as mobile devices
and next generation TV systems [1]. 3-D graphics system is
composed of geometry engine (GE) and rasterization engine [2].
In GE, Gouraud shading [3] with per-vertex lighting is widely
used because it only applies reflection model [4] on the vertices
of the polygons and uses bilinear interpolation to obtain the in-
tensities for the pixels inside the polygons. Although Gouraud
shading has less computation complexity than other approaches,
it suffers from Mach band effects and produces polygonal high-
lights on the rendered objects. Phong shading [5] uses bilinear
interpolation to obtain the normal vectors for the internal pixels
and applies the reflection model on each pixel. Phong shading
can produce more smooth and accurate highlights than Gouraud
shading. However, Phong shading needs to re-normalize the
normal vector and computes the light intensity for every pixel
inside the polygon. Thus, Phong shading consumes more power
because of the huge computation requirement.

Manuscript received July 01, 2010; revised October 29, 2010 and January 08,
2011; accepted February 10, 2011. Date of publication April 05, 2011; date of
current version September 14, 2011. This work was supported in part by the Na-
tional Science Council Grants NSC-99-2220-E-009-029, NSC-99-2220-E-009-
071, and NSC-98-2220-E-009-012. This paper was presented in part at 2009
ISCAS. This paper was recommended by Associate Editor A. Strollo.

The authors are with the Department of Computer Science, National Chiao
Tung University, Hsinchu, 300, Taiwan, R.O.C. (e-mail: ldvan@cs.nctu.edu.
tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCS1.2011.2123430

Recently, low computation, power-area efficiency, and satis-
factory quality are the important research issues for hardware
design. In order to have near-Phong shading quality with low
computation, several existing approximate Phong shading
schemes have been proposed as follows. The Taylor expansion
[6] is used to approximate Phong reflection model. The average
computation cost is high for the scenes with small polygons or
multilight sources. Spherical interpolation algorithms [7], [8]
aim to avoid re-normalizing the normal vectors, but the setup
must be performed for each scan line and each light source.
Thus, the setup cost is expensive for thin polygons and the
multilight source scenes. The mixed shading [9] combines two
shading schemes. When the highlight covers the polygon, the
polygon is rendered with Phong shading. Otherwise, Gouraud
shading is employed. Although the deferred shading [2] re-
moves the lighting operations on the hidden pixels, the lighting
equation is still applied to the visible pixels. To completely
eliminate per-pixel lighting quadratic interpolation, the work
in [10], [11] uses a quadratic function to interpolate light
intensities between six points. The quadratic scheme would
incur Mach band effect on the edge when the triangle is too
large. Therefore, an error control scheme is proposed in [10]
to solve this problem. The subdivision scheme [12]-[15] is
another approach to approximate Phong shading. It subdivides
a triangle into smaller ones and renders them individually with
Gouraud shading. Compared with other approximate per-pixel
lighting schemes, only vertices are lit. One attractive feature of
the subdivision algorithm is the ability to scale shading quality
dynamically. If higher shading quality is demanded, more small
triangles are generated. Although the conventional subdivision
algorithm inherently provides scalable and near-Phong shading
quality, the computational complexity and power consumption
are still large for GE. On the other hand, the area-efficient VLSI
architecture and implementation of the scalable subdivision
algorithm has not been explored. Thus, we are motivated to
propose a low-complexity subdivision algorithm and the cor-
responding power-area efficient and scalable-quality geometry
engine in the paper. Note that, in this paper, we just focus on the
triangle subdivision rather than the surface/mesh subdivision
[16]-[18] such that the proposed design cannot change the
surface/mesh geometry.

The rest of the paper is organized as follows. The proposed
subdivision algorithm and the corresponding complexity anal-
ysis are described in Section II. In Section III, the proposed
GE architecture is presented. The comparison results and chip
layout are addressed in Section I'V. Last, a brief statement con-
cludes the presentation of this paper.

II. PROPOSED LOW-COMPLEXITY SUBDIVISION ALGORITHM

In this section, a low complexity subdivision algorithm to ap-
proximate Phong shading is proposed. To reduce the redundant

1549-8328/$26.00 © 2011 IEEE

2212

‘ T,
r.im R
/
7
7 (74
B i L Ela - =
T R N
ﬁ ==])
\ i \
.r L
b
] J i K / . \ g
- J] d LR
Ea ;

i - g = __‘ ‘ﬁ
_?/) nd b— 114 I)04
Vb y C L4 c Vb VC

(a) (b)

Fig. 2.1. Tllustration for subdivision using forward difference.

memory/register accesses for subdivision, the forward differ-
ence technique is used to subdivide triangles in the proposed
algorithm. Since the forward difference technique is numerical
instable, there may be rasterization anomalies on the rendered
objects. Hence, an edge function recovery scheme is proposed
to remove the rasterization anomalies. In order to reduce the
complexity, the dual space subdivision scheme, the triangle fil-
tering scheme and the triangle setup coefficient sharing scheme
are also presented. The proposed algorithm and schemes are de-
scribed in detail in the following subsections.

A. Subdivision Using Forward Difference

In computer graphics, the forward difference method [16],
[17] has been widely used to evaluate the surface/mesh. Herein,
we apply this scheme to the triangle subdivision to achieve the
reduction of the memory/register access. Without loss of gener-
ality, we set Ng = 2 as shown in Fig. 2.1(a), where Ng = 2&
denotes the number of the segments on each edge of the orig-
inal triangle and L denotes a subdivision level number (i.e.,
level-L). In order to subdivide the triangle AV, V,V,, the gen-
erated vertices V;, V;, V), are computed. Then these new ver-
tices together with the original vertices will be packed and new
triangles are generated as: AV, V; Vi, AV;V; Vi, AV;VV; and
AV, V; V.. The forward difference method is used to compute
the generated vertices. The first step is to compute the differ-
ence vectorsd; andds in horizontal and top-right to bottom-left
direction using (2.1) and (2.2), respectively

di = (V. — V;)/Ns
d; = (% - Va)/NS

2.1)
2.2)
where V,,, V3, V.. have the corresponding coordinates in different

spaces. Once the difference vectors are computed, the generated
vertices can be obtained by (2.3), (2.4), and (2.5) in Fig. 2.1(b)

Vi =V, +do (2.3)
Vi =V +dy (2.4)
Vi =V, +dy (2.5)

Computing the generated vertices using the forward differ-
ence method is more efficient than other methods because one
generated vertex only needs one memory/register access to store
the vertex. Compared with the conventional recursive-based
subdivision algorithms [12]-[14], the forward difference
method is stack free, and, hence, the number of memory/reg-
ister accesses can be decreased. In other words, the power
incurred by large number of memory/register data accesses can
be alleviated. However, the subdivision algorithm using forward

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

(b)

(d)
Fig. 2.2. Examples of rasterization anomaly. (a) Teapot; (b) pawn; (c) Venus;
(d) couch.

difference would result in the rasterization anomaly due to the
numerical instability. As shown in Fig. 2.2(a), (b), (c), and (d),
because the numerical instability incurs lost pixels on the
rendered object, the empty areas on teapot, pawn, Venus, and
couch are referred to as rasterization anomaly. In detail, as
illustrated in Fig. 2.3, two adjacent triangles are subdivided
using forward difference. In Fig. 2.3(a), V,,, denotes one gener-
ated vertex on the sharing edge of two original triangles. It can
be obtained by subdividing either the left triangle or the right
triangle if the calculation has no error. In Fig. 2.3(a), the vertex
Vy is the generated vertex in the left subdivided triangle and
is computed from the vertex V), using the difference vector d;
once. The vertex V; has the same coordinate as the vertex V,
if the calculation has no error. However, the calculation has the
quantization error. While the accumulated quantization error is
large enough, the coordinate of the vertex V, is different from
that of the vertex V,,,. For the same reason, in the right triangle
of Fig. 2.3(a), the vertex V; computed from the vertex V, with
the difference vector ds has different coordinate from the vertex
Vin. As a result, the small triangles defined by vertex V, and
V; respectively are not adjacent to each other. In Fig. 2.3(b),
since the pixels surrounded by the sharing edges are lost after
rasterization, the rasterization anomaly occurs.

B. Edge Function Recovery Scheme

In order to remove the rasterization anomaly, a recovery
scheme based on the edge function method [19] is employed,
where the edge function method is used in some raster engines
to decide whether a pixel is inside the triangle. Assume that
(Za,Ya), (v, yp) and (z., y.) are the coordinates of vertex V,,
Vi, and V., respectively, the edge functions F,p, ., and E.,
in Fig. 2.1 defined by vertices V,, V}, and V. can be expressed
in (2.6), (2.7), and (2.8), respectively

Eab : Aabz + Baby + Cab =0 (26)

VAN AND SHEU: POWER-AREA EFFICIENT GEOMETRY ENGINE WITH LOW-COMPLEXITY SUBDIVISION ALGORITHM

| I LA I

\
~ | A
' R ﬁ*)% 4
\ 14 \
4/ &
)14
1
ok mema L s Qe
I W
\]
\ \
7 HEP.
Y = = ’V - bﬂg
D il i i i
(a) (b)

Fig. 2.3. Illustration of the rasterization anomaly with N's = 2. (a) After sub-
division; (b) rasterization result.

where Aup = (Yo — Yb)s Bav = (zp
TbYa

- ma), and Cab = TalYp —

Epe : Aper + Bypey + Cpe = 0 2.7
where Ape = (Yp — Ye)s Boe = (2 —), and Chpe = Xpye —
TelYp-

E, : Acaz + Bcay +Ceo =0 (2.3)
where A, = (yc - ya)a Beo = (xa - mc) and C,, = LeYa —
TaYec-

In order to eliminate the anomaly, the edge functions of the
small subdivided triangles in Fig. 2.1 can be recovered in the
following steps.

