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Abstract 

This paper proposes a bidirectional approximate reasoning method based on interval-valued fuzzy sets, where fuzzy 
production rules are used for knowledge representation, and the fuzzy terms appearing in the fuzzy production rules of 
a rule-based system are represented by interval-valued fuzzy sets. The proposed method is more flexible than the one 
presented in the paper by Bien and Chun [IEEE Trans. Fuzzy Systems 2 (1994) 177] due to the fact that it allows the 
fuzzy terms appearing in the fuzzy production rules of a rule-based system to be represented by interval-valued fuzzy sets 
rather than general fuzzy sets. Furthermore, because the proposed method requires only simple arithmetic operations, 
and because it allows bidirectional approximate reasoning, it can be executed much faster and more flexible than the 
single-input-single-output approximate reasoning scheme presented in the paper by Gorzalczany [Fuzzy Sets and 
Systems 21 (1987) 1]. © 1997 Elsevier Science B.V. 

Keywords. Bidirectional approximate reasoning; Fuzzy production rule; Interval-valued fuzzy set; Knowledge base; 
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1. Introduction 

Much knowledge residing in the knowledge base of a rule-based system is fuzzy and imprecise. A powerful 
rule-based system must have the capability of approximate reasoning [1-7, 9 13]. The following single- 
input-single-output (SISO) approximate reasoning scheme is discussed by many researchers: 

RI: IF X is A1 T H E N  Y is B1 

R2: IF X is A2 T H E N  Y is B 2 

z 

Rp: IF X is Ap T H E N  Y is Bp 

(l) 
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Fact: X is Ao 

Consequence: Y is Bo 

where R~ are fuzzy production rules [15], 1 ~<i~< p; X and Y are linguistic variables [18], Ao, A~, A2, 
. . . .  Ap, Bt, B2 . . . .  , and Bp are fuzzy terms, such as "very small", "large", etc. A linguistic variable is a variable 

whose values are fuzzy terms. For example, let "speed" be a linguistic variable, its values may be fuzzy terms, 
such as "slow", "moderate", "fast", "very slow", "more or less fast", etc. The fuzzy terms are usually 
represented by fuzzy sets El7]. 

In [1], Bien and Chun presented an inference network for bidirectional approximate reasoning based on 
fuzzy sets; if a fuzzy input is given for the inference network, then the network renders a reasonable fuzzy 
output after performing approximate reasoning based on an equality measure, and conversely, for a given 
fuzzy output, the network can yield its corresponding reasonable fuzzy input after performing approximate 
reasoning. In [16], Turksen proposed the definitions of interval-valued fuzzy sets for the representation of 
combined concepts based on normal forms. In [12], Gorzalczany presented a method of inference in 
approximate reasoning based on interval-valued fuzzy sets. In [13], Gorzalczany further presented some 
properties of the interval-valued fuzzy inference method described in [ 12]. 

In this paper, we extend the works of [1, 12] to develop a new method for bidirectional approximate 
reasoning based on interval-valued fuzzy sets. The proposed method is more flexible than the one presented 
in [1] due to the fact that it allows the fuzzy terms appearing in the fuzzy production rules of a rule-based 
system to be represented by interval-valued fuzzy sets rather than general fuzzy sets. Furthermore, because 
the proposed method requires only simple arithmetic operations, and because it allows bidirectional 
approximate reasoning, it can be executed much faster and more flexible, than the single-input-single-output 
approximate reasoning scheme presented in [12]. 

The rest of this paper is organized as follows. In Section 2, we briefly review some basic definitions 
of interval-valued fuzzy sets from [12, 13, 16]. In Section 3, a method for measuring the degree of 
similarity between interval-valued fuzzy sets is presented. In Section 4, we present a method for bidirec- 
tional approximate reasoning based on interval-valued fuzzy sets. The conclusions are discussed in Section 5. 

2. lnterval-valuedfuzzy sets 

In 1965, Zadeh proposed the theory of fuzzy sets [-17]. Roughly speaking, a fuzzy set is a class with fuzzy 
boundaries. A fuzzy set A of the universe of discourse U, U = [ul, u2 . . . . .  u,}, is a set of ordered pairs, 
{(ul, fA(ul)), (u2, f,  du2)), . . . ,  (u,, fA(u,))}, where f4 is the membership function of A, .[A : U ~ [0, 1], andfA(ui) 
indicates the grade of membership of ui in A, where 1 ~< i ~< n. 

In [12, 13], Gorzalczany presented interval-valued fuzzy inference methods based on interval-valued fuzzy 
sets. If a fuzzy set is represented by an interval-valued membership function, then it is called an interval- 
valued fuzzy set. An interval-valued fuzzy set A of the universe of discourse U, U = {u~, u2 . . . . .  u,}, can be 
represented by 

A = {(ul, [a11, a12]), (u2, [azl, aa2]) . . . .  ,(u,, [a,l, a,z])}, t2) 

where interval Jail, a~2] indicates that the grade of membership of u/in the interval-valued fuzzy set A is 
between a~l and a~2, where 0 ~< ai~ ~ aiz ~< 1 and 1 ~< i ~ n. 

