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ABSTRACT
The goal of this paper is to provide a feasible and flexible mechanism for variable bit rate (VBR) video transmission
and to achieve high network utilization with statistical Quality of Service (QoS). In this paper, we employ a piece-wise
constant rate smoothing algorithm to smooth the video coder outputs and propose a simple algorithm to determine
the renegotiation schedule for the smoothed streams. In order to transmit video streams with renegotiation-based
VBR service, we suggest a connection admission control (CAC) based on Chernoff bound using a simple yet quite
accurate "binomial" traffic model. The experimental results show that our proposed method provides an easy
and robust mechanism to support real-time video transmission in both homogeneous and heterogeneous connection
environments.
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1. INTRODUCTION
Variable bit rate (VBR) video coding, such as MPEG, plays an important role in providing high quality video for
multimedia applications while maintaining a reasonable storage requirement and achieving high network utilization.
But the highly bursty nature of the VBR compressed visual data makes network traffic management a very difficult
task. For this reason, a number ofresearches have been conducted using video smoothing algorithms to reduce the
bit rate variation in transmitting the compressed video from a server to a client across a high-speed network.1 These
algorithms exploit client buffering capabilities and determine a smoothed rate transmission schedule, while ensuring
neither overflow nor underfiow would appear at the client buffer.

The bit-rate statistical characteristics of a smoothed video are very different from the unsmoothed one. Therefore,
we need different solutions to transmit the smoothed video streams. In this paper, we concentrate on proposing a
scheme to transmit smoothed VBR videos. In order to achieve high utilization efficiency, simple but robust resource
management and control mechanisms have to be employed. Thus we suggest a CAC algorithm based on Chernoff
bound using a simple yet feasible traffic model requiring only three parameters and these parameters can easily be
identified from video sources. Our experimental results indicate that our proposed CAC method based on the traffic
model provides an easy and flexible mechanism to support real-time video transmission.

The rest of this paper is organized as follows. First, the characteristics of VBR MPEG videos in both the
unsmoothed and the smoothed cases are presented in Section 2. The mechanism for transmitting VBR MPEG video
over ATM networks are addressed in Section 3. Section 4 contains various experiments that have been tested along
with the evaluation of the efficiency of the proposed transmission scheme. Finally, Section 5 states our conclusions.

2. CHARACTERISTICS FOR VBR MPEG VIDEO
2. 1 . MPEG Bit-rate Characteristics and Characterization
Video applications have stringent requirements on QoS (cell loss rate, cell delay and etc.). To design the packet-switch
networks that carry video signals, it is important to know the characteristics and to construct models accurately
describing the bit-rate variation of video signals. More precisely, we like to predict: (1) the packet delay and loss due
to statistical multiplexing, and (2) the buffer size and bandwidth required for carrying the multiplexed data. These
two points are the keys to our CAC design.

Figure 1(a) shows the frame bit rate variation of a VBR MPEG coded video, "Star Wars" 2 This sequence
is composed of 174136 CIF frames, 24 frames/sec, and its peak bit rate is 4.34 Mbits/s, while the mean bit rate is
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Figure 1. Bit-rate Variation of the compressed "Star Wars".
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Figure 2. Impact of the Smoothing on Frame Bit Distribution.

365.6 Kbits/sec. As one can tell from Figure 1(a), the bit-rate variation can largely contribute to scene changes
and the amount of motion within the scene.

Various video smoothing algorithms have be developed that utilize the client buffering capability to reduce the
rate variation in the VBIt-compressed video. In this paper, we adopted a work-ahead smoothing technique which
enables the server to achieve the largest possible reduction in rate variation when a stored video is transmitted to
a client with a given buffer size.1 After being smoothed with this algorithm, the bit rate curve is nearly piece-wise
constant. This means that cell arrival intervals are the same in a segment, and the short-term scale variations
disappear (Figure 1(b)). The bit rate within a constant-rate segment is constant and the bit rate is almost random
after smoothing. Figure 2 shows the histogram of the frame bit rate of "Star Wars" both for the unsmoothed
case as well as the smoothed cases for client buffer sizes of 256 KBytes and 1 MBytes. This figure indicates that
smoothing significantly reduces the range of transmission rate from 0-4.34 Mbits/sec in the unsmoothed schedule,
down to 79-928 Kbits/sec for the 256 KByte client buffer, and 140-600 Kbits/sec for the 1 Mbyte client buffer. Note
that the histogram of the smoothed case looks very different from that of unsmoothed one. Especially the long,
heavy tail of the unsmoothed "Star Wars" trace is transformed into disconnected spikes after smoothing with the 1
Mbyte client buffer.