Step 1) Compute the edge functions: F,;, Fye, and F., of
the original triangle using (2.6), (2.7), and (2.8), re-
spectively.

Step 2) Compute the constant difference values: AC,y,
ACy and AC,, in (2.9), (2.10), and (2.11), respec-
tively

1
AC’ab = E(Achab - AabBbc) (29)

1
Avac = §(AcaBbc - Achca) (210)
1
Aoca = §(AabBca - AcaBab) (211)
Step 3) Recover the edge functions including

Eai7EikaEkayEibaEbjaniyEkijjCaEck of
small triangles in Fig. 2.1 with the use of the
original edge functions and the difference values.
For example, Fy; can be obtained by (2.12)

Ekj : Aij + Bkjy + ij =0 (2.12)
where Akj = Aabkaj = Bab’ Ck]' = ab‘l‘ACab.
The constant term Cj; can be obtained from the

constant term Cy;, of the edge function F,; plus
the difference value AC,;, in (2.9). The other edge

functions can be computed in the similar behavior.
Finally, the small triangles can be rendered with these edge
functions. By the proposed edge function recovery scheme, the
derived edge functions on the sharing edge of any adjacent tri-
angles are the same. Therefore, the rasterization anomaly can be
eliminated. The rendering results using the proposed edge func-
tion recovery scheme are shown in Fig. 2.4(a), (b), (c), (d). It

2213

(b)

(d)

Fig.2.4. Rendering results with the edge function recovery scheme. (a) Teapot;
(b) pawn; (c) Venus; (d) couch.

is worth mentioning that although the anomaly will not happen
if the sub-vertex on the edge is generated by only two end-ver-
tices of the edge, this scheme will result in larger number of
temporary registers to store the processed and on-processing
vertices to calculate other vertices while number of subdivision
levels increases. The processed vertex in the register can be dis-
carded until the other vertices depending on this vertex are cal-
culated. On the other hand, the forward difference scheme has
the constant number of temporary registers for the larger subdi-
vision level. The forward difference scheme and edge function
recovery scheme can be easily applied to the larger subdivision
level; however, the sub-vertex scheme generated by only two
end-vertices of the edge needs more efforts to arrange the vertex
processing sequence.

In (2.6), evaluating one edge function requires two multipli-
cations and three subtractions. For a triangle with N, segments
on each edge, there are total 3 Ng edge functions to be computed
and computation requires 3N (2 muls+3 subs) = 6 Ng muls+
9N subs =6Ng muls + 9Ng adds. Herein, one subtraction
can be regarded as one addition. The proposed edge function re-
covery scheme computes each edge function for the subdivided
triangle by adding one difference value. Using the proposed
edge function recovery scheme, the original three edge func-
tions require 3 (2 muls + 3 adds) and the rest (3Ns — 3) edge
functions require (3Ng — 3)(1 add) due to difference values.
The three difference values in (2.9), (2.10) and (2.11) require
3(2 muls 4 1 add). Thus, the computation complexity can be re-
duced to 3(2 muls + 3 adds) + (3Ns — 3)(1 add)+3(2 muls +
1 add) = 12 muls + (3Ng + 9) adds. Thus, the edge func-
tion recovery scheme implies an efficient method for computing
the edge functions of the subdivided triangles. Note that while
N; = 1 (i.e., L = 0), we do not need to produce generated
vertices. Thus, the calculation for difference values can by by-
passed and the result will be equal to 3(2 muls 4+ 3 adds). Al-
though the conventional algorithm and the proposed algorithm

2214

Eye-space coordinate, Eye-space normal

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

Normal o e .
Transform > Lighting =
ModelView : Eye-space Projection Perspective Viewport o
Transform [Subdivision | Transform Division Transform . gl
................ Window-space coordinate
Eye-space coordinate, Eye-space normal
Normal > Eyespace | L
i —> >
Transform i Subdivision Lighting
ModelView Projection _ | Perspective ~ Viewport i Window-space } o
Transform Transform o Division Transform ! Subdivision ! Window-space o

coordinate

Fig. 2.5. (a) Data flow of eye space subdivision, and (b) data flow of the proposed dual space subdivision.

need the edge functions for all triangles, the proposed edge func-
tion recovery scheme can reduce the edge function computa-
tion. The contributions of the proposed edge function recovery
scheme are as follows. One is to eliminate the anomaly due to
forward difference calculation and the other is to reduce the edge
function computation.

C. Dual Space Subdivision Scheme

In the geometry engine, a sequence of transforms including
modelview transform, projection transform, perspective divi-
sion, viewport transform is applied to the vertices. The mod-
elview transform transforms the vertex from object space to eye
space by multiplying a 4 X 4 modelview matrix [20, 4] in (2.13)

Teye mi1 MMi2 M1z Mig xobject/wobject
Yeye a1 22 123 124 yobjoct/wobjoct
Zeye m31 Mm32 M33 134 Zobject /wobject
1 0 0 0 1 1
(2.13)

where (xobjecta Yobject s Zobject s wobje(‘,t) and (xeyem Yeyes Zeye)
denote the object-space coordinate and eye-space coordinate,
respectively. In the projection transform, the eye-space coordi-
nate is transformed to the clip-space coordinate by multiplying
a4 x 4 projection matrix [19, 4] in (2.14)

2n r+l
Lclip r—I 20 ﬁ 0 Leye
Yelip _ 0 % i—b 0 Yeye (2 14)
Zclip 0 0 _fdn _ 2fn Zeye
—n f—n
Welip 0 0 -1 0 1

where (Zclip, Yelip, Zelips Welip) denotes the clip-space coordi-
nate and 7, [denote the z-coordinate component of the right
edge and the left edge, respectively, of the near clipping plane
and ¢, b denote the y-coordinate component of the top edge and
the bottom edge, respectively, of the near clipping plane, and
n, f denote the distances to the near clipping plane and far clip-
ping plane, respectively. Next, through the perspective division,
the vertices in the clip space will be projected to the projection
plane by dividing w.;, and the normalized device coordinate
(NDC) of each component in the range of [—1, 1] can be ex-
pressed in (2.15)

INDC mclip/wclip
YNDC Yelip/ Welip (2.15)
ZNDC chip/wclip

where (N pc,Ynpe, z2vpe) denotes the normalized device
coordinate. Finally, through the viewport transform, the NDC

will be transformed to the window- (screen-) space coordinate
in (2.16)

Twindow Tscale - TNDC T Toffset
Ywindow - Yscale " YNDC + Yoffset (216)
Zwindow Zscale - ZNDC + Zoffset

where (Zwindow , Ywindow; Zwindow) denotes the window-space
coordinate, ZTgscale, Yscales Zscale denote scaling factors and
Toffset s Yoffset » Zoffset denote offset values. In addition, the
normal transform is required to transform the normal vector
of each vertex from the object space to the eye space by
multiplying a 3 X 3 matrix. In this paper, we set wobject = 1
in our experiment. If wgpject 1S NOt equal to one, in the
homogeneous space [4] and above four transformation ma-
trices, (Zobjects Yobjects Zobject s Wobject) Can be scaled as
(xobjcct/wobjccta yobjcct/wobjcct7 Zobjoct/wobjoct7 1) without
affecting the window-space result after proceeding four trans-
forms. We only need one time to precompute the scaled
coordinate for the input model. While the precomputation is
available, we can reuse this model for other graphics operations.
As illustrated in Fig. 2.5(a), the conventional subdivision algo-
rithm subdivides the triangles in the eye space. On one hand,
because the subdivision generates a large number of vertices,
theses vertices bring overhead to the computation for the later
stages of the pipeline. On the other hand, for the triangle with
non-large depth range, because the human eye is not sensitive
to the light intensity with small difference, the perspective
correctness computation of the generated vertices can be passed
over. Based on the above reasons, the dual space subdivision
as shown in Fig. 2.5(b) is proposed to reduce the complexity
for the triangle with non-large depth range compared with the
eye-space subdivision in Fig. 2.5(a). As illustrated in Fig. 2.5(b),
the proposed subdivision scheme is performed to subdivide
the eye-space coordinate and window-space coordinate after
the modelview transform and viewport transform, respectively.
The eye-space coordinate is required for point-light calculation
and the window-space coordinate is used for edge function
calculation and other geometry operations. By skipping three
transforms including projection transform, perspective division
and viewport transform for generated vertices, the computa-
tional complexity is reduced.