Let A and B be two interval-valued fuzzy sets, 

A = {(ux, [alx, alz])(uz, [a2,, a22]) . . . . .  (u,, [a,~, a,2])} = {(u,, [aib ai2])l 1 ~< i ~ n}, (3) 

B = {(u,, [b,b b,2]), (u2, [b2,, bz2]) . . . .  ,(u,, [b,~, b,2])} = {(u,, [b,~, b,2])l 1 -G< i ~< n}. (4) 



S.-M. Chen et al. / Fuzzy Sets and Systems 91 (I997) 339-353 341 

The union, intersection, and complement  operat ions of the interval-valued fuzzy sets are defined as follows: 

A u B  = {(ui, [ C i l ,  Ci2"])]Cil  = Max(al l ,  b/l), Ci2 = Max(a/z, bi2), and 1 ~< i ~< n}, (5) 

A ~ B  = {(u/, [dil, di2] ) ld i l  = Min(a ib  bix), di2 = Min(ai2, bi2), and 1 ~< i ~< n}, (6) 

A'  = {(ui, [ X i l ,  X i 2 ] ) [ X i l  = 1 -- ai2, Xi2  = 1 - -  all , and 1 ~< i ~< n}. (7) 

The interval-valued fuzzy sets a and B are called equal (i.e., A = B) if and only if Vi, all = bil and ai2 = bi2 
(i,e., [ai l ,  ai2] = [bi l ,  bi2]), where 1 ~< i ~ n. 

3. Similarity measures 

In [ 19], Zwick et al. have reviewed 19 similarity measures of fuzzy sets and compared  their performance in 
an experiment. In [14], Ke and Her  have presented a similarity function S to measure the degree of similarity 
between two vectors. The definition of the similarity function S is reviewed as follows. 

Definition 3.1. Let d and/7  be two vectors in JR", where ~ is a set of real numbers  between zero and one, i.e., 

Ci = <a l ,  a 2 . . . . .  a , ) ,  

/ 7 =  <bb  b2 . . . . .  b , ) ,  

where a~ ~ [0, 1], b~ e [0, 1], and 1 ~< i ~< n. Then, there is a similarity function S, 

a. /7 
S(d, 6) = Max(ci. &/7-/7)' (8) 

where S(&/7) e [0, 1], which can be considered as the similarity measurement  between the vectors ~i and/7. 
The value of S(&/7) indicates the degree of similarity between a and/7. The larger the value of S(&/7), the 
more  the similarity between the vectors d and/7. 

Based on the similarity function S, we can develop a matching function M to measure the degree of 
matching between interval-valued fuzzy sets. Let U be the universe of discourse, U = {ul, u2 . . . . .  u,}, and let 
A be an interval-valued fuzzy set of U, 

A = {(Ul, [al  1, a12]), (u2, [a2 , ,  a22]) . . . .  , (u,, [a , , ,  a,2]} } = {(u,, [a,1, a,2]) I 1 <~ i <, n}, 

then the lower bound  and the upper  bound of the interval-valued fuzzy set A can be represented by the 
subscript vector A and the superscript vector/~,  respectively, where 

/1 = <a11, a21 . . . . .  a,l>, (9) 

= <a,2, a22, ... ,a,2>. (10) 

In the following, we present the definition of matching function M to measure the degree of similarity 
between interval-valued fuzzy sets. 

Definition 3.2. Let U be the universe of discourse, U = {Ul, U 2 . . . . .  U n }  , and let A and B be two interval- 
valued fuzzy sets of U, where 

A = {(Ul, [ a l l ,  a123), (u2, [a21,  a22])  . . . .  , (u , ,  [ a , l ,  an2])} = {(ui, Jai l ,  a ,2])  I 1 ~< i ~< n}, 

B = {(Ul, [b,1, b,2]), (u2, [b2> b22]) . . . . .  (u., [b.~, b.2])} = {(u~, [b, , ,  b,2])[ 1 ~ i ~< n}, 
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then the degree of matching M(A, B) between the interval-valued fuzzy sets A and B can be measured as 
follows. Let 

S(A, B) = ~, (1 l) 

S(A, B) =/~, (12) 

M(A, B) = (~ + fi)/2, (13) 

where ~ e [0, 1], fl~ [0, 1], and M(A, B) ~ [0, 1]. The larger the value of M(A, B), the more the degree of 
matching between the interval-valued fuzzy sets A and B. 

Example 3.1. Let U be the universe of discourse, U = {ul, u2 . . . . .  u14}, and let A and B be two interval- 
valued fuzzy sets of U, where 

A = {(ub [0, 0]), (u2, [0, 0]), (u3, [0, 0.5]), (u4, [0.75, 0.8]), (us, [0.94, 0.95]), 

(u6, [1, 1]), (uT, [0.94, 0.95]), (us, [0.75, 0.83]), (u9, [0, 0.5]), (U~o, [0, 0]), 

(ul~, [0, 0]), (u,~, [0, 0]), iu,3, [0, 0]), (u,4, [o, 0])}. 

