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Abstract

This paper proposes a bidirectional approximate reasoning method based on interval-valued fuzzy sets, where fuzzy
production rules are used for knowledge representation, and the fuzzy terms appearing in the fuzzy production rules of
a rule-based system are represented by interval-valued fuzzy sets. The proposed method is more flexible than the one
presented in the paper by Bien and Chun [IEEE Trans. Fuzzy Systems 2 (1994) 177] due to the fact that it allows the
fuzzy terms appearing in the fuzzy production rules of a rule-based system to be represented by interval-valued fuzzy sets
rather than general fuzzy sets. Furthermore, because the proposed method requires only simple arithmetic operations,
and because it allows bidirectional approximate reasoning, it can be executed much faster and more flexible than the
single-input-single-output approximate reasoning scheme presented in the paper by Gorzalczany [Fuzzy Sets and
Systems 21 (1987) 1]. © 1997 Elsevier Science B.V.

Keywords: Bidirectional approximate reasoning; Fuzzy production rule; Interval-valued fuzzy set; Knowledge base;
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1. Introduction

Much knowledge residing in the knowledge base of a rule-based system is fuzzy and imprecise. A powerful
rule-based system must have the capability of approximate reasoning [1-7, 9-13]. The following single-
input-single-output (SISO) approximate reasoning scheme is discussed by many researchers:

R;: IF X is A, THEN Y is B,
R,: IF X is A, THEN Y is B,

R, IF Xis A, THEN Y is B,
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Fact: X is 4,

Consequence: Y is By

where R; are fuzzy production rules [15], 1 €i < p; X and Y are linguistic variables [18], Ao, A1, 45,
..., A, By, By, ... ,and B, are fuzzy terms, such as “very small”, “large”, etc. A linguistic variable is a variable
whose values are fuzzy terms. For example, let “speed” be a linguistic variable, its values may be fuzzy terms,
such as “slow”, “moderate”, “fast”, “very slow”, “more or less fast”, etc. The fuzzy terms are usually
represented by fuzzy sets [17].

In [1], Bien and Chun presented an inference network for bidirectional approximate reasoning based on
fuzzy sets; if a fuzzy input is given for the inference network, then the network renders a reasonable fuzzy
output after performing approximate reasoning based on an equality measure, and conversely, for a given
fuzzy output, the network can yield its corresponding reasonable fuzzy input after performing approximate
reasoning. In [16], Turksen proposed the definitions of interval-valued fuzzy sets for the representation of
combined concepts based on normal forms. In [12], Gorzalczany presented a method of inference in
approximate reasoning based on interval-valued fuzzy sets. In [13], Gorzalczany further presented some
properties of the interval-valued fuzzy inference method described in [12].

In this paper, we extend the works of [1, 12] to develop a new method for bidirectional approximate
reasoning based on interval-valued fuzzy sets. The proposed method is more flexible than the one presented
in [1] due to the fact that it allows the fuzzy terms appearing in the fuzzy production rules of a rule-based
system to be represented by interval-valued fuzzy sets rather than general fuzzy sets. Furthermore, because
the proposed method requires only simple arithmetic operations, and because it allows bidirectional
approximate reasoning, it can be executed much faster and more flexible, than the single-input-single-output
approximate reasoning scheme presented in [12].

The rest of this paper is organized as follows. In Section 2, we briefly review some basic definitions
of interval-valued fuzzy sets from [12, 13, 16]. In Section 3, a method for measuring the degree of
similarity between interval-valued fuzzy sets is presented. In Section 4, we present a method for bidirec-
tional approximate reasoning based on interval-valued fuzzy sets. The conclusions are discussed in Section 5.

2. Interval-valued fuzzy sets

In 1965, Zadeh proposed the theory of fuzzy sets [17]. Roughly speaking, a fuzzy set is a class with fuzzy
boundaries. A fuzzy set A4 of the universe of discourse U, U = {uy, u,,....u,}, is a set of ordered pairs,
{(ys faluq)), Uz, fa(u2))s .., (Un, f4(u,))}. where £ is the membership function of 4, f, : U — [0, 17, and f,,(u;)
indicates the grade of membership of u; in A, where | <i<n.