The complexity analysis of the eye-space subdivision of a
single triangle is given in Table 2.1, where the left and right
columns list the operations of subdivision as well as transform
and the corresponding complexity, respectively. Note that, in

VAN AND SHEU: POWER-AREA EFFICIENT GEOMETRY ENGINE WITH LOW-COMPLEXITY SUBDIVISION ALGORITHM

TABLE 2.1
COMPLEXITY ANALYSIS OF THE EYE SPACE SUBDIVISION
FOR ONE ORIGINAL TRIANGLE

. Computational
Operations Complexity
Modelview transform for 3 vertices 3x9 muls + 3x9 adds
Normal transform for 3 vertices 3x9 muls + 3x6 adds

Subdivision for 6 components :
Eye coordinate: (Xeye, Veye Zeye)
Normal: (X, Yy, zy)
Projection transform for
Ngy+3 vertices
Perspective division for
Ngp+3 vertices
Viewport transform for
Ngy+3 vertices

6(4"-1) adds

S(Ngy+3) muls +
3(Ngy+3) adds
3(N(,‘V+3) muls +
(Ngy+3) invs
3(N(,‘V+3) muls +
3(Ngy+3) adds
(1 1 N(,‘L'+87) muls
(6 Ngy+6x4"+ 57) adds
(N(;V+3) invs

Total

this paper, we do not count the multiplication while one vari-
able times the constant values of 0 or +2¢, where i denotes
the integer value. Ngy is defined as the number of the gen-
erated vertices during subdivision. After the triangle is subdi-
vided, there are (Ngy + 3) vertices, where 3 denotes three
vertices of the original triangle. In the conventional subdivi-
sion algorithm, the original triangle is only subdivided in eye
space. For the level-L case, the addition complexity of the re-
cursive subdivision is 6(4% — 1) additions. The reason is that,
in each recursion, the number of generated vertices is 3(47~1)
for L > 1; therefore, the summation of the number of gen-
erated vertices for all recursions is (47 — 1). Since each new
generated vertex requires 6 adds for eye-space coordinate and
normal vector, the total number of additions is 6(4% — 1). After
subdivision, only (Ngy + 3) vertices are used to assemble the
small triangles and transformed by projection transform, per-
spective division and viewport transform. As described in this
subsection, through the projection matrix with a 4 X 4 ma-
trix, the computational complexity of the projection transform
is equal to 5(Ngv + 3) muls + 3(Ngv + 3) adds. The per-
spective division for a vertex requires three multiplications and
one inverse, and, therefore, the total computational complexity
is 3(Ngv + 3) muls + (Ngv + 3) invs for (Ngv + 3) ver-
tices. The viewport transform requires three multiplications and
three additions for each vertex to scale and offset the normal-
ized device coordinates (NDC). The computational complexity
is 3(Ngy + 3) muls + 3(Ngv + 3) adds for (Ngy + 3) ver-
tices.

Compared to the eye-space subdivision, the proposed dual
space subdivision scheme only needs to process three vertices
instead of (Ngy + 3) vertices for latter stage transforms. Thus,
for each vertex, the eye-space coordinate with three compo-
nents, normal vector with three components, window-space co-
ordinate with three components, and one reciprocal of depth will
be subdivided in two spaces with the forward difference scheme
such that the computational complexity is 10(Ngy + 2) addi-
tions, where 2 is the number of operations to calculate the differ-
ence vectors. The total complexity of the proposed dual space
subdivision scheme listed in Table 2.2 is 87 muls + (10Ngy +
83) adds + 3 invs. Note that while Ngy = 0 (i.e., L = 0), we
do not need to produce generated vertices. Thus, the calculation
for 10(Ngy + 2) adds can be bypassed and the result will be
equal to 87 muls + 63 adds + 3 invs.

TABLE 2.2

2215

COMPLEXITY ANALYSIS OF THE PROPOSED DUAL SPACE SUBDIVISION
FOR ONE ORIGINAL TRIANGLE

Operations

Computational
Complexity

Modelview transform for 3 vertices

3x9 muls + 3x9 adds

Normal transform for 3 vertices

3x9 muls + 3x6 adds

Projection transform for 3 vertices

3x5 muls + 3x3 adds

Perspective division for 3 vertices

3x3 muls + 3 invs

Viewport transform for 3 vertices

3x3 muls + 3x3 adds

Subdivision for 10 components:
Eye coordinate: (Xeye, Veyes Zeye)
Normal: (xy, ¥y, Zn)

SR
Window coordinate: 10(NGy+2) adds

(xwimlom Vwindows Zwimlow)

Reciprocal of depth: (1/weip)

87 muls
(10 Ny +83) adds
3 invs

Subdivider
YANF —l A

Total

I ' #No Pas:

4 Culling ¢ 4 — 3 Gouraud X
A_’: Test :_’ Transform —’: H_test — » Shading) Rasterizer |-

Leceaad s Lol 4t

Fig. 2.6. Data flow of the triangle filtering scheme.

D. Triangle Filtering Scheme

To reduce the computation for primitive-level operations, the
filtering scheme as shown in Fig. 2.6 is added to the proposed
algorithm. The proposed triangle filtering scheme is a hybrid
scheme that combines culling test and highlight test before sub-
division [12], [13]. The backface culling in the graphics pipeline
is used to test whether a triangle is a backface to the eye direction
by the sign of the dot product of the face normal vector and eye
direction vector. If a triangle is a backface, it will be discarded
and not rendered. Performing culling test for these subdivided
triangles individually brings significant overhead to the compu-
tation and power consumption. Because the generated triangles
and the original triangle are on the same plane, the face normal
vectors are parallel to each other. Therefore, the dot products of
these face normal vectors and the eye direction vector will be
the same. The result implies that there is no need to perform the
backface culling test for each generated triangle since the results
will be the same. Hence, in the proposed algorithm, the subdivi-
sion is performed after the culling test. If the original triangle is
culled, the subdivision is unnecessary. Otherwise, all generated
triangles are rendered by reusing the same culling test result of
the original triangle. For the level-L case, N2 triangles are gen-
erated, and, therefore, NV 3 culling operations are required while
the culling test is operated after the subdivider. With the triangle
filtering scheme, only one culling operation is needed since the
NZ2 new generated triangles can reuse the culling result.

To reduce the redundant subdivision, the subdivision-based
algorithm usually includes the highlight test scheme [13]. In the
proposed algorithm, the highlight test [9] is adopted after the
culling test. The scheme tests the H - IV term of the original three
vertices, where N and H denote the normalized normal vector
and normalized halfway vector, respectively. While one of the
H - N terms is greater than the threshold value, the triangle will
be subdivided. If all H - N terms are smaller than the threshold

2216

value, we bypass the subdivision and render the triangle with
Gouraud shading. Thus, the redundant primitive operations can
be reduced. In our experiment, the threshold value is equal to 0.7
for level-1 and level-2 subdivision. The guideline of threshold
value selection is described as follows.

Rule 1) The threshold value is between zero and one.

Rule 2) Determine which threshold value can result in the
satisfactory lighting quality from the scene simula-
tion for each level.

Rule 3) Choose the higher threshold value to reduce the
number of triangles under satisfying the lighting
quality for each level.

E. Triangle Setup Coefficient Sharing Scheme

To reduce the triangle setup and the unnecessary subdivision
for vertex attributes, a triangle setup coefficient sharing scheme
is exposed in this section. The concept of reusing setup result
has been shown in [14]; however, the detailed processes are not
addressed much. During rasterization, the vertex attributes are
linearly interpolated for each pixel. These attributes include eye-
space coordinate, texture coordinate, depth values, fog factors,
and light intensities. The interpolation usually makes the use of
the plane equation [21]. Given three attribute values ug, u1, and
uo for three vertices, the coefficients of the attribute plane are
obtained by solving (2.17)

ro X1 T2 -t
U2] Yo Y1 Y2
1 1 1

where (z;,y;) is the window-space coordinate of the triangle.
After obtaining the plane coefficients A;, B;, and Cj, the at-
tribute u; for any pixel in the triangle can be obtained by sub-
stituting the coordinates.

The generated triangles using the conventional subdivision al-
gorithm increase the complexity of the triangle setup. Because
the generated triangles are on the same plane, the coefficients
of the attribute plane can be shared by the generated triangles
without re-computing these coefficients. This sharing scheme is
referred to as the setup coefficient sharing scheme. In Fig. 2.1,
the triangle is subdivided into four small triangles, and, there-
fore, the conventional setup cost for one vertex attribute of these
triangles is four 3 x 3 matrix inversions and four 3 X 3 matrix
multiplications. With the setup coefficient sharing scheme, the
setup only requires one 3 X 3 matrix inversion and one 3 X 3
matrix multiplication because the precomputed coefficients are
shared by the small triangles. After obtained all attribute planes,
the attribute value of a vertex is obtained by substituting the
vertex coordinate into the attribute plane equation. The com-
plexity of substitution is 2 muls + 2 adds and that is about 1/3
3 x 3 matrix multiplications. Hence, the complexity of the pro-
posed coefficient sharing scheme is ([(1/3)NAN2] + N4) 3 x
3 matrix multiplications and one 3 X 3 matrix inversion, where
N 4 denotes the number of attributes and [z] denotes the ceiling
operation for z.