B = {(Ul, [0, 0]), (u2, [0, 0]), (u3, [0.90, 0.95]), (u4, [1, 1]), (us, [0.90, 0.95]), 

(U6, [-0, 0.8"]), (/37, [0, 0]), (/38, [0, 0"]), (/39, [0, 0]), (Ul0 , [-0, 0"]), 

(/311, [0, 03), (/312, [0, 03), (U13 , [0, 0]), (/314, [0, 03)}. 

Let/1 and/~ be the subscript vectors of the interval-valued fuzzy sets A and B, respectively, and let A and/~ be 
the superscript vectors of the interval-valued fuzzy sets A and B, respectively, where 

,4 = {0, 0, 0, 0.75, 0.94, 1, 0.94, 0.75, 0, 0, 0, 0, 0, 0), 

B = {0,0,0.90, 1, 0.90, 0, 0, 0, 0, 0, 0, 0, 0, 0), 

,4 = {0, 0, 0.5, 0.8, 0.95, 1, 0.95, 0.83, 0.5, 0, 0, 0, 0, 0), 

/~ = {0,0,0.95, 1 ,0 .95 ,0 .8 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0) .  

Then, based on formulas (11)-(13), the degree of matching M(A, B) between the interval-valued fuzzy sets 
A and B can be measured as follows: 

S(A, B) = 0.41, 

S(A, B) = 0.65, 

M(A, B) = (0.41 + 0.65)/2 = 0.53. 

It indicates that the degree of similarity between the interval-valued fuzzy sets A and B is equal to 0.53. 

4. A bidirectional approximate reasoning method based on interval-valued fuzzy sets 

Let us consider the following generalized modus ponens (GMP): 

Rule: I F X i s A T H E N  Y i s B  

Fact: X is A* (14) 

Consequence: Y is B* 
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where X and Y are linguistic variables, A* and A are interval-valued fuzzy sets of the universe of discourse 
U, U = {ul, u2 . . . . .  u.}, and B* and B are interval-valued fuzzy sets of the universe of discourse V, 
V = {v~, v2 . . . . .  vrn}. Assume that the interval-valued fuzzy sets A*, A, and B have the following forms: 

A *  = {(Ul,  [ -Xl l  , x 1 2 ] )  , (/t2, [ x 2 1  , x 2 2 ] )  , . . .  ,(Un, [Xnl, Xn2])} ,  

A -- {(u,, [yaa, Y12]), (u> Ey21, y22]) . . . .  ,(u., Ey.1, y.2])}, 

S = {(vb [z11, zig]), (v2, [z21, z22]) . . . .  , (vrn, [zrnb Zrnz])}, 

w h e r e 0 ~ x ~ l  ~ < x i e ~ l ,  0~<Yil ~<Y~2~< 1,1 ~<i~<n, 1 ~<zs~ <~zj2~< 1, a n d l  ~< j~m.  Le tA --~ and A be the 
subscript vectors of the interval-valued fuzzy sets A* and A, respectively, and let A -~ and A be the superscript 
vectors of the interval-valued fuzzy sets A* and A, respectively, where 

A g = ( X l l ,  X21 . . . . .  X n l ) ,  

= ( Y l  1, Y21 . . . . .  Y. 1 ) ,  

A *  = ( x 1 2  , x 2 2  , . . .  ,Xn2),  

= (Y12 ,  Y22 . . . .  ,Yn2)" 

Then based on formulas (11)-(13), the degree of matching between the interval-valued fuzzy sets A* and 
A can be measured. Let M ( A * ,  A) = k, where k ~ [0, 1]. The deduced consequence of the rule is "Y is B* ", 
where the membership function of the interval-valued fuzzy set B* is as follows: 

B* = {(/)1, ['W11, W12]), (/)2, I-w21' W22"1)' "'" ,(Urn, [Wml ,  Wrn2"])}, (15) 

where wil = k*zil ,  wi2 = k * z i 2 ,  and 1 ~ i ~< m. 
It is obvious that if A* and A are identical interval-valued fuzzy sets (i.e., A* = A), then M ( A * ,  A) = 1 and 

B* is equal to B. 
Let us consider 

RI: IF X 

R2: IF X 

the following single-input-single-output (SISO) approximate reasoning scheme: 

is AI T H E N  Y is B1 

is A2 T H E N  Y is B 2 

Rv: IF X is Ap T H E N  Y is Bp 

Fact: X is Ao 

(16) 

Consequence: Y is Bo 

where Ao, A~, A2 . . . .  , A v are interval-valued fuzzy sets of the universe of discourse U, U = {Ul, u2 . . . .  , u,}, 
and B1, B2 . . . .  and B v are interval-valued fuzzy sets of the universe of discourse V, V = {vl, v2 . . . . .  Vm}. 
Assume that 

