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ABSTRACT
In this paper, we propose a robust quantizer design for image coding. Because the bits representing the reconstruction
levels are transmitted directly to the channel, the proposed quantizer can be viewed as a compound of a quantizer,
a VLC coder, and a channel coder. The conventional combined source/channel design produces a source coder
designed for a channel with a specific channel noise. Our proposed quantizer is designed within a noise range. In
comparison with the ordinary JPEG coder, simulation results show that our proposed scheme has a much more
graceful distortion behavior within the designed noise range.
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1. INTRODUCTION
Shannon1 showed that under the asymptotical assumption (very large data blocks), source coding and channel
coding problems can be treated separately without sacrificing the overall optimality. This is the so-called Shannon's
separation principle. According to this separation principle, the quantized coefficients in a transform image coder
are first encoded by a VLC coder to reduce the redundancy and some additional bits are then inserted into the
VLC-coded data by a channel coder to reduce channel noise effect, as shown in Figure 1. In Shannon's formulation,
the quantizer is designed in the noise-free situation; that is, the chosen channel coder is able to correct the errors
induced by the channel noise. In reality, the "true" noise-free environment is difficult to achieve. Particularly, in
the case of a noisy channel with unknown characteristics, we can hardly correct all errors using only channel codes
because the channel error rate can sometimes be very high. It is reported2 that when the channel error probability
is higher than the error-correcting length/codeword length, the channel code can induce a higher error rate than the
original channel error rate. If this happens, the error-free condition is not valid anymore. On the other hand, if we
use a very strong error control code to combat the worst possible case, we waste too many bits on the average.

When the separated coder is used in the non-error-free situation, there are two problems: quantizer mismatch
and VLC error propagation. Because the quantizer in the separated coder is designed for the noise-free channel.
the additional distortion due to channel noise may be significant.3 Although the raw channel rate is low, the error
propagation phenomenon in the VLC decoding process can magnify the output error rate. A single bit error may
lead to the insertion of additional symbols or the erasion of the original symbols. We use Table I as an example of
symbol insertion and erasure. Suppose the input sequence is AABCB, and thus the coded bit stream is 110001000.
If the noisy channel causes errors at the 1st and 8th bits, the received bit stream is 010001010. The decoded symbol
sequence becomes CBAD. In this case, a symbol erasure occurs when 5 input symbols is decoded into 4 symbols. If
errors occur at the 1st, 2nd, and 5th bits, the received bit stream becomes 000011000. The decoded symbols sequence
is thus BBAAB with a redundant bit "0" . Here, we retrieve 5 decoded symbols plus a left-over bit. This is a symbol
insertion case. The symbol insertion and erasure not only leads to asynchronous decoding, but also produces burst
errors. The performance of the separated coder, therefore, degrades rapidly in a noisy environment. Hence, a robust
combined source and channel coding approach is able to offer a superior performance than the separated coding
approach.
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Table 1. Example of a variable wordlengih code
Symbol Probability Codeword

A 0.4 1

B 0.3 00
C 0.2 010

D 0.1 011

Table 2. Threshold and Reconstruclion levels of -level quanftzers wzih 2-bii quanizzaiion index represenlazon
Threshold levels

X2

Reconstruction levels

Yi Y2 Y3 Y4

Lloyd-Max (noise-free) -0.9816 0.0000 0.9816 -1.5105 -0.4528 0.4528 1.5105

Noise rang=(0.0,0.01) -0.9248 0.0000 0.9248 -1.4389 -0.4281 0.4281 1.4389
Noise range=(0.0,0.1) -0.6326 0.0000 0.6326 -1.1263 -0.2724 0.2724 1.1263

2. OPTIMUM QUANTIZER DESIGN
In our proposed quantization process, a quantizer Q maps the input signal X into one of the M recons1ruczon

levels, Yi, Y2, , YM; that is, X E (xl_i, x) is mapped to I/i and {xl, 1 = 1, 2, • . . , N} are the threshold levels. Then,
a binary codeword (index) is assigned to a reconstruction level. The resultant binary sequence is transmitted directly
to a noisy channel without VLC coding and channel coding. At the decoder end, the received binary sequence is
de-quantized into X' by an inverse quantizer Q . Due to channel errors, the source index 1 may become index k at
the receiving end. Let Pk/l denote the channel transition probability,

P/1=P{X'=yk/Y=yl}; k=1,2,,M, andl=1,2,,N. (1)

Here, we focus only on the optimization of the quantizer parameters for a fixed index assignment. It has been
observed that the reconstruction level indexing (binary representation) may affect the total distortion.4 However,
how to optimally select the index is a complicated issue and is not considered here.