III. PROPOSED GEOMETRY ENGINE ARCHITECTURE

In this section, a power-area efficient geometry engine (GE)
architecture for 3-D graphics pipeline architecture is proposed.
Several kernel blocks including the primitive processing unit
(PPU), vertex processing unit (VPU) and vertex cache manage-
ment unit (VCMU) are proposed to reduce the power-area con-
sumption and to support the scalable quality mechanism via the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

To Setup

Vertex Cache
Engine

Ma ent Output Control
Unit (VCMU) 128b
A A A

— rimitiv
Primitive Input rimitive Quene

Control (PIC)

Index FIFO
>

\AA /

Dispatch Queuel

Subdivision
Control (SC)

Dispatch Queue2

Parameter
Registers

__Host IF

yVvVYy

External Memory PPU

A J
4 128 4 128 A4 128b 4 1286
y Y \

Vertex Cache

Fig. 3.1. Overall architecture of the proposed GE architecture.

proposed subdivision algorithm for GE. The supported scalable
quality levels are level-0 (L = 0), level-1 (L = 1) and level-2
(L = 2). The overall architecture of the proposed GE is depicted
in Fig. 3.1, where the triangle clipping function is not realized
in the proposed architecture. The detailed descriptions of each
block are given in the following subsections.

A. Primitive Input Control (PIC)

The main task of the primitive input control (PIC) is to
process the input primitive information. The PIC reads one
index from index FIFO at a time and accesses cache tag to
check whether the vertex with the index exists in the vertex
cache. Once the cache misses, the PIC requests fetching the
vertex data (object-space coordinate and normal vector) from
the external memory. The vertex data returned from the external
memory will be stored in the vertex cache. If the cache hits, the
vertex data are not fetched from the external memory because
it is already in the vertex cache. The triangles defined by the
indices are assembled by PIC and then the backface culling test
operated in PPU is issued for the assembled triangles. If the
triangle is a backface, it will be discarded from PIC. Otherwise,
the cache entries of the three vertices of the triangle are pushed
to the primitive queue (PQ) and the un-processed vertices that
belong to the triangle are pushed into the dispatch queue 1
(DQ1) for further processing. The processed vertices will not
be pushed to DQ1 because they are already transformed and lit.

B. Primitive Queue (PQ) and Dispatch Queue (DQ)

The primitive queue (PQ) is responsible for buffering the
cache entries of three vertices of a triangle for processing. The
triangle that passed the culling test is pushed to PQ by PIC. After
all vertices of the triangle are transformed and lit, the output
control unit pops the triangle from PQ and reads the vertex data
(window-space coordinate and light intensity) of the triangle
from vertex cache and then outputs data to the setup engine.
The main task of the dispatch queue (DQ) in Fig. 3.2 consisting
of two vertex-cache-entry buffers is to keep the cache entries of
the un-processed vertices. The VPU can access the vertex data
with this information. With the exchangeable buffer architec-
ture, the PIC and VPU can operate concurrently and thus the
performance is increased. In DQ1 and DQ2, the size of each
buffer is six for the three-level subdivision algorithm.

VAN AND SHEU: POWER-AREA EFFICIENT GEOMETRY ENGINE WITH LOW-COMPLEXITY SUBDIVISION ALGORITHM

Vertex-cache-entry buffer 1

+>|V6|V5|V4|V3|V2|V1|+’
5b 5b

Vertex-cache-entry buffer 2

Sb 5b
—)">|‘712|V11|V10|V9|V:~1|V7|"">

5b 5b

From

PIC/SC To VPU

Fig. 3.2. TIllustration of the dispatch queue.

C. Subdivision Control (SC)

The main task of the subdivision control (SC) is to control
PPU to subdivide the triangle which passes the highlight test.
Whenever the three vertices of the triangle are lit, the output
control checks the test results of the triangle and delivers the
primitive information of the triangle to SC if the test is passed.
The subdivision process in SC is accomplished with two phases.
The normal vector and the two-space coordinates are subdivided
at the first and second phase, respectively. At each phase, the
SC requests PPU to perform subdivision and provides PPU the
primitive information including the attribute to be subdivided
and the subdivision level. After the two phases are completed,
the SC pushes the cache entries of the new generated vertices
to the dispatch queue 2 (DQ2). These vertices will be lit in
VPU. When all the generated vertices are lit, the SC requests
the output control to output the vertices of the subdivided tri-
angle.

D. Vertex Cache Management Unit (VCMU) and Vertex Cache

The vertex cache management unit (VCMU) is responsible
for supporting the subdivision algorithm, where a vertex cache
tag unit is needed. The vertex cache contains 16-tag entries
and each entry has seven fields including vertex_index,
tag_entry_available, Zero_vertex_count, vertex_count,
vertex_in_pipe, vertex_lit, vertex_Htest fields as illustrated
in the first entry in Fig. 3.3, where the detailed field descrip-
tions are listed in Table 3.1. When PIC requests VCMU to
check whether a vertex exists in the cache, the searched vertex
index is compared with the vertex_index field of each tag entry.
If the vertex_index matches one of the valid tag entries, the
entry_hit signal of the tag entry asserts and VCMU returns
hit. The entry address of the vertex is obtained by encoding
the entry hit_vector in Fig. 3.3 and returned to PIC. If the
vertex_index does not match any tag entry, VCMU returns miss
and PIC will fetch the vertex data from the external memory.
Before PIC fetches the vertex data, the PIC requests VCMU to
allocate one tag entry for the vertex. A tag entry can be allocated
if the tag_entry_available field is O or the zero_vertex_count
field is 1. When one of conditions is met, the entry_free signal
asserts. The entry address of the available tag entry is obtained
by encoding the entry free_vector in Fig. 3.3. The vertex_count
field is necessary to prevent the on-processing vertices from
being replaced by the incoming vertices. When the cache hits,
the vertex_count field is added by one since a new vertex enters
the pipeline and refers to the existing vertex in the cache. The
vertex_count field is subtracted by one when a vertex exits the
pipeline. When the vertex_in_pipe field or vertex_lit field is
set to 1, the vertex is not pushed into DQ since the vertex has
already been transformed and lit. With the two fields, the vertex
cache can act as a post cache such that the processed vertices
can be reused/read from the cache without extra computation.

The vertex_Htest field stores the result of the highlight test
for the subdivision algorithm. With this field, the computation
can be reduced because the highlight test for the shared vertex
is only performed once and the result can be reused by the
triangles with the shared vertex. According to the cache anal-

2217

Index to search #'10b
|vel1ex_count|venex7in _pipe| vertex_lit |vertex7Htesl
loblven&xjndexlmg_enlry»nvailableI zero_vertex_count I
1b
Entry hit_0 o]0 q0»
l =
1
Entry free_0 Of1 Tag Entry 0
Entry free_vector K' b
6b Entry hit 1] |
Entry free_1 | | Tag Entry 1 |
Entry hit_vector L
{1 . .
'6b . .
Entry hit_15 =
Entry free_15 Tag Eﬂtry 15 |

Fig. 3.3. Tllustration of the vertex cache management unit.

TABLE 3.1
GLOSSARY OF FIELDS USED IN VCMU AND THE CORRESPONDING
DETAILED FIELD DESCRIPTIONS

Field
vertex index
tag_entry_available

Detailed field descriptions
Indicate the vertex index

Indicate which and whether the tag entry
is available to allocate

Indicate whether the vertex count
reaches zero value

Indicate the number of vertices

Indicate whether the vertex being
processed in the pipeline

Indicate whether the vertex is lit
Indicate whether the vertex passes the
highlight test result

zero_vertex_count

vertex count

vertex_in_pipe

vertex_lit
vertex_Htest

ysis of [22], the 16-entry vertex cache is selected for the post
transformation and lighting operation, where the cache size is
448 bytes in this paper. Using the 16-entry vertex cache, the
four hit rates are 1945/3072 = 63.3%, 1731/2886 = 60%,
2316/4254 = 54.4%, 489/912 = 53.6% for teapot, pawn,
Venus, and couch, respectively, where numerator and denom-
inator denote the number of hits and vertex accesses, respec-
tively. From the simulation results, the average hit rate is 57.8%.

E. Primitive Processing Unit (PPU)

The primitive processing unit (PPU) performs primitive-level
operations including backface culling [23] and subdivision al-
gorithm. The block diagram of the proposed PPU architecture is
depicted in Fig. 3.4, where the bit width of each node has been
marked for clear presentation. The vertex input buffers store
the primitive data for culling or subdivision operations. Before
these operations start, the controller loads the corresponding
data into the input buffers from the vertex cache. Because the
window-space coordinate has three components and one recip-
rocal of depth, four subtractors are required for the subdivi-
sion operation. For the culling operation, the vector subtraction
and dot product operations are involved [4]. The vector sub-
traction can be implemented with three subtractors and the dot
product operation can be implemented with one multiplier and
one adder. Considering the area efficiency, three subtractors, one
adder/subtractor and one multiplier as illustrated in Fig. 3.4 is
capable of handling the above operations.

F. Vertex Processing Unit (VPU)

The vertex processing unit (VPU) performs vertex-level op-
erations including vertex transformation and lighting operation.

2218

“Eye position
from/to

t From/to PIC/SC

Control Unit parameter
registers
9%6b ¥
AN 1286 v /
To vertex cache read Vertex0 input buffer (128b)
channel Vertex1 input buffer (128b)
Ve >
128b Vertex2 input buffer (128b)
From vertex cache read
channel 4 128b ,"lzsb 4’12% +
SUBI1 SUB2 SUB3 ADD_SUB MUL
(32b) (32b) (32b) (32b) (16bx16b)
Datapath
REG tmp | | REG tmp 2 | REG 4 REG _d, REG 1 | REG 0
(128b) (128b) (128b) (128b) (32b) (32b)
Intermediate value registers
128b
To vertex cache write channel
Fig. 3.4. Block diagram of the primitive processing unit.
t From dispatch queue (DQ)
| Control Unit |
Vertex cache read l l " ‘ Jertex cache write
control signal Constant | | Configuration Do File control signal
Memory ROM a
From vertex cache (48x128)
read channel (16x128) (6x90) 128b
1’12% ,tmb ,i’%b ,i’IZXb *1281; Tovdexeache |
write channel
FIFO SFU PE; PE, PE,

Reconfigurable Datapath (RDP)

{nb ,{321: *SZb *32b

| Output Data Buffer |

I 128b Write back path
7

Fig. 3.5. Block diagram of the vertex processing unit.