A i = {(Ul ,  [Xil, x~¢1]), (u2,  [xi2, x~¢2]) . . . . .  (Un, [Xin, X~n])}, 

Bj = {(vl, [Yjl, Y*I]), (v2, [Yj2, Y ' z ] ) , . . . ,  (vrn, [Ysrn, Y*rn])}, 

where 0 ~<i~< p and 1 ~<j ~< p. Based on formulas (9) and (10), the interval-valued fuzzy sets Ai can be 
represented by the subscript vectors Ai and the superscript vectors A~, 0 ~ i ~ p, where 

Ao = (Xo,, Xo2 . . . . .  Xo.), 

A 1 = ( X I I  , XI2  . . . . .  Xln) ,  
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A 2 = ( x 2 1  , x 2 2  . . . . .  X2n) ,  

(17) 

Ap = (Xpl, xp2 . . . . .  xp,) ,  

A 0 = ( x o l  , *  Xo 2 .  . . . .  ,X~n ) ,  

AI * * = ( X l l  , X12 . . . . .  X~n) ,  

m2 * * = ( X 2 1  , X22 . . . . .  X~n) ,  

Av = x 2, . ,x . .>.  

Based on the previous discussions, we can get the following results: 

1~*"  M(Ao, A1) = kl ~ the deduced consequence of rule Rl is "Y is ,-1 , where 

B~ = {(vl, [kl*Yx1, k~*y~'l]), (v2, [kl*Yx2, kl*'yxzM, . . - *  q' ,(Vm, [kl*Y,m, k,*y*m])}, 

M(Ao,  A2) = k2 ~ the deduced consequence of rule R2 is "Y is n*,,  • ~'2 , where 

B* = {(vl,[-kz*y21 ,k2*y*l ] ) ,  (v2, [k2*Y22 ,k2*'y22j/,* -l~ . . . ,(Vm, [k2*Y2m, k2*y~m])}, 

M(Ao, Apt = kp => the deduced consequence of rule Rp is "Y is *" Bp , where 

B* = {(vx, [kt,*ypx, k * '*  1~ rk *" k * '*  7~ k * k * '*  q~ p YplJ t ,  (U2, k p Yp2, p Yp23J, "'" ,(Llm, [ p Ypm, p Ypm.l]J, 

where kl e [0, 1], 1 ~< i ~< p, and the deduced consequence of the SISO approx ima te  reasoning scheme is "Y is 
Bo , where 

Bo = B ~ w B * w  ... w B * ,  (18) 

and "w"  is the union ope ra to r  of  the interval-valued fuzzy sets. Tha t  is, 

Bo = {(vl, [z,,  z*]), (v2, [z2, z~]) . . . . .  (v,,,, [zp, z*])}, (19) 

where 

Zx = Max(k l*y l  1, k2*Yzl , . . .  ,kp*ypt) 

z* = Max(k~*y*~, k2*Y*x, . . . ,  kp*y*O 

z2 = Max(k l*y l  2, k2*Y22, ... , kp*yp2) 

z* = Max(ka*y~'2, k2*y*2 . . . . .  kp*y*2) 

• ( 2 0 )  

z,, = Max(kl*ylm,  kz*y2m,.. .  , kp*ypm) 

z* = Max(k,*y*m, k2*y*, , , . . . ,  kp*Y*m), 

0 ~< zl ~< z* ~< 1, and 1 <~ i ~< m. If k~ is the largest value a m o n g  the values ka, k2 . . . . .  and kp, then the 
interval-valued fuzzy set Bo is the most  similar to the interval-valued fuzzy set B~, where 1 ~ i ~ p. 
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Example 4.1. Let us consider the following single-input-single-output interval-valued approximate reason- 
ing scheme: 

R~: 

R2: 

R3: 

R4: 

Rs: 
Fact: 

IF X is A1 THEN Y is B1 

IF X is A2 THEN Y is B2 

IF X is A3 THEN Y is B 3 

IF X is A4 THEN Y is B4 

IF X is A5 THEN Y is B5 

X is A o 

Consequence: Y is Bo 

where Ao, A1, Az . . . . .  and A5 are interval-valued fuzzy sets of the universe of discourse U, and Bo, B1, 
B2 . . . . .  and B5 are interval-valued fuzzy sets of the universe of discourse V. These interval-valued fuzzy sets 
are shown as follows: 

A 0 = {(Ul, [0, 0"]), (/'/2, [0, 0]), (~/3, [0.90, 0.95]), (u4, [1, 1]), (us, [0.90, 0.95]), 

(u~, [o, o.8]),(u7, [o, o]), (us, [o, o]), (ug, [o, o]), (Ulo, [o, o]), 

(u, 1, [o, o]), (u12, [o, o]), (u,3, [o, o]), (u14, [o, o])1, 

A1 = {(ub [1, 1]), (u2, [1, 1]), (u3, [0.82, 0.95]), (u4, [0, 0.7]), (us, [0, 0]), 

(u~, [o, o]), (uT, [o, o]), (us, [o, o]), (ug, [o, o]), (U~o, [o, o]), 

(Ul 1, [0, 0]), (H12 , [0, 0]), (/313 , [0, 0]), (b/14 , [0, 0])}, 

A 2 = {(Ul, [0, 07) , (U2, [0, 0]), (U3, [0, 0.5]), (U4, [0.75, 0.8]), (Us, [0.94, 0.95]), 