We can use Markov process to characterize the marginal distribution of the smoothed traces. However, it may
need a number of parameters to match the model accurately. This is not practical for traffic management for high-
speed networks. Many techniques have been suggested to characterize the smoothed video traces. In Section 3.5,
we present a simple approach to characterize the marginal distribution of smoothed video streams. This approach is
mainly designed for reducing the complexity in the CAC unit.
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2.2. The Worst-case Model of ATM Traffic Descriptor
The ATM VBR connection service requires a traffic descriptor declared by the source at the connection set-up
procedure. It consists three parameters: Peak Cell Rate (PCR), Substantial Cell Rate (5CR), and Maximum Burst
Size (MBS). It is difficult to characterize VBR video traffics accurately by using only these three parameters. In
this situation, CAC has to take the worst case into consideration. In Doshi,3 it is proposed that the full rate on-off
source tends to be the worst case in the statistical multiplexing performance. For a given set of User Parameter
Control (UPC) parameters (A,, , , Mb3 ) , the lengths of on and off periods for a full rate on-off source are given by:
T0 = ;s;t- and T0 -- , respectively.
During the on periods, the source generates cells at the constant rate ), and is silent during the off periods. This
model is quite popular; many researchers design CAC algorithms based on this model.46

3. TRANSMISSION SCHEDULE AND RENEGOTIATION-BASED SERVICE
As we have seen in Section 2, the bit-rate statistical characteristics of a smoothed video are very much different from
the unsmoothed one. Therefore, we need different schemes in transmitting the unsmoothed and the smoothed video
streams. We start with a discussion on an upper bound of the cell loss probability in a buffered multiplexer based
on the general Markovian source model.

3.1. Upper Bound on Cell Loss Probability
In ATM networks, the cell losses are often caused by buffer overflow at the multiplexers with finite buffer. In this
section, we focus on the theoretical bound of the cell loss probability for a given Markovian source.

Let C and B denote, respectively, the link capacity and the output buffer size of a multiplexer, and Q be the
current queue in the output buffer. When Q> B, the next cells submitted to the network will be dropped.

Suppose there are K types of sources, and Nk sources of type k, 1 < k < K. At any time t 0, the rate of traffic
generation by source n of type k is rk(i). For each type k, we assume that rk(t) has a stationary distribution
given by a Lk-state random variable rk, which takes values {r, r r}, and Prob(rk = rk))pk) Hence,

. . K Nkthe total amount of traffic at a random time is R := k1n=1 rkn.
Under the above assumptions, the stationary overflow probability can be approximated by 6:

F(B) = P(Q � B) Lez13, when B is large (1)

where L = P(R > C) is the loss probability in bufferless multiplexing, which can be estimated from the Chernoff
bound theorem and z is the dominant eigenvalue in the buffered multiplexers, which determines the large buffer
behavior.

The Chernoff's theorem states that
log(P(R � C)) _F*(s), (2)

where
F*(s) = snp8<0F(s), (3)

F(s) = sC-A(s), (4)

A(s) = NklogM(s), (5)

and Mk(5) =fi pk)esrk) is the moment generating function of rk.

As C —+ cc with Nk/C = 0(1), k=1

P(R>C)c (6)

where
2 * ç' M(s*) M(s*) 2(s ) = /Nk[M(*) -

(Mk(5*))]' (7)
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The value s is the solution to F'(s) = C.

The dominant eigenvalue and its calculation have been topics studied extensively for statistical multiplexing based
on stochastic fluid models. We refer the readers to Elwalid and Mitra7 for detail calculation and solutions of the
dominant eigenvalue.

Based on the above approximations, we design a CAC scheme for heterogeneous video traffics. Inour experimental
results, we can see that this scheme provides high network efficiency for video transmission.

3.2 . Renegotiation-based VBR Service
The smoothed video output stream has piece-wise constant bit rate variations. For each constantrate segment,
we have to renegotiate with the network to reserve a new service rate. In the renegotiation-based VBR service, a
source can renegotiate its service rate by a call. A renegotiation process consists of sending a signaling message (for
example, FRP,8 RSVP9) requesting an increase or decrease of the current service rate. Upon successful completion
of the signaling, the source is allowed to send data at the new rate. In addition, the network can monitor the traffic
based on the renegotiated service rate. Because the bit-rate is constant during a segment, renegotiation-based service
therefore retains the advantages of the simplicity and the small buffer sizes of the CBR services.