The operations cover modelview transform, projection trans-
form, perspective division, viewport transform, normal trans-
form, vector normalization and Blinn-Phong reflection model.
The Blinn-Phong reflection model [4] can be formulated in (3.1)
I=I,+(N-L)I;+ (N -H)"I 3.1
where 1,, 14, I;,N,L,H denote the ambient intensity, diffuse
intensity, specular intensity, normalized normal vector, normal-
ized light direction vector, and normalized halfway vector, re-
spectively. The halfway vector H = (I +V)/2 is the vector
between the light direction vector L and the viewing vector V.
The block diagram of the proposed VPU architecture is depicted
in Fig. 3.5, where the bit width of each node has been marked
for clear presentation. The vertex data are read from the read
channel of the vertex cache. These vertices are transformed and
lit in the reconfigurable datapath (RDP). The register file stores
the intermediate values for the on-processing vertices. The con-
stant memory stores the lighting parameters and the matrix pa-
rameters for the transform matrix. After all vertices in the batch
are transformed and lit, the vertices are read from the register
file and written back to vertex cache.
Due to the proposed low computational complexity algo-
rithm, the requirement of the number of processing units for

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

TABLE 3.2
CONFIGURATION MODES FOR RDP

Configuration Mode Function Description
trans_dp Dot product for transform
light dp Dot product for lighting

vec norm Vector normalization
pd Perspective division
POW Powering
vec sub Vector subtraction

In. A port In. B port § In. C port E In. D port
32 o {3% 326
REGA | [REGB | [REcC | [REG D |
y y
Booth Multiplier Booth Squarer
(]]]]
REG_E REG_F REG_G REG_H REG_|
[Feer | [mear] [Fees][Fear] [Fead |
I Iy . | -
Out. F port 320 &

- o/ 320 1n, E port
In. G port 320 E
in.H %, 3%) 0 . In-Fport

—m—— il L

732 J 320 7 32 7 326
| 4-2 Compressor
Inlpot , 92 ~ 355 Out. D port

—_In.J port 32b | 32b__Out. E port_

out. B S~ N M~

. B port (|

— 5 Z 326 Z 32b

| REG_J | REG_K I
Out. C port
5 —
326 N ED S ———
&= =
7 32b X320
In. MODE
| Add_Sub

T 1b
Out. Aport £ 32b
\J

Fig. 3.6. PE configured as multiplication in dash lines or MAC operations in
gray lines.

vertex processing can be alleviated. Considering the trade-off
for the power, area and vertex processing performance of the
GE architecture, the vertex operations in Table 3.2 including
dot products for transform and lighting, vector normalization,
perspective division, powering, and vector subtraction are
implemented by the proposed RDP architecture. The proposed
RDP composed of three processing elements (PEs), one special
function unit (SFU) and one FIFO in Fig. 3.5 is a pipelined
SIMD datapath architecture and can be reconfigured to six
configuration modes. Due to reconfigurability [24] and SIMD
datapath architecture, the proposed RDP can improve the area
efficiency and performance. That means the proposed GE
belongs to the reconfigurable engine due to RDP rather than
the programmable processors. The detailed descriptions about
the RDP are given in the following subsections.

1) Processing Element (PE): The processing element (PFE)
with three-stage pipeline can be configured to perform multipli-
cation in Fig. 3.6, square, multiplication-accumulation (MAC)
in Fig. 3.6, and addition/subtraction such that the configura-
tion modes in Table 3.2 can be supported. In PE as shown in
Fig. 3.6, at the first stage, the fixed-width Booth multiplier mul-
tiplies two 32-bit numbers and generates two 32-bit partial prod-
ucts. The Booth-based squarer [25] is operated in fixed-width
format, where the outputs of the squarer at the first stage are
two 32-bit partial products. At the second stage, the 32-bit 4-2

VAN AND SHEU: POWER-AREA EFFICIENT GEOMETRY ENGINE WITH LOW-COMPLEXITY SUBDIVISION ALGORITHM

2219

32b
Config[2] Input Register
’
'
} . % 31b
il sign L
" T
nee ;'311)
I . Normalize . I
1b characteristic fraction
£sb 416b
h J

| Pipeline Register |
16b

Log Converter
q'sb 4 16b

y Y) /

| Pipeline Register | | Output Register |
£sb A16b ¢ 21b
To
multiplier

-===Config|[1]
Underflow | 2 11b
Detection | 75, From

7— multiplier
216b

o---- Config[0]

Antilog Converter

Pl o

| Pipeline Register |

Fig. 3.7. Block diagram of the special function unit.

compressor is used to add four inputs and generates two par-
tial products. At the last stage, the adder-subtractor unit adds or
subtracts two numbers and produces the final 32-bit result. The
function of the adder-subtractor is controlled by the In. MODE
signal in Fig. 3.6. The multiplexers in P E control the data flow
for different operations.

The datapath of multiplication operation is illustrated in
Fig. 3.6 with dashed lines. The first stage of multiplication
generates the partial products by multiplying two numbers of
the input registers REG_B and REG_C. The partial-product
outputs are registered in the pipeline registers REG_F and
REG_G and then are summed up in the adder-subtractor unit.
The datapath of square operation is similar to that in Fig. 3.6.
The squarer squares the number in the input register REG_D
and generates two partial products. The partial products are
registered in the pipeline register REG_H and REG_I and then
are summed up in the adder-subtractor unit. For the MAC oper-
ation, the number in the input register REG_B is multiplied by
the number in the input register REG_C and the result is added
to the number in the input register REG_A to produce a result
of MAC. The datapath of the MAC operation is illustrated in
Fig. 3.6 with gray lines. For the addition/subtraction operation,
the pipeline registers REG_J and REG_K are configured to be
the input registers, where two inputs come from In. I port and
In. J port. The numbers in REG_J and REG_K are added or
subtracted according to the target operations. Other intercon-
nection wires of the PE as discussed in next two subsection will
be used to connect to other PEs for vertex operations.

2) Special Function Unit (SFU): The main task of the SFU
is to support the vector normalization, perspective division, and
powering modes in Table 3.2. In [26], the special function unit
(SFU) is capable of providing various elementary functions.
In this paper, since the power-efficient arithmetic operations
are taken into account for the proposed subdivision algorithm,
the SFU adopts the logarithmic number system (LNS) [24],
[27], [28] to realize the inverse, inverse-square-root and power
(POW) operations.

The block diagram of the proposed SFU architecture is de-
picted in Fig. 3.7, where the bit width of each node has been
marked for clear presentation. In Fig. 3.7, Config[0] controls

the source for the antilogarithmic converter, Config[1] controls
the behavior of the shifter, and Config[2] controls the negating
unit at the final stage. For the inverse and the inverse-square-root
operations, the logarithmic converter as shown in the left gray
region of Fig. 3.7 converts the input number m to the corre-
sponding logarithmic number M. Then, the number M takes
one’s complement for each bit through the bit inverse block to
produce the result —(M + 1). In order to reduce the bit transi-
tion, —M is approximated by —(M + 1). In the shift block, the
number — M is shifted right one bit to obtain (—M) > 1 for
inverse-square-root operation or directly bypassed for inverse
operation. The behavior of the shift block is controlled by the
Config[1]. The output logarithmic number (—M) > 1 or — M
of the shift block is then converted to the corresponding ordi-
nary fixed-point number 1/,/m or 1/m by the antilogarithmic
converter as shown in the right gray region of Fig. 3.7. For the
POW operation m", the number m is first converted to the log-
arithmic number M . Next, the multiplier is required to compute
nM, where the processing element (PE) of the RDP in Fig. 3.6
can be configured to be a multiplier to compute nM . In Fig. 3.7,
the logarithmic number M is outputted to a PE which is config-
ured as a multiplier and is multiplied by the number 7. Finally,
the result n M is returned from the PE and converted to its ordi-
nary number m™. Thus, the real multiplier is not needed in the
SFU to achieve power-area efficiency.

Since the underflow of the power operation will incur the
discontinuity of light intensity, the underflow detection unit in
the SFU is provided. While the underflow occurs, the satura-
tion scheme with minimum value representation can be applied
to compensating the underflow value. The datapath can be cor-
rectly operated for four-benchmark simulations. On the other
hand, the overflow saturation scheme probably leads to not exact
enough for the vertex coordinate calculation during the matrix
multiplication. In the proposed geometry engine, we can modify
the matrix parameters in (2.13), (2.14) and (2.16) or lighting pa-
rameters in (3.1) to avoid the overflow such that test scenes can
be run correctly. In terms of precision, the accuracy of repre-
sentative cases of the inverse, inverse square root, power, and
multiplication are listed in Table 3.3, where the overflow cases
are excluded.