For a specific binary channel with error rate p, the total mean square distortion is

M N
D(p) = i: Pk/l(p) J (x — yk)p(x)dx, (2)

k=1 1=1

where
Pk/l(p) = (1 — )fl_dff(kl)dH(kl) (3)

n is the codeword index length, and dH(k, 1) denotes the Hamming distance between indices k and 1. Suppose that
the probability density function (pdf) of the channel error rates is f, (p) for p E (pmin ,prnaz). The average distortion

function D within the noise range (pmjn , ,Omaz) can be written as

fPax
D = J f(p)D(p)dp. (4)

Pm .

If the channel characteristics is known, its pdf can be used in Eq. (4). Otherwise, we assume the distortions induced
by any two channel error rates within the noise range are equally important. Hence, the pdf function f,(p)used in

designing a robust quantizer for an unknown channel is

I for Prnin � P� Pmav
f(p) = Pm Pm (5)

0 otherwise.
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The optimum parameters x7 and y that minimizes the distortion function D can be obtained by taking the partial
derivatives of (4) with respect to x and Yk , and set them to zero. We then obtain the optimal parameters x and y
as follows3:

* f;m f()I::i y*(Pk/l(p) _ Pk/l+l(p))dpXI = 1=1,2 N (6)cfPmax!/\'. *I7) f\ fl /\\.JPrnzfl fpP) L.k1 YkVk/RP) 'k/l+1p))Up
and

* 1:x f() >I Pk/l(p) xp7,(x)dxdp
Yk rpmax N rxz ' k 1, 2, . . . , M. (7)Prnzn P() >.Ii= Pk/l(p)j p(x)dxdp

For a fixed set of quantizer threshold levels {x}, it is easy to prove that updating {Yk} according to equation (7)
never increases the value of D . On the other hand, if we fix {Yk} and update {xi} using Equation (6), it does
not guarantee that D is not increased. To ensure that updating x does not increase the value of D2, the second
derivatives of D with respect to xl must be non-negative. The convergence condition for searching for xl parameters
using the iterative method is derived in Farvardin and Vaishampayan,3

fPmax fp(p)Pk/l+ldpyk � fPmx (8)
k=1 k=1 Pmn

where Yk 5 the optimal solution ((7)). We include the convergence condition (8) in the Farvardin's iterative algorithm4
for searching for the optimum quantizer parameters. The iterative algorithm is outlined as follows.

Step 1. Set the iteration index k = 0. Choose an initialset ofreconstruction levels y(°) = {y, . . . ,

Step 2. Shuffle the reconstruction levels (and their indices) in such a way that the convergence condition
(8) is satisfied. Then, determine the quantizer threshold levels k) • ,x} using (6).
Step 3. Let k=k+1. Compute the reconstruction levels (k) using (7).

(k) (k—i) (k) (k) . .Step 4. Compute D . If (D — D )/D < 5, where cS is a pre-selected small positive value, stop;
otherwise, go to Step 2.

3. TRANSFORM IMAGE CODER

Figure 1 shows a typical image transform coding scheme. The input image data is first partitioned into blocks and
then each block is processed by the DCT operator. In the quantization process — the gray box showed in Figure 1,
each DCT coefficient is quantized by a specific quantization step size. An ordinary transform coder employs a VLC
to increase compression efficiency and an error control code (ECC) to reduce channel error effect. In our combined
source/channel coder, VLC and ECC are not used. Since the quantization indices are sent directly through a noisy
channel to the receiver, the robust quantizer can be viewed as a compound of a quantizer, a VLC coder, and a
channel coder. At the receiving end, the received data are processed by the dequantizer and the inverse DCT unit.
Similarly, the robust dequantizer has the functions of a dequantizer, a VLC decoder, and a channel decoder.