3.3. CAC Rule for Smoothed Videos
Because the bit-rate is constant in each segment (Figure 1(b)) of a smoothed video, insufficient bandwidth atone
point is like to lead to consecutive losses over a relatively long period of time when the buffer overflows. This leads
to a significant decrease of the QoS for a client. Consequently, in supporting transmission of smoothed video streams
with a guaranteed QoS, network bandwidth allocation becomes highly critical. If a CAC scheme is properly designed,
the amount of buffer space needed within the network can be greatly reduced. For these reasons, we choose bufferless
Chernoff bound approximation discussed in Section 3.1 as our CAC rule.

Consider a bufferless multiplexer whose channel capacity is C. Suppose there are K types of sources same as
described in Section 3.1. According to Eq. (6) we can estimate the aggregate bandwidth ê that is needed to satisfy
a given loss probability bound e at the multiplexer; that is, P(R � ê) < c. The estimated bandwidth is given by
the following expression

(8)

where . is the solution to the following equation:

log(e) = A(s) — sA'(s) — log(s) —
log(A"(s))

—

log(2) . (9)

Based on this formula our CAC rule operates as follows.
CAC Rule
Suppose a new call of source type k arrives. It is accepted if the estimate bandwidth () computed using Eq. (8)
with Nk replaced by Nk + 1, is less than the given channel capacity C of a bufferless multiplexer.

The main cost of this CAC rule is the computation of the moment generating function Mk(5) and its first and
second derivatives used in Eqs. (8) and (9). Clearly, using fewer parameters in capturing the traffic characteristics
reduces the cost of CAC. Therefore, we focus on constructing a simple model to characterize smoothed video traces
in the next two subsections.

3.4. Marginal Distribution Characterization
Because we adopt bufferless Chernoff-bound approach in designing our CAC rule, the difficult task of characterizing
the correlation structure of the traffic is largely eliminated. Only the marginal distribution information is necessary
in traffic specification. The stationary marginal distribution f(s) of a smoothed video v(t), t =1,2 , N can be
computed as follows:

f(s) = : v(t) <x}I
(10)N

where v(t) means the bit-rate of the frame, and 1.1 denotes the cardinality of a set.
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Before presenting a traffic model for CAC, we should note that the number of parameters in characterizing the
source should be small and the loss probability estimated using the CAC rule should be an upper bound on the
probability required by a source based on the given set of user-specified parameters, i.e., P(R � C) < P(R � C),
where R = >:<= >i::' rk, and kn 5 a random variable representing the marginal distributionused by the CAC,
which matches the user specified parameters. From Eq. (2), it suffices to show that e_F*(c) <e_F*(). From Eq. (4)
this is equivalent to

sup8�o{sC — A*(s)} � — A*(s)} , (11)

Clearly, P(R � C) < P(R � C) holds if A*(s) < A*(s) for all s 0.

3.5. Binomial Distribution Characterization for CAC
Although the Markov model with a number of states can achieve high accuracy in characterizing the marginal
distribution of a single smoothed video stream; however, it is too complicated to be processed in real time in high-
speed networking.

Perhaps the simplest way to characterize the marginal distribution of a video is to use a model with only two
parameters: the peak rate, i, and the mean rate, in. Similar to the on-off model we discussed in Section 2.2, a
random variable X , taking two values: X = 0 with probability 1 — and X with probability , is the worst
case with the same in and

The on-off model based only on the mean and peak rate of a source generally does not provide sufficient information
about the marginal distribution of the source. Therefore it leads to a rather conservative loss probability estimate
by the Chernoff bound. Thus we propose a simple "binomial" model to characterize the marginal distribution of a
smoothed video below. In addition to the two parameters representing the mean in and the peak i, we introduce a
third parameter, M, representing the step number of the the bit rate; i.e., the entire bit rate range is divided into
M equidistant segments.

Given these three parameters, we use X with "binomial" distribution defined below to characterize the smoothed
video streams for the purpose of CAC.

P(=kA)= ( )pk(i_p)M-k ,k=1, 2 , M (12)

where
.1 MA=,

MAp=rn,
or equivalently,

—

Based on these definitions, the modeling procedure is transformed to finding the feasible M for a given source.