2220

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

Wi ti Zj tij i tij Xj
P 3 R
Y ¥ A Y A 4 4 A
| REG_A | REG B[REG_C| [REG.D]| |REG_A | REG B|REG_C| [REG.D] [REG A | REG B|REG_.C| [REG.D]
Y Y
[wur | sor | [muL SR | [muL | sor

| REG_E | REG_F | REG_G | REG_H | REG_I |
H H

| REG_E | REG_F | REG_G | REG_H | REG.I |

| REG_E | REG_F |REG_G | REG_H | REG_I |

.................... L y

' '
F .

A 4

[recy] [REGK]

.

* Out

Fig. 3.8. Configuration mode interconnection of the dot product for transform.

TABLE 3.3
PRECISION OF EACH FUNCTION UNIT

Function Max Error Average Error
Inverse 8.25 7.1x10°
Inverse square root 9.16 x102 6.5 x10°
Power 1.83 x10° 5.82 x10°
Multiplication 3.91x107 3.14 x10™

3) Interconnection of Configuration Modes: In this subsec-
tion, the interconnections among the building blocks for dif-
ferent configuration modes are described. For convenience of
explanation, the block diagram of the PE is simplified. The mod-
elview and projection transforms in (2.13) and (2.14), respec-
tively, are achieved by multiplying a 4 X 4 matrix and a 4 X
1 column vector. Because the term wobject in (2.13) is one and
the projection matrix in (2.14) is a sparse matrix, the dot prod-
ucts of these transforms can be achieved by three multipliers
and three adders. The datapath for the transform operation is
composed of three PEs and the interconnections between PEs
are illustrated in Fig. 3.8. At the first stage, the three multipli-
cations are performed by the partial-product multipliers in PEs,
respectively. The addend w; is directly passed to the next stage.
At the second stage, the partial products and the addend w; are
added by the 4-2 compressor. Finally, the resulting partial prod-
ucts are summed up in the adder-subtractor unit of the central
PE to produce the result.

Since the dot product for lighting has three multiplications,
the datpath is similar to the datapath of dot product for transform
as illustrated in Fig. 3.8, but only the partial products from the
multiplier are summed up at the second stage. The unused inputs
of the 4-2 compressor in the leftmost PE are forced to be zero. In
the lighting equation, the normalized normal vector, normalized
light vector and normalized halfway vector are with the unit
length before computing dot products. The vector normalization
is expressed in (3.2)

Ly Yj 25
Length’ Length’ Length

5,77, 5] = [} 32)

where Length = /x% +y3 + 2. As illustrated in Fig. 3.9,
the solid-line datapath evaluates the length of the input vector.
The square operations are performed in the dedicated squarers
of the PEs and the output partial products are added with the
4-2 compressor. Because all add-subtractor units in the PEs are
occupied by the dashed-line datapath, one additional adder is
included to sum the two outputs of the compressor in the cen-
tral PE. The produced length square value is passed to SFU to

evaluate the inverse square root of the length square. Then, the
input vector is multiplied by the inverse of the length value to
obtain the normalized vector. The dashed-line part in Fig. 3.9
shows the operation of vector scaling.

In the perspective division in (2.15), the clip-space coordi-
nate, (Zlip, Yelip, Zelip)» 1S divided by the term weiip, Where
1/wenip can be obtained by SFU. The perspective division can
be realized by three PEs as shown in Fig. 3.6, where each PE
multiplies one clip-space coordinate and 1/weiip.

It is worth mentioning that the proposed engine only needs
three PEs rather than four PEs from (2.13)to (2.16), but the ad-
ditional cycles are needed for one-time precomputation of the
scaled coordinate to save one PE. While the precomputation is
available, it is beneficial that we can reuse this model for other
graphics operations with one PE saving. In addition, we have
simulated the minimized depth difference in z-axis between
two triangles for the proposed engine architecture, where the
simulation environment setting is the same as that of four test
scenes. The minimized depth difference between two triangles
is 0.00037. The overlapping does not happen while the depth
difference is greater than or equal to the minimized depth dif-
ference. Otherwise, the overlapping will occur. If the overlap-
ping occurs, we can add the offset to z value of one triangle in
the rasterization part with software solution to avoid this over-
lapping. In summary, the major architecture differences from
the previous papers [29]—[32] are as follows. 1) Propose the re-
configurable datapath (RDP) consisting of three PEs, one SFU,
one FIFO to execute six modes in Table 3.2. 2) Propose the re-
configurable PE to configure as multiplication, square, MAC, or
addition/subtraction. 3) Propose the SFU to save one multiplier
by reusing the multiplier configured by the PE. 4) Propose the
subdivision control (SC) and seven-field VCMU for subdivision
management.

IV. COMPARISON RESULTS AND CHIP LAYOUT

In this section, the comprehensive comparison results in
terms of complexity for the proposed and conventional subdivi-
sion algorithms and power-area efficiency (PAE) index among
the existing geometry engines are addressed.

A. Complexity and Quality Comparison Results

The complexity comparison to Phong shading algorithm and
the conventional subdivision algorithm is listed in Table 4.1
in terms of number of memory/register accesses, computation
for edge functions, computation for transforms and subdivision,
number of culling test operations, number of 3 x 3 matrix oper-
ations of setup, computation for normalization and Blinn-Phong

1/Length z(FIFO) zj(Input)
+* +* +*

1/Length y;(FIFO) y;(Input)
+ + +

VAN AND SHEU: POWER-AREA EFFICIENT GEOMETRY ENGINE WITH LOW-COMPLEXITY SUBDIVISION ALGORITHM

1/Length x(FIFO) x;(Input)
+ + +

Y Y y
| REG_A [REG B|REG_.C| [REG.D |

y A 4 Y
| REG_A [REG B|REG_.C| [REG.D |

y Y A 4
| REG_A |[REG_B|REG_C| |[REG.D |

MUL SQR

Y A J

A J

| MUL | SQR

| MUL I SQR |

REG_E | REG_F [REG_G [REG_H | REG I |

y
[REG_E | REG_F [REG_G | REG_H [REG_I |

[REG_E | REG_F | REG_G | REG_H [REG 1 |
H |

2221

b Li_l :
’
[I IR A
4-2 Compressor | 4-2 Compressor | H
1| I L — 7 I E
REG_J REG_K E
ot [pRklrietet o
' Out.y ' Out.x
Fig. 3.9. Configuration mode interconnection of the vector normalization.
TABLE 4.1

COMPLEXITY COMPARISON RESULTS IN GENERAL REPRESENTATION AMONG PHONG SHADING ALGORITHM, CONVENTIONAL
SUBDIVISION ALGORITHM AND PROPOSED SUBDIVISION ALGORITHM

Phong- Conventional subdivision algorithm Proposed subdivision algorithm
shading L=0 L>0 Used Schemes L=0 L>0 Used Schemes
algorithm
Number of memory/ 0 0 @ - Ny Recursive 0 (2Ngy -2"+5)Ny Forward
register accesses for subdivision difference
subdivision
Computation for | Muls 6Nt 6Nt 6NNy Wifthou; edge 6Nt 12Nt Edge function
: unction recove
edge functions Adds 9Ny 9Ny INgNy recovery 9Ny (3Ns+9)Nt ry
Computation for | Muls 87Nt 87Ny (IINGy+87)Nr Eye space 87Nt 87Nt Dual space
transfqrrp; and Adds 63Nt 63Ny | (6NG+6x4"+57)Ny subdivision 63Ny | (10 Ngy+83)Nr subdivision
subdivision Invs 3Ny 3Np (Noy+3) Ny 3Ny 3Ny
Number of culling test Triangle Triangle
()perati()ns INOT INOT INor ﬁltering INor INOT ﬁltering
Number of 3x3 | Matrix NyNr NyNp Ny Ng'Nr Without setup | N4Nr ({(lwwd +N,)Nr Setup
natrix operations | Muls coefficient ER coefficient
for setup sharing sharing
Computation for Muls 6 (Z"" Noo) 18Ny 1 8NSZN T Normalization 18Ny 6(Ngy+3)Np Normalization
Normalization = -
Adds | 25w | OV 6Ns'Ny 6Nr | 2WNar+ 3Ny
i=1
mvs | 1N | VT 3Ns'Ny 3Ny 1(Ngy+3)Ny
Sart | 1w, | 3N 3Ns'Ny 3Np | IWNart 3Ny
i=1
Computation for f wuls | 7203y, | 36N 36Ns'Ny Lighting 36Ny | 12(NGi+3)Ny Lighting
Blinn-Phong = >
reflection model | Adds | 70 (Z‘\’ Ny | 30NT 30Ng'Ny 30Ny 10(Ngy+3)Np
i=1
power [15", | 3 3NGNy 3Ny 1(Ngy+3)Nr
i=1

reflection model for rasterizaiton. In Table 4.1, Np;, Nor, N1
denote the number of pixels of the ¢-th original triangle, the
number of original triangles for input model, the number of orig-
inal visible triangles for subdivision and Phong shading, respec-
tively. Herein, for fair comparison, assume that all original vis-
ible triangles are subdivided as our evaluation case. Compared
with Phong shading computation in Table 4.1, since Np; is
much larger than Ngy or N, g in general cases, it can be observed
that Phong shading has highest computation complexity due
to the hugest normalization and reflection model computation.
Under the same constraint of no anomaly, the conventional sub-
division algorithm includes recursive subdivision, conventional
edge function without edge function recovery, eye space subdi-
vision, triangle filtering, conventional setup up without setup co-
efficient sharing, and normalization and reflection model com-

putation, where the triangle filtering scheme similar to Fig. 2.6
moves latter three transforms after the subdivider. Applying the
conventional recursive subdivision algorithm to one original tri-
angle, in each recursion, the number of the memory/register ac-
cesses is equal to 12(4%~1) for L > 1, where initial three ac-
cesses for three vertices that written into three input registers
are excluded. Therefore, the summation of the number of the
memory/register accesses for all recursions plus the initial 3 ac-
cesses is (4XF1 — 1). In the same case, the memory/register ac-
cess is equal to (2Ngy — 2° + 5) using the forward differ-
ence scheme. It is worth noting that the values of other terms
in Table 4.1 have been clearly discussed in Section II and the
level-0 subdivision in Table 4.1 is Gouraud shading scheme. For
level-1 case with Ngy = 3 and N4 = 5 and level-2 case with
Ngv = 12 and N4 = 5, the quantitative comparison is listed in