(u(,, [1, 1]), (u,, [0.94, 0.95]), (us, [0.75, 0.83]), (u9, [0, 0.5]), (U,o, [0, 0]), 

(b/11, [0, 0]), (/312 , [0, 0]), (U13 , [0, 0]), (U14 , [0, 0])1, 

A3 = {(u,, [o, o]), (u~, [o, o]), (u3, [o, o]), (u,, [o, o]), (us, [o, o]), 

(u6, [0, 0]), (uv, [0, 0.6]), (us, [0.87, 0.92]), (u9, [1, 1]), (Ulo, [0.87, 0.92]), 

(Ul 1, [0, 0.6]), (U12, [0, 0]), (U~3, [0, 0]), (U14, [0, 0])}, 

A, = {(ul, [0, 0]), (u~, [0, 0]), (u3, [0, 0]), (u~, [0, 0]), (us, [0, 0]), 

(u~, [0, 0]), (uT, [0, 0]), (us, [0, 0]), (ug, [0, 0.6]), (Ulo, [0.87, 0.92]), 

(u, 1, [1, 1]), (u12, [0.87, 0.92]), (u13, [0, 0.6]), (ul~, [0, 0])}, 

A~ = {(ul, [0, 03), (u2, [0, 0]), (u3, [0, 0]), (u,, [0, 0]), (u~, [0, 0]), 

(U6, [0, 0]), (U7, [0, 0]), (U8, [0, 0]), (/39, [0, 0]), (Ul0 , [0, 0]), 

(ul l, [0, 0]), (u~2, [0, 0.6]), (u13, [0.87, 0.92]), (u,4, [1, 1])}, 

Sl = {(vl, [1, 1]), (v2, [0.94, 0.96]), (v3, [0, 0.65]), (v4, [0, 0]), (vs, [0, 0]), 

(V6, [0, 0]), (/)7, [0, 0]), (U8, [0, 0"]), (U9, [0, 0]), (U10 , [0, 0]), 

(vl 1, [o, o]), (v12, [o, o]), (v~, [o, o]), (vl,, [o, o2)}, 
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B2 = {(vl, [0, 0]), (vz, [0, 0.6]), (v3, [0.87, 0.92]), (v4, [1, 1]), (v5, [0.87, 0.92]), 

(U6, ['0, 0 .6] ) ,  (V7, ['0, 0"]), (VS, [0 ,  0] ) ,  (V9, ['0, 03), (/510 , [0 ,  0"]), 

(/311 , [0 ,  0] ) ,  (U12 , [0 ,  0"]), (U13 , [0 ,  0] ) ,  (/)14, [0 ,  0])} ,  

B3 = {(v], [0, 0]), (v2, [0, 0]), (v3, [0, 0]), (v4, [0, 0.5-]), (v5, [0.74, 0.82-]), 

(v6, [-0.94, 0.95]), (vT, El, 1]), (Vs, [0.94, 0.95]), (v9, [0.74, 0.82.]), (vlO, [0, 0.5]), 

(Vll  , [0 ,  0] ) ,  (U12 , [0 ,  0.]), (V13 , [0 ,  0-]), (l)14 , [0 ,  0-])}, 

B, = {(Vl, [0, 0-]), (v2, [0, 0-]), (v3, [0, 0]), (v4, [0, 01), 0)5, [0, 0]), 

(O6, [0 ,  0"]), (07, [0 ,  0 .53)  , (/)8, [0 .74 ,  0 .82] ) ,  (U9, [0 .94 ,  0.95.]), (V10 , [1 ,  1.]), 

(v11, [0.94, 0.95]), (v12, [0.74, 0.82]), (v13, [0, 0.5]), (v14, [0, 0])}, 

B5 = {(vl, [,0, 0]), (v2, [0, 0]), (v3, [0, 0]), (v,, [0, 0]), (vs, [0, 0]), 

(V6, [0 ,  0] ) ,  (V7, [0 ,  0] ) ,  (/)8, [0 ,  0-]), (/39, [0 ,  0-]), (UIO , ['0, 0-]), 

(v,1, [0, 0.6]), (v12, [0.87, 0.92]), (v13, [ l, 1]), (v~4, El, 1])}. 