The quantizer used here is the one proposed in section 2 for noisy channels. Since the bits representing the
reconstruction level index is sent directly to the noisy channel, the quantizer designed for a noisy channel can be
viewed as a compound of the a quantizer, a VLC coder, and a channel coder. Hence, in this formulation the variable r
in the distortion function d(r) denotes the transmission bit (the quantizer output bit number) instead of the entropy
of the quantized data. Based on the proposed quantizer design, we can obtain a set of quantizers with r-bit outputs
as shown in Figure 2, where 1 < r Tma3. Then, the bit allocation problem is formulated as follows. Given a
constrained transmission bit rate R, we like to find a bit allocation vector r which minimizes

D(r) =
L

d(r) (9)
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subject to
O<ri<rmar,i1,2,,L (10)

and

r�R, (11)

where L is the number of coefficients in an image block, and d(r) represents the MSE of a quantizer with ri-bit
codeword representation. To determine the best bit allocation vector r, we use an algorithm5 based on the Lagrangian
method.
Define B(r) as I:c=1 r. As been proved in Shoham and Gersho,5 for any A � 0, the solution r*(A) to the
unconstrained problem

min{D(r)AB(r)} (12)

is also the solution to the constrained problem. This algorithm is restated briefly below. To simplify notation,
B*()) = B(r*())).

Step 1 : Guess an initial value ).

Step 2: Solve the unconstrained problem using (12). If ) is not singular, there is only one solution and
one constraint B*(A). Otherwise, there are at least two different solutions. Find the two solutions {r*(X)}
corresponding to the greatest and the smallest constrains denoted by B7()) and B\), respectively.
Step 3: If the desired constraint R is such that

B(A) R < B\),
then obtain all solutions and find the one of which the constraint, denoted by B\), is closest to R. Stop
the search.
Step 4: If R < B;kpt) or R > B(A), find the next singular ). Then, go to Step 2.
If the search terminates with only an approximate solution, which means that the allocated bits is not
equal to R, then we add one more bit using the following steps.
Step 5: Find the index k' that solves

minr{d(r + 1) — d(r)}.

Then, r, = r, + 1 bits.
Step 6: Repeat Steps 5 and 6 until the sum of the allocated bits equals R.

Table 3 shows the bits assignment matrix for R = 128 bits/block and rmas 8. Since the low frequency
coefficients have stronger power than the high frequency coefficients, more bits are assigned to the low frequency
coefficients.

4. SIMULATION RESULTS
Assume that the input source has the Gaussian distribution with zero mean and unit variance. In our simulations,
the reconstruction level index is represented by the natural binary code. In the iterative procedure described in
section 2, the parameters of the Lloyd-Max quantizer are used as the initial values x and y. The simulation results
show that some of the quantizer threshold levels vanish; that is, the boundaries Xi and Si_i of the jth interval are
equal. This interval vanish phenomenon implies a resolution-reduction of the quantizer to decrease the channel error
effect on the destination distortion. Table 2 shows the optimal threshold levels and the reconstruction levels of a
4-level quantizer with 2-bit index representation for various noisy channels (Note: —00, S4 = oc).
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Table 3. Bii assignment for the proposed quaniizers al R = l28bits/block, where ike quanhizers are designed for
noise range=(O.O, 0.1) ___________________________88887210