2222

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

TABLE 4.2
COMPLEXITY COMPARISON RESULTS FOR LEVEL-1 CASE WITH NGy = 3 AND N4 = 5 AND LEVEL-2 CASE WITH Ngy = 12 AND N4 = 5

Conventional Proposed Complexity

subdivision subdivision reduction

algorithm algorithm percentage
Subdivision level number Level-1 | Level-2 | Level-1 | Level-2 | Level-1 | Level-2
Number of memorylregister accesses |5y, | gany | vy | 258p | 40.00% | 60.32%

or subdivision

Computation for edge Muls 12Ny 24Nt 12Ny 12Ny 0% 50.00%
functions Adds I8Ny 36Nt I5Ny 2Ny 16.67% | 41.67%
Computation for Muls 120Ny | 219Ny | 87Ny 87Ny 27.50% | 60.27%
transforms and Adds 99Nt 225Ny | 113Ny | 203Ny | -14.14% | 9.78%
subdivision Invs 6Ny 15Ny 3Ny 3N, | 50.00%] 80.00%
Number of 3x3 matrix | Matrix Muls | 20Ny SONT 12Ny 32Ny 40.00% | 60.00%
operations for setup | Matrix Invs | 4Ny 16Ny INy INy | 75.00% | 93.75%

TABLE 4.3
NUMBER OF TRIANGLES AND POWER CONSUMPTION AMONG FOUR TEST
SCENES WITH THREE-LEVEL SUBDIVISION

Scenes Nor Level-0 Level-1 Level-2
Nyr | Power Nyr Power | Nyr Power
(mW) (mW) (mW)
Teapot 1024 | 466 28.3 1075 33.6 3463 | 43.6
Pawn 304 156 30.7 294 34.2 846 42.3
Venus 1418 | 712 28.9 2248 37.4 8392 | 46.9
Couch 962 541 29.2 1454 35.8 5102 | 454
Ave. 927 469 29.3 1268 35.3 4451 | 44.6

Table 4.2. The reduction of the number of memory/register ac-
cesses for subdivision can be attained by 40% and 60.32% for
level-1 and level-2 subdivision, respectively. In terms of mul-
tiplications for the edge function calculation, the computation
can be alleviated by 0% and 50% for level-1 and level-2 subdi-
vision, respectively. The reduction of the number of multiplica-
tions for transforms can be attained by 27.50% and 60.27% for
level-1 and level-2 subdivision, respectively. In terms of 3 X 3
matrix multiplications of setup operation for rasterizaiton, the
computation can be alleviated by 40% and 60% for level-1 and
level-2 subdivision, respectively. From above analysis results,
the proposed subdivision algorithm can attain low-complexity
computation. So as to observe the distribution of generated tri-
angles for real test scenes, the Nor and the number of visible
triangles for output model, Ny 1, using three subdivision levels
are listed in Table 4.3. For each test scene, the larger subdivision
level results in larger number of triangles.

In terms of near-Phong shading quality, it is difficult to
compare quality in quantitative way. Thus, we compare
shading quality with those using Phong shading as shown in
Figs. 4.1(a), (b), (c), and (d) by four test scenes. From the simu-
lation comparison results, we can observe that the quality with
level-2 subdivision in Fig. 2.4 is close to near-Phong-shading
quality. Thus, the perspective correctness computation of the
generated vertices can be saved for the triangle with non-large
depth range compared with the conventional subdivision algo-
rithm. On the other hand, for the triangle with deeper depth
range, the proposed subdivision algorithm may result in large
quality difference. It is worth emphasizing that the proposed
design does not change the normal vector of the original tri-
angle due to the triangle subdivision. That means the normal
vector of the triangle subdivision will be the same as NV of the

corresponding original triangle in the mesh subdivision. Thus,
the reflection line will be the same.

B. Chip Layout and Comparison Results

Concerning the chip layout of the proposed GE architecture,
the cell-based design flow with Artisan standard cell library in
TSMC 0.18-um CMOS process is adopted. The Synopsys De-
sign-Compiler is used to synthesize the RTL design of the pro-
posed architecture and the Cadence SOC-Encounter is adopted
for automatic placement and routing (APR) and the Synopsys
Prime-Power is used to measure the power consumption for the
postlayout simulation. The chip layout of the proposed GE is
shown in Fig. 4.2, where 4 core power PADs and 12 10 power
PADs are planned and the width of the power ring is 65 um.
The gate count reported by SOC-Encounter is 182,779. The ren-
dering results for the teapot benchmark with different subdivi-
sion levels including level-0, level-1, and level-2 subdivision
are shown in Figs. 4.3(a), (b) and (c), respectively, where the
teapot benchmark has 1,024 triangles. In Table 4.3, the three av-
erage power consumptions for level-0, level-1 and level-2 sub-
division are 29.3 mW, 35.3 mW, and 44.6 mW, respectively.
That means the average current density for level-2 subdivision
is 0.38 mA/um obtained by 44.6 mW/(1.8 V X 65um) at 1.8 V.
The postlayout power in different subdivision levels is mainly
affected by whether the architecture performs more computa-
tions per cycle on average. For one test scene, while increasing
the subdivision level, the PPU generates more new vertices of
the visible triangles in Table 4.3 and the dispatch queue has
higher probability to be full such that VPU can be performed
more frequently during the same number of computation cycles.
That means VPU performs more computations per cycle on av-
erage. Thus, the larger power consumption is induced at higher
subdivision level. Note that, in this experiment, the GE opera-
tions are implemented in hardware and the rasterization part is
realized in software.

The comparison results between prior work [29]-[32] and our
work are summarized in Table 4.4. In order to consider the ef-
fects of power and area, the power-area efficiency (PAE) metric
adopted in [31] is expressed in (4.1)

PAE
_ Peak Performance of Geomerty Transform(Kvetices/s)

Power(mW)eCore Area(mm?)

4.1

VAN AND SHEU: POWER-AREA EFFICIENT GEOMETRY ENGINE WITH LOW-COMPLEXITY SUBDIVISION ALGORITHM

2223

TABLE 4.4
COMPARISON RESULTS AMONG THE EXISTING GEOMETRY ENGINE WORKS

Sohnetal. | Yuetal. |Nam et al |Chien et al. This Work
[29] [30] [31] [32] Level-0 | Level-1 | Level-2
Process (nm) 180 180 180 180 180
Frequency (MHz) 200 100 200 50 100
Polygon Rate %l +2 PP
(Mvertices/s) 50 120 141 25%/12.5 50%7/25
Power (mW) 155%3 157 52.4 8.6 203 | 353 | 446
Core Area (mm?) 23#3 16 9.7% 6.05%* 2.73
Power-Area Efficiency
(Kvertices/(ssmWemm2) 14 47.8 227 480.5 625.1 518.8 410.7
. . . Graphics, | Graphics with scalable-quality
Feature Graphics | Graphics | Graphics DSP hardware support

*“1: With cache hit rate of 50%. *2: With cache hit rate of 0%. *3: Include rendering engine. “4: With the core area of 2.164 mm X 2.797 mm and see

acknowledgement.

(@

Fig. 4.1. Rendering results with Phong shading algorithm. (a) Teapot;
(b) pawn; (c) Venus; (d) couch.

Fig. 4.2. Chip layout of the GE.

Fig. 4.3. Rendering result with different subdivision levels. (a) Level-0;
(b) level-1; (c) level-2.

Compared with [29]-[32], the proposed geometry engine has
better power-area efficiency with 518.8 Kvertices/(s e mW o
mm2) for level-1 subdivision. Compared with work in [32],
the proposed geometry engine can increase the power-area effi-
ciency by 30.1%, 8%, and —14.5% with level-0, level-1, level-2
subdivision, respectively. Moreover, using the proposed sub-
division algorithm, the proposed GE can provide near-Phong
shading quality.

V. CONCLUSION AND FUTURE WORK

In this work, a low complexity subdivision algorithm and
a power-area efficient GE are presented. Five low complexity
techniques including the forward difference scheme, the edge
function recovery scheme, the dual space subdivision scheme,
the triangle filtering scheme, and the setup coefficient sharing
scheme are adopted/proposed to reduce the computational com-
plexity of the subdivision algorithm. With the proposed RDP, the
area is reduced since the same set of PEs can be reconfigured
for different mode operations. The dedicated hardware supports
three different subdivision levels including level-0, level-1, and
level-2 subdivision to achieve scalable and near-Phong shading
quality. From the postlayout results, compared with the work
in [32], the proposed geometry engine with level-0 and level-1
subdivision can improve the power-area efficiency by 30.1%
and 8%, respectively. In the near future, the proposed design
can be embedded into the system configuration in Fig. 1 of [17]
to save more power and area cost for the geometry part of the
standard graphics pipeline while non-fine mesh subdivision and
near-Phong shading is desired. In this configuration, the sur-
face/mesh geometry can be changed for smooth issue.