The membersh ip  function curves of these interval-valued fuzzy sets are shown in Fig. 1. Based on formulas (9) 
and (10), the interval-valued fuzzy sets Ai can be represented by the subscript vectors Ai and the superscript 

l.I] 

0.5- 

0 

AI A2 A3 ,M As 

th th u~ u~ u, u, u i ~ u~o u n utz ut3 ut, 

(v) 

1.0 

0.5- 

0 

Vl 

IB 1 B 2 B3 B 4 B5 

v 2 v 3 v 4 v s v~ v 7 v s v 9 Vto Vii VtZ V13 Vt4 
~---V 

Fig. 1. The membership functions of interval-valued fuzzy sets. 
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vectors Ai, 0 ~< i ~< 5, where 

Ao 

A1 

A2 

A3 

A4 

As 

Ao 

A1 

A2 

A3 

A4 

As 

and the 
B3, B4, 

B1 

B2 

B3 

B4 

Bs 

B1 

B2 

B3 

B4 

347 

= (0 ,0 ,0 .90,  1, 0.90, 0, 0, 0, 0, 0, 0, 0, 0, 0),  

= (1, 1 , 0 . 8 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  0, 0, 0, 0),  

= (0, 0, 0, 0.75, 0.94, l, 0.94, 0.75, 0, 0, 0, 0, 0, 0),  

= ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 7 ,  l, 0.87, 0, 0, 0, 0),  

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.87, l, 0.87, 0, 0),  

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.87, 1), 

= (0 ,0 ,0 .95,  1 ,0 .95 ,0 .8 ,0 ,0 ,0 ,0 ,0 ,0 ,  0 ,0) ,  

= (1, 1, 0.95, 0.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),  

= (0, 0, 0.5, 0.8, 0.95, 1, 0.95, 0.83, 0.5, 0, 0, 0, 0, 0),  

= (0 ,0 ,0 ,0 ,0 ,0 ,0 .6 ,0 .92 ,  1,0.92,0.6,0,  0 ,0 ) ,  

= ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 . 9 2 ,  1,0.92, 0.6,0) ,  

= ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 . 9 2 ,  1), 

interval-valued fuzzy sets B1, Bz, B3_B4, B5 can also be represented by the subscript vectors B1, B2, 
B5 and the superscript vectors B1, B2, B3, B4, Bs, respectively, where 

= (1, 0.94, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),  

= (0 ,0 ,0 .87,  1, 0.87, 0, 0, 0, 0, 0, 0, 0, 0, 0),  

= (0, 0, 0, 0, 0.74, 0.94, 1, 0.94, 0.74, 0, 0, 0, 0, 0),  

= (0, 0, 0, 0, 0, 0, 0, 0.74, 0.94, 1, 0.94, 0.74, 0, 0),  

= (0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 8 7 ,  1, 1), 

= (1, 0.96, 0.65, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),  

= (0, 0.6, 0.92, 1, 0.92, 0.6, 0, 0, 0, 0, 0, 0, 0, 0),  

= (0, 0, 0, 0.5, 0.82, 0.95, 1, 0.95, 0.82, 0.5, 0, 0, 0, 0),  

= (0, 0, 0, 0, 0, 0, 0.5, 0.82, 0.95, 1, 0.95, 0.82, 0.5, 0),  

B5 = ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6 , 0 . 9 2 ,  1, 1). 

Assume that  given the fact "X is Ao", where 

Ao = {(ul, [0, 0]), (u2, [0, 0]), (u3, [0.90, 0.95]), (u4, El, 1]), (us, [0.90, 0.95]), 

(U6, [0, 0.81), (U7, [0, O1), (U8, [0, O1), (U9, [0, 0]), (Ulo , [0, O1) , 

tu,,, [o, o]), (u,~, [o, o]), (u,~, [o, o]), (u,,, [o, o])}, 



B~ = {(9,, [o, 

(iv) Because k4 = 

B *  = {(9, ,  [o, 

(v) Because k5 = 
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then 
(i) Because kl = M(Ao, A1) = 0.47, we can get 

B* = {(vl, [0.47, 0.471), (vz, [0.44, 0.451), (v3, [0, 0.3]), (v4, [0, 0]), (vs, [0, 0]), 

(VO, [0, 01) , (UT, [0, 01) , (I.)8, [0, 01) , (U9, [0, 01) , (/-)10, [0, 01) , 

(U11, [0, 01) , (U12 , [0, 01) , (/)13, [0, 01) , (914 , [0, 01) }. 

(ii) Because k2 = M(Ao, A2) = 0.53, we can get 

B* = {(v~, [0, 0]), (v2, [0, 0.32]), (v3, [0.46, 0.49]), (v4, [0.53, 0.53]), (v5, [0.46, 0.491), 

(vo, [0, 0.323), (vT, [0, 03), (98, [0, 03), (v9, [0, 03), (/)1o, [0, 01) , 

(/)11, [0, 01) , (/)12, [0, 01) , (U13 , [0, 01) , (V14 , [0, 01) }. 

(iii) Because k3 = M(Ao, A3) = 0, we can get 

0])[1 ~< i ~< 14}. 

M(Ao, A4) = 0, we can get 

01)11 ~< i ~< 14}. 

M(Ao, As) = 0, we can get 

B~ = {(v,, [0, 0])[ 1 ~< i ~< 14}. 

Finally, we can get the deduced consequence "Y is Bo" of the SISO interval-valued approximate reasoning 
scheme, where, 

Bo = B* w B* u B* u B* w B* 

= {(vl, [0.47, 0.47]), (vz, [0.44, 0.45]), (v3, [0.46, 0.49]), (v4, [0.53, 0.531), (vs, [0.46, 0.461), 

(v6, [0, 0.321), (vv, [0, 03), (v8, [0, 01), (99, [0, 01) , (/)1o, [0, 01), 

(~, ~, [o, o3), (v2, [o, o3), (~3,  [o, o3), (vl~, [o, o])}. 