Note that the binomial distribution defined above probably cannot match Eq. (11) for all s 0, but we find that
the value s is located in an interval [a, /3] when the loss probability is given in the scale of i0 in our experiments.
We can use this property to search for the feasible M. From Eq. (6) and related formulas, we can see that the
value of ? is determined by link capacity and the probability distribution of the video bit rates. Based on these
observations, our searching process is described below.
Step 1:
Estimate the value of a and 3 by training with some videos in advance. In the training process we start with a given
cell loss probability and the link capacity for data transmission. Then, define a benchmark which consists of various
type of smoothed videos. At last, construct aggregate traffics randomly and increase the traffic load until the loss
probability estimated by Eq. (6) achieves the scale we defined. Then record the s values, and find the bounding
interval {c, 9].
Step 2:
Based on the {c, ?] we obtain in Step 1, we can search for the feasible M for a video by following method.
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:__
(a) Terminator (MPEG-i Movie) (b) ATP (MPEG-i Sport)

(c) Talki (MPEG-i Talk Show) (d) Brother (MPEG-2 Movie)

Figure 3. Comparison of moment generation functions between the real and the binomial model distributions.

Suppose Mk(S) is the moment generation function computed by the original bit rate distribution for a type k
video, e.g., the values of r(c) and p(C) of the video. Then the M can be calculated by following expression

M=Max{M: (i—p)+pe'i �Mk(L3)}, (13)

where p and are formulated by Eq. (12).
Based on the benchmark video traces we used in experiments, we find that the s j located in the interval

[1O_6, iO] which was obtained from the training process in Step 1. Using this interval at Step 2 of the searching
process, we can find the value M for each trace. Figure 3 shows the results of this process. We can see that the
moment generation functions of the binomial distribution we find match the original distribution well. Especially
in Figure 3(d) , we need to use log function to separate the two lines; otherwise, they overlap. We then conduct
experiments to evaluate the performance of CAC with this method, which will be discussed in Section 4.

3.6. Renegotiation Schedule
Renegotiation-based service adds a bandwidth renegotiation mechanism to the static CBR or VBR service. In Salehi
et al.' and Figure 1(b), we can see that the smoothing algorithm provides a transmission schedule for a video with
a set of (R , D) , where R denotes the constant transmission rate over the segment with duration D2 , i = 1 , . . . , M,

where M is the segment number of the entire smoothed video. Therefore, it is reasonable to employ Renegotiated
CBR (RCBR)4 service for our transmission schedule. In fact, the name "Renegotiation Based VBR service" we used
in this paper should be interpreted as "VBR service implemented by employing RCBR".

Intuitively, we can renegotiate a new bandwidth reservation at the beginning of each segment. However, in our
experiments, we find that a new renegotiation for each segment may be impractical. For example, the smoothed "Star
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Transmission schedule

Transmission time

Renegotiation schedule

Renegotiation time

Figure 4. The concept of renegotiation schedule.

Wars" with a 256Kbyte buffer results in 174 segments and the lengths of some segments are as short as 900 ms. Take
the packet round-trip time into consideration, it is useless to renegotiate a new bandwidth reservation if the length
of the segment is shorter than the packet round-trip time. Before we receive a connection acknowledgment, we have
to renegotiate another new reservation. Furthermore, we define a threshold DT to reduce the cost of renegotiation
signaling overhead. Therefore, the transmission schedule and reservation schedule are not always identical during
transmission.

Figure 4 shows the concept of reservation schedule based on the transmission schedule. Let (Ri, Di): i=1,. .. ,M
denote the transmission schedule we obtain from the smoothing algorithm in1 and DT denote the threshold of the
renegotiation time duration. After the connection is setup, the server starts to transport video data based on (R1,
D1). When D1 is expired, the server has to renegotiate a new bandwidth based on R2. However, if D2 is smaller
than DT the following process is applied.

D =
i=2

D where n = mint{ � DT} , (14)

R=max{RIi2,...,n} where n=rnint{�DT}. (15)

However, some bandwidth is wasted in this situation. Intuitively, a larger DT leads to more wasted bandwidth. We
can decide the optimal DT based on a network pricing function which indicates the cost to a given reservation
schedule of the form:

.

p = (c) + 7 , (16)

where N is the length of the session at frame level, c is the bandwidth reserved at time i, (x) is the cost of
reserving bandwidth x over one time interval, -y is the fixed renegotiation cost, and 5a,b 1 if a b; 0, otherwise.
For simplicity, we set q(cj) = c2 and y = 0. As a result, DT is chosen near the packet round-trip time which is
usually in the order of 102 ms.