2224

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
anonymous referees for their valuable suggestions to this
paper, as well as Prof. S.-Y. Chien for providing the core area
information of the chip in [32].

REFERENCES

[1] P. Cesar, P. Vuorimaa, and J. Vierinen, “A graphics architecture for
high-end interactive television terminals,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 2, no. 4, pp. 343-357, Nov. 2006.

[2] B.-S. Liang, Y.-C. Lee, W.-C. Yeh, and C.-W. Jen, “Index rendering:
Hardware-efficient architecture for 3-D graphics in multimedia
system,” IEEE Trans. Multimedia, vol. 4, no. 3, pp. 343-360, Sep.
2002.

[3] H. Gouraud, “Continuous shading of curved surfaces,” IEEE Trans.
Comput., pp. 623-628, Jun. 1971.

[4] D. Hearn and M. P. Baker, Computer Graphics With OpenGL, 3rd
ed. Upper Saddle River, NJ: Prentice-Hall, 2004.

[5] A.T.Phong, “Illumination for computer generated pictures,” Commun.
ACM, vol. 18, no. 6, pp. 311-317, Jun. 1975.

[6] G. Bishop and D. M. Weimer, “Fast Phong shading,” in Proc. ACM
SIGGRAPH Computer Graphics, Aug. 1986, vol. 20, pp. 103-106.

[7]1 A. A. Mohamed et al., “Hardware implementation of Phong shading
using spherical interpolation,” Periodica Polytechnica Ser. El. Eng.,
vol. 44, no. 3—4, pp. 283-301, 2000.

[8] T. Barrera, A. Hast, and E. Bengtsson, “Faster shading by equal
angle interpolation of vectors,” IEEE Trans. Vis. Comput. Graph., pp.
217-223, Mar. 2004.

[9] M. H. Lai, M. F. Yu, and S. G. Chen, “An efficient modified Phong
shading algorithm & its low-complexity realization,” in Proc. [EEE
ISCAS, vol. 4, pp. 201-204.

[10] A. A. Mohamed, L. S. Kalos, G. Szijarté, T. Horvéth, and T. Féris,
“Quadratic interpolation in hardware Phong shading and texture map-
ping,” in Proc. SCCG, Apr. 2001, pp. 181-188.

[11] T. Barrera, A. Hast, and E. Bengtsson, “Fast near Phong-quality soft-
ware shading,” in Proc. WSCG, Jan. 2006, pp. 109-115.

[12] J. Popsel and C. Homung, “Highlight shading: Lighting and shading
in a PHIGS+PEX environment,” in Proc. EUROGRAPHICS, 1989, pp.
317-332.

[13] Y. Cho, U. Neumann, and J. Woo, “Improved specular highlights with
adaptive shading,” in Proc. Int. Conf. Computer Graphics, Jun. 1996,
pp. 38-46.

[14] Y. Kamen and L. Shirman, “Triangle rendering using adaptive subdi-
vision,” IEEE Comput. Graph. Appl., pp. 95-103, Mar./Apr. 1998.

[15] T. Y. Sheu and L. D. Van et al., “Low complexity subdivision al-
gorithm to approximate Phong shading using forward difference,” in
Proc. IEEE ISCAS, 2009, pp. 2373-2376.

[16] S. Bischoff, L. P. Kobbelt, and H. P. Seidel, “Toward hardware
implementation of loop subdivision,” in Proc. SIGGRAPH/EURO-
GRAPHICS Workshop on Graphics Hardware, 2000, pp. 41-50.

[17] A. del Rio and M. Boo et al., “Hardware implementation of the subdi-
vision loop algorithm,” in Proc. IEEE EUROMICRO, 2002, pp. 1-8.

[18] Y. Yasui and T. Kanai, “Surface quality assessment of subdivision sur-
faces on programmable graphics hardware,” in Proc. Shape Modeling
Applications, 2004, pp. 129-138.

[19] J. McCormack and R. McNamara, “Tiled polygon traversal using half-
plane edge functions,” in Proc. SIGGRAPH/EUROGRAPHICS Work-
shop on Graphics Hardware, 2000, pp. 15-21.

[20] [Online]. Available: http://glprogramming.com/red/appendixf.html

[21] M. Olano and T. Greer, “Triangle scan conversion using 2D homoge-
neous coordinates,” in Proc. SSIGGRAPH/EUROGRAPHICS Workshop
on Graphics Hardware, Aug. 1997, pp. 89-95.

[22] K. Chung, C.-H. Yu, and L.-S. Kim, “Vertex cache of programmable
geometry processor for mobile multimedia application,” in Proc. IEEE
ISCAS, 2006, pp. 1908-1911.

[23] C.-Y. Han, Y.-H. Im, and L.-S. Kim, “Geometry engine architecture
with early backface culling hardware,” Comput. Graph., pp. 415-425,
2005.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 9, SEPTEMBER 2011

[24] B. G. Nam, H. Kim, and H. J. Yoo, “A low-power unified arithmetic
unit for programmable handheld 3-D graphics systems,” IEEE J. Solid-
State Circuits, vol. 42, no. 8, pp. 1767-1778, Aug. 2007.

[25] A. G. M. Strollo and D. De Caro, “Booth folding encoding for high
performance squarer circuits,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 50, no. 5, pp. 250-254, May 2003.

[26] D. De Caro, N. Petra, and A. G. M. Strollo, “High performance special
function unit for programmable 3-D graphics processors,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 1968-1978, Sep. 2009.

[27] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-
power logarithmic converter,” IEEE Trans. Comput., vol. 52, no. 11,
pp. 1421-1433, Nov. 2003.

[28] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-
power antilogarithmic converter,” IEEE Trans. Comput., vol. 52, no. 9,
pp. 1221-1228, Sep. 2003.

[29] J. Sohn et al., “A 155-mW 50-Mvertices/s graphics processor with
fixed-point programmable vertex shader for mobile applications,”
IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1081-1091, May 2006.

[30] C. H. Yu et al., “An energy-efficient mobile vertex processor with
multithread expanded VLIW architecture and vertex caches,” IEEE J.
Solid-State Circuits, vol. 42, no. 10, pp. 2257-2269, Oct. 2007.

[31] B.-G. Nam and H.-J. Yoo, “An embedded stream processor core based
on logarithmic arithmetic for a low-power 3-D graphics SoC,” IEEE J.
Solid-State Circuits, vol. 44, no. 5, pp. 1554-1570, May 2009.

[32] S.Y. Chien, Y. M. Tsao, C. H. Chang, and Y. C. Lin, “An 8.6 mW 25
Mvertices/s 400-MFLOPS 800-MOPS 8.91 mm? multimedia stream
processor core for mobile applications,” IEEE J. Solid-State Circuit,
vol. 43, pp. 2025-2035, Sep. 2008.

Lan-Da Van (S’98-M’02) received the B.S.
(Honors) and the M.S. degrees from the Tatung
Institute of Technology, Taipei, Taiwan, R.O.C., in
1995 and 1997, respectively, and the Ph.D. degree
from the National Taiwan University (NTU), Taipei,
in 2001, all in electrical engineering.

From 2001 to 2006, he was an Associate Re-
searcher at the National Chip Implementation Center
(CIC), Hsinchu, Taiwan. In February 2006, he joined
the faculty of the Department of Computer Science,
National Chiao Tung University, Hsinchu, where he
is currently an Assistant Professor. His research interests are in VLSI algo-
rithms, architectures, and chips for digital signal processing and 3-D graphics
systems. This includes the design of low-power/high-performance/cost-effec-
tive 3-D graphics systems, computer arithmetic, adaptive filters, and transform
designs. He has published 45 journal and conference papers and held one U.S.
and one Taiwan patent in these areas.

Dr. Van was a recipient of the Chunghwa Picture Tube (CPT) and Motorola
fellowships in 1996 and 1997, respectively. He was an elected chairman of
IEEE NTU Student Branch in 2000. In 2002, he received the IEEE award
for outstanding leadership and service to the IEEE NTU Student Branch.
In 2005, he was a recipient of the Best Poster Award at iNEER Conference
for Engineering Education and Research (iCEER). From 2009 to 2010, he
served as the officer of IEEE Taipei Section. He served as a reviewer for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, the
IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION SYSTEMS, the IEEE TRANSACTIONS ON SIGNAL
PROCESSING, the IEEE TRANSACTIONS ON MULTIMEDIA, and the IEEE SIGNAL
PROCESSING LETTERS.

Ten-Yao Sheu was born in Taipei, Taiwan, R.O.C.
He received the B.S. and M.S. degrees in computer
science from the National Pingtung University of Ed-
ucation (NPUE), Pingtung, Taiwan, and the National
Chiao Tung University (NCTU), Hsinchu, Taiwan, in
2006 and 2009, respectively.

His research interests include lower-power 3-D
graphics system, computer arithmetic, digital signal
processing, and VLSI design.