The reasoning result is shown in Fig. 2. Because M(Ao, A2) has the largest value among the values of 
M(Ao, AO, M(Ao, A2), M(Ao, A3), M(Ao, AJ and M(Ao, As), we can see that the interval-valued fuzzy set Bo 
is the most  similar to the interval-valued fuzzy set B 2. 

Conversely, let us consider the following SISO approximate  reasoning scheme: 

RI: IF  X is A 1 T H E N  Y is B 1 

R2: IF X is A 2 T H E N  Y is B 2 

Rp: IF X is Ap T H E N  Y is Bp 

Fact: Y is Bo 

Consequence: X is Ao 

where 

Ai = {(u,, [Xil, x*,]), (u2, [xi2, X'z]), ... ,(u,, [x,,, x*])}, 

Bj = {(Vl, [Yjl,  Y~ll), (D2, [Yj2, y'z]),..., (vm, [Yjm, Y'm1)}, 

(21) 
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Fig. 2. The reasoning result of Example 4.1. 

where 1 ~< i ~< p and 0 ~<j ~< p. Based on formulas (9) and (10), the_interval-valued fuzzy sets Bj can be 
represented by the subscript vectors B~ and the superscript vectors B j, 0 ~ j ~< p, where 

Bo = <Yol ,  Y o 2 ,  .- .  , Y o r e ) ,  

B1 = < Y l l ,  Y l 2 , " "  , Y lm>,  

B2 = (Y21, Y22 . . . . .  YZm>, 

B~ = (yp , ,  Yp2 . . . . .  Ym>, (22) 

Bo = <Yol,* Yo2, - - . *  ,YOm>,* 

= , . . . .  Y~m>, B1 <Y*I ,  Y~'2 * 

= , . . . ,  Y2,,>, ( Y 2 I ,  Y*2 * B2 * 

. . . . .  yp,,>. (Ypl,  Yp2, * Bp * * 
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Based on the previous discussions, we can get the following results: 

M(Bo ,  B1) = sl ~ the deduced consequence of rule R~ is "X is ~*" ,11 , where 

AT = { (b/l, [ S l * X l l ,  Sl* X~l]) ,  (b/z, [ s l * x l 2 ,  S l*X~2]) ,  ... ,(b/n, [S l*Xln,  SI*XTn])}, 

M(Bo, B2) = S 2 ~ the deduced consequence of rule R: is "X is A*", where 

A~ = {(u,, [s2*x:~, s2*x~d), (u2, [s2*x~2, s:*x%]) . . . . .  (u., [s~*x2., s2*x*.])}, 

M ( B o ,  Bp) = sp ~ the deduced consequence of rule Rp is "X is A*" where 

A *  = { (u l ,  I-s,* X~l, s,* xp,]), (u~, rsp*x,~, sp*x*:]) . . . . .  (u., [s~*x,., sp* x*.])}, 

where sl • [0, 1] and 1 ~< i ~< p, and the deduced consequence of the SISO approximate reasoning scheme is 
"Y is Ao", where 

Ao = A * w A ~  ... w A * ,  (23) 

and "w" is the union operator of the interval-valued fuzzy sets. That is, 

Ao = {(ul, [Wl, w*]), (u2, [w2, w~']) . . . . .  (u,, [w,, w*])}, (24) 

where 

W 1 = M a x ( s I * X 1 1  , $2"X21 , . . .  ,Sp*Xpl) ,  

w* = MaX(Sl*X~'a ,  s2*x~ l  . . . .  , Sp*Xp*l ), 

w2 = MaX(Sl*Xl2, Sz*X22 , . . . ,  Sp*Xp2), 

w~ Max(sl*x~'2, s2*x~z . . . .  * * = , sp xp2), (25) 

w, = Max(sl*xa,, s2*x2 . . . . . .  SpXp,), 

w* = MaX(Sl*X*,, Sz*X* . . . . . .  Sp*X*,), 

0 ~< wi ~< w* ~< 1, and 1 ~< i ~< n. If s~ is the largest value among the values Sl, S2 . . . .  , and sp, then the 
interval-valued fuzzy set Ao is the most similar to the interval-valued fuzzy set A~, where 1 ~< i ~ p. 