In [12, 13], Gorzalczany presented interval-valued fuzzy inference methods based on interval-valued fuzzy
sets. If a fuzzy set is represented by an interval-valued membership function, then it is called an interval-

valued fuzzy set. An interval-valued fuzzy set 4 of the universe of discourse U, U = {uy, u,, ..., u,}, can be
represented by
A = {(ulv [alla alz])> (uZa [6121, a22]), a(um [anla an2])}v (2)

where interval [a;,, a;,] indicates that the grade of membership of u; in the interval-valued fuzzy set A is
between a;; and a;,, where 0 < ag;y < g, < land 1 <ign
Let 4 and B be two interval-valued fuzzy sets,

A = {(uy, [a11, a12]) Uz, [az1, @220). . (U, L1y @n2])} = (s [@i1, 2i2])| 1 <0< nj, (3)
<

B= {(ul, [b11, byad), (U, [b21s b22]), -, (U, [Buss an])} = {{uy [hi, b DI <1 € n}. 4)
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The union, intersection, and complement operations of the interval-valued fuzzy sets are defined as follows:

AUB = {(u;, [ci1, ci2]) ¢y = Max(a;y, byy), ¢z = Max(a;p, biy), and 1 < i< nj, (5)
ANnB = {(u;, [di1, dix]) | diy = Min(a;y, biy), diz = Min(a;, bi). and 1 < i < nj, (6)
A = {(up [xi, x2D X1 =1 — @2, X =1 —a;, and 1 < i <nj. (7)

The interval-valued fuzzy sets 4 and B are called equal (i.c.. 4 = B)if and only if Vi, a;; = b;; and a;, = b;,
(ie., [ai1, ai2] = [biy, bi2]), where 1 <i < n.

3. Similarity measures

In [19], Zwick et al. have reviewed 19 similarity measures of fuzzy sets and compared their performance in
an experiment. In [14], Ke and Her have presented a similarity function S to measure the degree of similarity
between two vectors. The definition of the similarity function S is reviewed as follows.

Definition 3.1. Let @ and b be two vectors in R", where R is a set of real numbers between zero and one, i.e.,
a={-ay,dy, ... ,a,,
b=<by,bs,....0,
where a; € [0, 1], b; € [0, 1], and 1 < i < n. Then, there is a similarity function S,
ab

" Max(@-ab-b) ®)

S(a, b)

where S(a, b) e [0, 1], which can be considered as the similarity measurement between the vectors @ and b.
The value of S(@, b) indicates the degree of similarity between @ and b. The larger the value of S(, b), the
more the similarity between the vectors a and b.

Based on the similarity function S, we can develop a matching function M to measure the degree of
matching between interval-valued fuzzy sets. Let U be the universe of discourse, U = {uy, u,, ... ,u,}, and let
A be an interval-valued fuzzy set of U,

A= {(Ub Lai1, ar2]), (uz, [az1, az2]), ..o, (g, [an1s anl])} = {(“i’ [ai,ap]|l i< n},

then the lower bound and the upper bound of the interval-valued fuzzy set 4 can be represented by the
subscript vector A and the superscript vector A, respectively, where

/T=<a11,6121,...,a,,1>, (9)
A= @y, @22, o 1 An2). (10)
In the following, we present the definition of matching function M to measure the degree of similarity

between interval-valued fuzzy sets.