3.7. The Complete Transmission Scheme
In summary, our scheme for VBR video transmission is outlined as follows.

1. Determine the transmission schedule of a smoothed video stream based on the smoothing algorithm we employ.

2. Decide the renegotiation schedule based on the determined transmission schedule and the limits of renegotiation
mechanism.

3. Characterize the transmission schedule behavior using the binomial distribution.
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Server Client

Figure 5. A Simplified Video Transmission System.

4. Use the Chernoff bound CAC method to determine whether a connection request is admitted or denied based
on the binomial model of transmission schedule selected in Step 2.

5. If the connection request is admitted, the video stream is transmitted according to the transmission schedule
and the network resources are renegotiated according to the renegotiation schedule.

4. SIMULATIONS AND EXPERIMENTAL RESULTS
To study the behavior of MPEG traffic in an ATM network, we performed several simulation experiments using
several MPEG traces and one MPEG-2 trace. In this section, the simulations and the experimental results are
discussed. We start with a description of the simulation environment and the models of network as well as the
end-systems used in the simulations. After describing the MPEG traces used in simulations, we continue to discuss
the experimental results of the transmission schemes we proposed in Section 3.

4.1. Simulation Environment and Models
The simplified system considered in this study is shown in Figure 5. Because we focus on the efficiency of trans-
mission schemes, the simple system should be sufficient for this purpose without loss of generality. It is obvious that
the system is made of by three major components: servers, clients and connection network. In this section, we focus
on the operations and models for each component.

Consider the sever in Figure 6. To describe the cell streams produced by ATM adaptors in real situation, the
following conditions are assumed.
1 . The ATM adaptor and the transmission link have the same capacity.
2. The ATM adaptor uses AAL type 5 to access the video data.
3. Two MPEG Transport Stream (TS) packets are included in one CPCSYDU.
This means that one AAL5SDU with size 376 (2x188) bytes will arrive at the ATM layer at the same time. Then
the packetization takes place. After shaping, the conforming cells flow into the network and eventually reach the
client buffer.

For clients (the viewers), the most important system design issue is to provide jitter-free playback. In our
simulations, we assume that 128 Kbytes buffer is preallocated before playback and the total buffer size in a client
system is 256 Kbytes. These two values affects the characteristics of cell streams smoothed by our smoothing
algorithm. Therefore, the sever should negotiate these two values at the connection setup stage. Based on the
negotiated values, the clients reserve the required buffer size and start to playback when enough data are loaded.

The cell loss probability is highly correlated with the output buffer size of a multiplexer. Large buffer size may
reduce the loss probability, but it introduces long delay. There is a tradeoff between buffer size and delay. To achieve
a reasonable delay, we assume that the buffer size of the multiplexer is in the order of i03 — iO in oui experiments.

828

Storage
Media - Monitor

Data Stream

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms



Figure 6. The Server Architecture Diagram.

Table 1. Encoder Parameters of MPEG-i Sequences

1

2
Encoder Input 384 x 288 pel
Color Format YUV (4:1:1, resolution of 8 bits)

3 Quantization Values 1=10, P=14, B=i8
4 Pattern IBBPBBPBBPBB
5 GOP Size 12
6 Motion Vector Search 'Logarithmic' / 'Simple'
7 Reference Frame 'Original'
8 Slices 1

9 Motion Vector/Range half pel / 10

10 Frame Rate 25 fps

4.2. Description of Traces
We use 15 MPEG-i traces and one MPEG-2 trace for simulations. All the MPEG-i traces we used are publicly
available from anonymous the ftp sites.2'10 The MPEG-2 data is provide by A. Reidman of AT&T Research Labs.'1

The MPEG-i traces are extracted from sequences which have been encoded by the Berkeley MPEG-encoder
(version 1.3), the encoding parameters for these sequences are listed in Table 1. Each MPEG video consists of 40,000
frames which is equivalent to approximately half an hour video. We also use a MPEG-2 trace in our simulations to
show the system robust. The encoding parameters and characteristics of this trace are listed in Table 2.

4.3. Simulation Results
4.3.1. Binomial model matching
The objective of this experiment is to compute the parameters in our "binomial" model for smoothed video sources.
For the given cell loss probability i0 and link capacity 155.52 Mbits/sec, the results of training process which is
stated in Section 3.5 are listed in Table 3.