Example 4.2. Consider the following single-input-single-output (SISO) approximate reasoning scheme: 

RI: IF X is A1 T H E N  Y is B~ 

R2: IF X is A 2 THEN Y is B2 

R3: IF X is As T H E N  Y is B3 

R4: IF X is Ag T H E N  Y is B4 

Rs: IF X is As T H E N  Y is B~ 

Fact: Y is Bo 

Consequence: X is Ao 
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where X and Y are linguistic variables, Ao, AI, A2, A3, A4, and A5 are interval-valued fuzzy sets of the 
universe of discourse U, U = {ul, u2 . . . . .  ul4}, B1, n2, B3, B4, and  B5 are interval-valued fuzzy sets of the 
universe of discourse V, V = {v~, v2 . . . . .  v~4}. These interval-valued fuzzy sets are the same as those shown in 
Example  4.1, where the membersh ip  functions of these interval-valued fuzzy sets are shown in Fig. 1. Assume 
that  given the fact "Y is Bo", where 

Bo = {(/21, [0, 0]), (v2, [0, 0]), (/23, [0, 0]), (/24., [0, 0.25]), (v5, [0.55, 0.67]), 

(v6, [0.88, 0.90]), (v7, [1, 1]), (/28, [0.88, 0.90]), (v9, [0.55, 0.67]), (/2~o, [0, 0.25]), 

(/21~, [o, o2), (/212, [o, o]), (v13, [o, o2), (/2~4, [o, o])}. 

then 
(i) Because kl = M(Bo, B1) = 0, we can get 

A* = {(u~, [0, 0])l 1 ~< i ~< 14}. 

(ii) Because k 2 = M(Bo, Bz) = 0.27, we can get 

A* = {(ua, [0, 0]), (u2, [0, 0]), (u3, [0, 0.14]), (u4, [0.20, 0.22]), (us, [0.25, 0.26]), 

(u6, [0.27, 0.27]), (uT, [0.25, 0.26]), (us, [0.20, 0.22]), (u9, [0, 0.14]), (U~o, [0, 0]), 

(Ull  , [0, 0"]), (U12 , [0,0]), (UI3 , [ 0 , 0 ] ) ,  (U14. , [0, 0])}. 

(iii) Because k3 = M(Bo, B3) = 0.89, we can get 

A* = {(ul, [0, 0]), (u2, [0, 0]), (u3, [0, 0]), (u4, [0, 0]), (us, [0, 0]), 

(u6, [0, 0]), (u7, [0, 0.53]), (us, [0.77, 0.82]), (u9, [0.89, 0.89]), (Uto, [0.77, 0.82]), 

(ula, [0, 0.53]), (u,2, [0, 0]), (u~3, [0, 0]), (u,4, [0, 0])}. 

(iv) Because k4 = M(Bo, B4) = 0.38, we can get 

A4* = {(u~, [o, o]), (u2, [o, o]), (u~, [o, o]), (u~, [o, o2), (us, [o, o]), 

(u6, [0, 0]), (uT, [0, 0]), (us, [0, 0]), (Ug, [0, 0.23]), (Ulo, [0.33, 0.35]), 

(u~,  [0.38, 0.38]), (u~2, [0.33, 0.35]), (u~3, [0, 0.23]), (u~4, [0, 0])}. 

(v) Because k5 = M(Bo, Bs) = 0, we can get 

A~' = {(u~, [0, 0])[ 1 ~< i ~< 14}. 

Finally, we can get the deduced consequence "X is Ao" of the SISO interval-valued approximate  reasoning 
scheme, where 

Ao = A * u A * u A * u A * ~ A *  

= {(ul, [0, 0]), (uz, [0, 0]), (u3, [0, 0.14]), (u4, [0.20, 0.22]), (us, [0.25, 0.26]), 

(u6, [0.27, 0.27]), (uv, [0.25, 0.53]), (us, [0.77, 0.82]), (Ug, [0.89, 0.89]), (Ulo, [0.77, 0.82]), 

(u~,  E0.38, 0.53]), (u~z, [0.33, 0.35]), (u,3, [0, 0.23]), (u,4, [0, 0])}. 
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Fig. 3, The reasoning result of Example 4.2. 

The reasoning result is shown in Fig. 3. Because M(Bo, B3) has the largest value among the values of 
M(Bo, B1), M(Bo, B2), M(Bo, B3), M(Bo, B4) and M(Bo, Bs), we can see that the interval-valued fuzzy set 
Ao is the most similar to the interval-valued fuzzy set A3. 

5. C o n c l u s i o n s  

In [1], Bien and Chun have presented an inference network for bidirectional approximate reasoning based 
on an equality measure, where the fuzzy input and fuzzy output data are represented by fuzzy sets. In this 
paper, we have extended the work of [1] to propose a new method for bidirectional approximate reasoning 
based on interval-valued fuzzy sets. If an interval-valued fuzzy input is given for the rule-based system, then 
the system renders a reasonable interval-valued fuzzy output after performing approximate reasoning based 
on a similarity measure, and conversely, for a given interval-valued fuzzy output, the system can yield its 
corresponding reasonable interval-valued fuzzy input after performing approximate reasoning. The pro- 
posed method is more flexible than the one presented in [1] due to the fact that it allows the fuzzy terms 
appearing in the fuzzy production rules of a rule-based system to be represented by interval-valued fuzzy sets 
rather than general fuzzy sets. Furthermore, because the proposed method requires only simple arithmetic 
operations, and because it allows bidirectional approximate reasoning, it can be executed much faster and 
more flexible than the single-input-single-output approximate reasoning scheme presented in [12-]. The 
proposed method allows the rule-based systems to perform bidirectional approximate reasoning in a more 
flexible and more simple manner. 
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