Definition 3.2. Let U be the universe of discourse, U = {uy, u,,...,u,}, and let 4 and B be two interval-
valued fuzzy sets of U, where

A\

A= {(U1, Laii, a12]), (uy, [a24, azz]), .. (U, [y, anZ])} = {(ui, [a;y, a1 < i ”}~
1 — f
= I

B = {(uh [blla blZ])a (u2a [b21: b22])~ ’(um [bnla an]) (ui» [bih bll])l 1 < i < n}a
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then the degree of matching M (4, B) between the interval-valued fuzzy sets A and B can be measured as
follows. Let

S(A, B) = a, (11)
S(A4, B) = B, (12)
M(A, B) = (x + f)/2, (13)

where a € [0, 1], f € [0, 1], and M(A4, B) € [0, 1]. The larger the value of M(A, B), the more the degree of
matching between the interval-valued fuzzy sets 4 and B.

Example 3.1. Let U be the universe of discourse, U = {u;, u,,...,u;4}, and let 4 and B be two interval-
valued fuzzy sets of U, where
A = {(uy, [0, 07), (uz, [0, O), (u3, [0, 0.5]), (ug, [0.75, 0.8]), (us, [0.94, 0.957),
(us, [1, 17), (14, [0.94, 0.95]), (ug, [0.75, 0.83]), (us, [0, 0.5]), (uy0, [0, 0]),
(11, [0, 0]), (12, [0, 01), (13, [0, 0T), (14, [0, 0])}.
B = {(uy, [0, 0]), (uy, [0, 07), (u3, [0.90, 0.95]), (ug4, [1, 17), (us, [0.90, 0.957),
(s, [0, 0.81), (us, [0, 0]), (us, [0, 0T), (us, [0, O), (u10, [0, 01),
(uy1, [0, 00), (12, [0, 0]), (uy3, [0, 01), (uy4, [0, 01}

Let A and B be the subscript vectors of the interval-valued fuzzy sets A and B, respectively, and let 4 and B be
the superscript vectors of the interval-valued fuzzy sets A and B, respectively, where

A =<0,0,0,0.75,0.94, 1,094, 0.75,0,0,0, 0,0, 0>,
B =0,0,0.90,1,0.90,0,0,0,0,0,0,0,0,0),
<0,0,05,0.8,0.95,1,095,083,05,0,0,0,0, 0,
<0,0,0.95,1,0.95,08,0,0,0,0,0,0,0,0).

Then, based on formulas (11)+13), the degree of matching M (A, B) between the interval-valued fuzzy sets
A and B can be measured as follows:

S(4, B) = 041,
S(4, B) = 0.65,
M(A, B) = (041 + 0.65)/2 = 0.53.

It indicates that the degree of similarity between the interval-valued fuzzy sets 4 and B is equal to 0.53.

A=
B=

4. A bidirectional approximate reasoning method based on interval-valued fuzzy sets

Let us consider the following generalized modus ponens (GMP):
Rule: IF X is A THEN Y is B
Fact: X is A* (14)

Consequence: Y is B*
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where X and Y are linguistic variables, A* and A are interval-valued fuzzy sets of the universe of discourse
U,U = {uy, uy,...,u,}, and B* and B are interval-valued fuzzy sets of the universe of discourse V,
V ={vy, v3,...,0n}. Assume that the interval-valued fuzzy sets 4*, 4, and B have the following forms:

A* = {(ulv [xlb le])s (u2a [X21, x22])> ’(um [xnla xnz])}‘,
A = {(uy, [y11 y12Ds (w2, [V215 ¥221)5 - s (s [V Yu2D)}s
B = {(Ul’ [le’ 212])5 (02, [221’ 222])’ a(vm’ [Zmla ZmZ])}v

where 0 < x;; K xp < L0y <y <L 1<igsn 1<z <z <land | sLsm.Let;ﬁandeethe
subscript vectors of the interval-valued fuzzy sets A* and A, respectively, and let A* and A be the superscript
vectors of the interval-valued fuzzy sets A* and A, respectively, where

A* = <x119 X215 -- axn1>,
Iq = <YI1’ Va1,--- syn1>’
A* = (X2, X225+ » Xn2)>

A= V12> Y225 eee s Ya2)-

Then based on formulas (11)—(13), the degree of matching between the interval-valued fuzzy sets A* and
A can be measured. Let M(A*, A) = k, where k € [0, 1]. The deduced consequence of the rule is “Y is B*”,
where the membership function of the interval-valued fuzzy set B* is as follows:

B* = {(Uh (Wit wiad)h (U2, [W21, W22 d)s oo s (U [Wints sz])}» (15)

where w;; = k¥*z;, wi; = k¥zn,and 1 i< m.