We can see that the value of ? is bounded in the interval [iO_6, i0] as in our test benchmark traces. Item
ii is an aggregated cell stream composed of several different traces. It is included here to show that the estimated
interval is suitable for both homogeneous and heterogeneous cases.

Using Step 2 of the matching process, we can estimate a feasible step number M for each trace. The results are
shown in Table 4.
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Table 2. Parameters of MPEG-2 Traces

Encoder Input 720 x 576 pel (CCIR 601)
Color Format YUV (4:1:1)

Quantization Values 1=4, P=4
Pattern IPPPPPPPPPPPPP

GOP Size 15
Frame Rate 24 fps

Mean Frame Size 67815
Peak Frame Size 286880

Table 3. The Values of s for Our Benchmark

iii Training Source Value of?
bond (MPEG-I movie) 2.26 x 10_6

—-- lambs (MPEG-I movie) 2.46 x 10_6

—--- star (MPEG-I movie) 2.61 x 10
—-— terminator (MPEG-I movie) 7.30 x 10_6

—— preview (MPEG-I movie) 3.09 x 10
—— ATP (MPEG-I sport)ATP 2.66 x 10

race (MPEG-I sport) 2.23 x 10_6

_!_ sbowl (MPEG-I sport) 2.84 x 10_6
soccer_i (MPEG-I sport) 2.64 x 10_6
soccer_2 (MPEG-I sport) 1.82 x 10_6

JL mixed (MPEG-I + MPEG-Il) 2.ii x 10

Table 4. The Values of M for Traces

ii Trace name Value of M
bond (MPEG-I movie) 5

—__ lambs (MPEG-I movie) 5
star (MPEG-I movie) 5

—--_ terminator (MPEG-I movie) 9

—--- preview (MPEG-I movie) 6

---- ATP (MPEG-I sport) 8

race (MPEG-I sport) 7

—--- sbowl (MPEG-I sport) 10

—p--- soccer_i (MPEG-I sport) 8

J2 soccer_2 (MPEG-I sport) 5
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Figure 8. Comparison of M values for the smoothed "ATP".

4.3.2. Performance evaluation of CAC rules
After identifying the parameters of the binomial model of the original source, we estimate the aggregated bandwidth
needed for the current connection using Eq. (8). Figure 7(a) shows the performance for the smoothed "ATP"
video, and Figure 7(b) shows the performance for 10 different smoothed traces simultaneously existing in the
network. Five hundred independent runs are performed to obtain the minimum bandwidth needed to satisfy the
given QoS requirement. We also compare our results with the CAC methods which employ a "two-state model" and
a "three-state model" used in Zhang et al.5

The values of M we found in 4.3.1 is based on the goal of highest efficiency. In fact, we can balance the robustness
of a network service and the amount of statistical multiplexing gain by altering the value of M . Figure 8 shows the
estimated bandwidth with different value of M . By reducing the value of M , the bandwidth can be conservatively
estimated to provide more robust services. In other words, a video can be transmitted at different level of QoS by
selecting different M value.

We also find that the required bandwidth needed by smoothed video is significantly smaller than that needed by
the unsmoothed video. The critical requirement of the buffer space in transmitting unsmoothed video at peak frames
disappears after smoothing. On the other hand, the bit rate is constant during a long interval in the smoothed videos.
Hence, if a renegotiation fails, the QoS may be damaged badly. Therefore, we need an extra process for handling
renegotiation failures. For stored video, scalable coding method may be used for this purpose. For real-time on-line
applications such as videoconferencing, the joint channel and encoder rate control may be a solution for renegotiation
failures. These two techniques may become interesting topics for future researches.
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5. CONCLUSIONS
In this paper, we have studied the problem of real-time video transmission from a server to a client across a high-
speed network. Our study starts with characterizing videos in the different cases of smoothed and unsmoothed
data streams. In particular, we find that two advantages are associated with video data smoothing. First, queuing
delay jitter introduced by buffering within the network is greatly reduced because the bit rate is constant in each
segment. In other words, the delay jitter is reduced by smoothing with a specified client buffer. Second, bandwidth
allocation becomes nearly the only critical issue. Hence, we can neglect the effect of the buffer in analysis and
only the marginal distribution information is needed in traffic specification for CAC. Therefore, we come up with
a scheme for the smoothed video transmission with renegotiation based VBR service. Our experiments show that
our scheme achieves better performance than the unsmoothed case and that our proposed CAC rule is robust in the
heterogeneous cases. The renegotiation based services still have many open questions. A number of issues remain to
be explored in the future.
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