8888310088852100
53321000
2 1 1000000000000000000000
00000000

The block size in our transform coder is 8 x 8. Picture "lena" of size 512 x 512 is used as our test image. The
JPEG default quantization matrix is used in our simulation. The transformed coefficients are assumed to have
Gaussian distributions. Figures 3 and 4 show the performance of the proposed robust image coder and the JPEG
coder with two BCH channel codes. The compressed bits produced by the JPEG coder are 168304. In Figure 3,
since a BCH(255,99) code is used to protect the JPEG compressed data, the number of total transmission bits is
168304 x255/99 = 433510.3; that is, the number of the transmission bits per image block equals to 433510.3/(4096
blocks in a picture)=105.8 bits/block. Therefore, we use 105 bits/block in designing our combined source/channel
coder. The simulations show that the BCH(255, 99) code can achieve the nearly error-free situation when the error
rate is smaller than 0.04. When the channel error rate is greater than 0.04, the channel decoder cannot decode the
noise-corrupted received data correctly; hence, the compressed data are suffered badly from the channel noise. In the
JPEG codec system shown in Figure 1, the quantization indices are first coded by a VLC coder (Huffman coder) and
then further coded by a BCH coder. As discussed in section 1, a couple of bit errors may cause the VLC decoder to
lose its synchronization and to produce successive errors. Figure 3 indicates that the performance of a JPEG codec
decreases rapidly when the channel coder can not achieve the error-free situation (error rate > 0.04). When the error
rate is greater than 0.06, the noise-induced errors may lead to illegal JPEG bit streams and thus the JPEG decoder
halts its decoding operation.

Designed under the assumption that the channel error rate can be any value within (0.0, 0.1), the proposed
image coder performs robustly in this noise range. As shown in Figure 3, it has a higher distortion than the
JPEG+BCH(255,99) coder for the channel error rate less than 0.04. However, it has a very graceful degradation for
the channel error rate greater than 0.04, and it clearly outperforms the JPEG coder for p > 0.045. Similar results
are shown in Figure 4 where a BCH(255, 131) channel code is used. Since the BCH(255, 131) code has a weaker
error-correcting capability (t = 18), the performance of the JPEG coder with a BCH(255, 131) channel code degrades
earlier than that of the JPEG coder with a BCH(255, 99) channel code. In the case of a BCH(255, 131) code, the
number of transmission bits is 168304 x 255/131 = 327614.7; that is, the number of bits per block is 79.9. Therefore,
the constrained bit rate in Figure 4 is 79 bits/block.

Figure 5 shows the reconstructed picture of "lena" processed by the JPEG codec with BCH(255, 131) code at
channel noise= 0.01. Since the BCH(255, 131) code is able to correct nearly all the errors in this case, the overall
distortion is made of only the source distortion due to the JPEG compression scheme, which is independent of
channel. Figure 6 shows the reconstructed picture produced by the proposed coder. As described earlier, our
proposed coder is designed for the robust operation in the noise range (0.0, 0.1). Therefore, its performance is lower
than that of the Shannon's separated coder operated in the error-free situation. On the other hand, our proposed
coder outperforms the separated method operated in non-error-free situation. Figure 7 shows the reconstructed
picture of the JPEG+BCH(255, 131) codec for p = 0.04. The asynchronous decoding of the VLC decoder induces
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disasters on the reconstructed images. Since no VLC coders are used in the proposed system, error propagation
never occurs as shown in Figure 8.

5. CONCLUSIONS
In a noisy environment, a single bit error in the VLC-coded data may induce symbol insertion and erasure in the VLC
decoding process. This symbol insertion and erasure not only leads to asynchronous decoding, but also produces
burst errors. We propose a robust quantizer design that has a consistent performance for a wide channel noise range

(Pmin , Prnax ) . Since the bits representing the reconstruction level are transmitted directly over a noisy channel, the
proposed quantizer can be viewed as a compound of a quantizer, a VLC coder, and a channel coder. We then apply
the proposed quantizer to an image transform coder. The simulation results show that our proposed transform coder
has a graceful distortion within the designed noise range. On the other hand, the performance of the separated coder
(JPEG coder and BCH code are used in this paper) degrades rapidly in a highly noisy environment when the channel
coder can not achieve the error-free condition.
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Figure 5. ThE reconsiructcd picture by the JPEG+BCIi(955,131) coder in the ease of the channel noiseO.Ol

Figure 6. The reconstrncled picture by the robust scheme (79 bits) in the ease of the channel noes (OOl.
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Figure 7. The reconsirucied picture by the JPEG+BCH(255,191) coder zn the case of the channel noi.scOO.

Figure 8. The reconstrueled picture by the robust scheme (79 hZt.s) zn the ease of the channel noZseOO.1
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