It is obvious that if 4* and A are identical interval-valued fuzzy sets (i.e., A* = A), then M(A*, A) = | and
B* is equal to B.

Let us consider the following single-input-single-output (SISO) approximate reasoning scheme:

R;: IF Xis 4, THEN Y is B,
R,y IF Xis A, THEN Y is B,

: (16)
R, IF Xis A, THEN Y is B,
Fact: X is A,
Consequence: Y is B
where 4o, Ay, Az, ..., A, are interval-valued fuzzy sets of the universe of discourse U, U = {uy, u,, ..., u,},

and B,, B,,... and B, are interval-valued fuzzy sets of the universe of discourse V, V = {v, v2, ..., 0y}
Assume that

Ai = {(ulﬁ [xila xl*l]): (uZa [xila x:kz]) LR >(um [xim x:’:l])}a
Bj = {(UI’ [yjl, J’ﬁ])’ (UZ’ [yj2’ y;kZ:l)a a(vma [yfm’ Yfm])}-

where 0 <i<p and 1 <j < p. Based on formulas (9) and (10), the interval-valued fuzzy sets 4; can be
represented by the subscript vectors 4; and the superscript vectors A;, 0 < i < p, where

= {X01> X025 - Xon)>

> 2
- | o

= {Xq1, X125 005 X100,
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Ay = {Xa1, X225 -2 X2w),

(17)
A_pz (X pts Xp2s vev s Xpnps
A=0= (X x8a, . x800s
;1_—; = {xT X2, Xtw),
2——2 = (x5 x50, X3,
Z:(x;,"l,x;,"z,...,x;f,,>.

Based on the previous discussions, we can get the following results:
M(Ay, A) =k, = the deduced consequence of rule R, is “Y is B¥”, where
BY = {(vs, Tks*pun, ke*yE D) (2, Tha*yaas ko *yEaD), o s (O T *yim ko *yEnd)}
M(Ay, A,) =k, = the deduced consequence of rule R, is “Y is B%”, where

B = {(Uu [k2*ya1, ka*y31]), (02, [K2*Va2, k2*y5D) s oo s (Wm (K2 Vo kl*ygm])},

M(Ay, A,) =k, = the deduced consequence of rule R, is “Y is B;”, where
B: = {(UI’ [kp*ypla kp*y:1])7 (U25 [kp*yp2’ kp*y;(;?.])’ ’(vms [kp*ypm’ kp*y?;m])}a

wherek; € [0, 1], 1 < i < p, and the deduced consequence of the SISO approximate reasoning scheme is “Y is
B,”, where

Bo = BfUB%uU --- UB%, (18)
and “U” is the union operator of the interval-valued fuzzy sets. That s,

By = {(Ul’ [z1, 21]), (02, [22, 250) oo, (Ums [2ps zm 1)} (19)
where

zy = Max(k*yy1, k2*ya1s - 9kp*ypl)
z¥ = Max(k,*yty, k*v3,, . ’kp*yjl)
z, = Max(k*y12, k2*y22, - akp*ypl)

2% = Max(k*yTa, k2*y3s, ..., kp*J’?;z)

(20)

Zm = Max(k1*V1m k2*Vams - > Kp*Vom)

2} = Max(k *ym ko*Vim, - k) Vi)
0<z<zF<1,and 1 <i<m. If k; is the largest value among the values ky, k,,..., and k,, then the

interval-valued fuzzy set B, is the most similar to the interval-valued fuzzy set B;, where 1 <i < p.
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Example 4.1. Let us consider the following single-input-single-output interval-valued approximate reason-
ing scheme:

Ry IF X is A THEN Y is B,

R, IF X is 4, THEN Y is B,

Ra: IF X is A; THEN Y is B;

Ry IF X is 4, THEN Y is B,

Rs: IF X is A; THEN Y is B;

Fact: X is A4,

Consequence: Y is By

where A,, Ay, A5,...,and As are interval-valued fuzzy sets of the universe of discourse U, and B,, Bj,
B,,...,and B; are interval-valued fuzzy sets of the universe of discourse V. These interval-valued fuzzy sets
are shown as follows:

Ao = {(uy, [0, 0]), (u, [0, 01), (u3, [0.90, 0.957), (us, [1, 17), (us, [0.90, 0.95]),
(46, [0, 0.8]), (u7, [0, OT), (s, [0, 07), (us, [0, O), (u0, [0, OJ),
(u11, [0, 01}, (u12, [0, 0), (w13, [0, 01, (ur4, [0, 01},
Ay = {(ur. [1, 17), (2, [1, 17), (13, [0.82, 0.95]), (s, [0, 0.71), (us, [0, 0),
(e, [0, 0]), (us, [0, O), (ug, [0, 01), (uo, [0, OT), (u10, [0, OJ),
(11, [0, 0]), (w12, [0, O], (uy3, [0, OJ), (w14, [0, 0D},
Ay = {(uy, [0, 0]), (uz. [0, 0]), (u3, [0, 0.5]), (g, [0.75, 0.87), (us, [0.94, 0.95]),
(e, [1, 17), (u7, [0.94, 0.957), (ug, [0.75, 0.83]), (us, [0, 0.51), (110, [0, 0).
(u11, [0, 01), (u12, [0, 01), (w13, [0, OT), (w14, [0, 01)},
As = {(u1, [0, 01), (2, [0, 0]), (u3, [0, 0]), (us, [0.01), (us, [0, 0]),
(6, [0, 01), (us, [0, 0.6]), (ug, [0.87,0.92]), (uo, [1, 11), (110, [0.87,0.92]),
(u11, [0, 0.6]), (112, [0, 01), (u13, [0, OT), us4, [0, 01)}.
Aa = {(1, [0, 0]), (2, [0, 0]), (u5. [0, 01), (ua, [0, 0]}, (us, [0, 0]),
(u6, [0, 01), (u7, [0, O1), (us, [0, 01), (o, [0, 0.6]), (110, [0.87,0.92]),
(uy 1, [1, 17, (uy 5, [0.87, 0.92]), (uy 3, [0, 0.61), (432, [0, 01)},
As = {(u1, [0, 0]), (12, [0, 0]), (u3, [0, 01), (w4, [0, 01), (us, [0, 07),
(ue, [0, O]), (7, [0, O), (us, [0, 0]), (1o, [0, OT), (u0, [0, 0).
(11, [0, 0T), (15, [0, 0.6]), (u3, [0.87,0.92]), (uy4, [1, 1]},
By = {(vy, [1, 1]), (v, [0.94, 0.96]), (v3, [0, 0.65]), (va, [0, 0F), (vs, [0, OD),
(v6, [0, 0]), (v7, [0, OJ), (vs, [0, 0J), (v, [0, 0]), (v10, [0, 0F).
(11, [0, 0), (12, [0, 01), (013, [0, 01), (v14, [0, OT);
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B, = {(vy, [0, 0]), (v, [0, 0.6]), (vs, [0.87, 0.92]), (v4, [1, 1]), (vs, [0.87, 0.92]),
(6, [0, 0.6]), (v7, [0, OT), (vs, [0, 01), (vo, [0, 0J), (v10, [0, 0),
(v11, [0, 0]), (v12, [0, 1), (013, [0, 0]), (vy4, [0, O1)},

By = {(v1, [0, 01), (v, [0, 01), (v3, [0, 01, (v4, [0,0.5]), (vs, [0.74, 0.82]),
(ve, [0.94, 0.95]), (v4, [1, 1]), (v, [0.94, 0.95]), (ve, [0.74, 0.82]), (v10, [0, 0.5]),
(011, [0, O, (v12, [0, O), (013, [0, 0), (vy4, [0, 0D},

By = {(v1, [0, 0]), (v, [0, 01), (v3, [0, 0]), (va, [0, 01), (vs, [0, O]),
(vs, [0, O1), (v, [0, 0.5]), (v, [0.74, 0.82]), {ve, [0.94, 0.95]), (vy0, [1, 1]),
(v11, [0.94, 0.95]), (v12, [0.74, 0.82]), (v13, [0, 0.5]), (v14, [0, O},

Bs = {(vy, [0, 0]}, (v2, [0, 01), (03, [0, 0]), (va, [0, OT), (vs, [0, 0],
(v, [0, 0]), (v5, [0, 0]), (vs, [0, OJ), (ve, [0, O1), (v10, [0, O),
(v11, [0,0.6]), (v12, [0.87,0.92]), (vy3, [1, 1]), (v14, [1, 1])}-

The membership function curves of these interval-valued fuzzy sets are shown in Fig. 1. Based on formulas (9)
and (10), the interval-valued fuzzy sets A; can be represented by the subscript vectors A; and the superscript

1 (U)
AAI A, A A4 As

1.0

0.5

0 , . I A — g
Uowouououw U U Uyou, U, Wy,

(V)
0 Bl B2 B3 B4 B5

1.0

0.5

0 - e - - >V

Vi V3 V3 Ve Yy Ve Vi Vg Vo Vi Yy Vi Vi3 Ve

Fig. 1. The membership functions of interval-valued fuzzy sets.
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vectors A4;, 0 < i< 5, where

A, = €0,0,0.90, 1,0.90,0,0,0,0,0,0,0,0, 0,

A, =(1,1,0.82,0,0,0,0,0,0,0, 0,0,0,05,

A, = (0,0,0,0.75,0.94, 1,0.94,0.75, 0,0, 0, 0,0, 0>,
A, =<0,0,0,0,0,0,0,087,1,0.87,0,0,0, 0,

A, =<0,0,0,0,0,0,0,0,0,0.87, 1,0.87, 0, 0D,

As =<0,0,0,0,0,0,0,0,0,0,0,0,0.87, 1),

A, = 0,0,095, 1,0.95,058,0,0,0,0,0,0, 0,0,

A, =<1,1,095,0.7,0,0,0,0,0,0,0,0,0, 05,

A, =0,0,0.5,0.8,0.95,1,0.95,0.83,0.5,0, 0,0, 0,0,
A, =<0,0,0,0,0,0,0.6,0.92, 1,092, 0.6,0, 0,05,

A, =<0,0,0,0,0,0,0,0,0.6,092, 1,0.92, 0.6, 0,
742 =0,0,0,0,0,0,0,0,0,0,0,0.6,092, 15,

Bs, B,, Bs and the superscript vectors B;, B,, Bs, B,, Bs, respectively, where

=¢1,0.94,0,0,0,0,0,0,0,0,0,0, 0,0,

B, =<0,0,0.87,1,0.87,0,0,0,0,0, 0,0, 0,05,

B, = <0,0,0,0,0.74,0.94, 1,0.94,0.74,0, 0, 0, 0, 0,

B, =<0,0,0,0,0,0,0,0.74,0.94, 1, 0.94, 0.74, 0, 0),

By =<0,0,0,0,0,0,0,0,0,0,0,0.87,1, 1,

B, = <1,0.96,0.65,0,0,0,0,0,0,0,0,0,0,0),

B, = €0,0.6,092, 1,0.92,0.6, 0,0, 0,0, 0,0, 0,05,

By = (0,0,0,0.5, 0.82,0.95,1,0.95,0.82, 0.5, 0,0, 0, 05,

B, =<0,0,0,0,0,0,0.5,0.82, 0.95, 1, 0.95, 0.82, 0.5, 0>,

B; =<0,0,0,0,0,0,0,0,0,0,0.6,092, 1, 1.

Assume that given the fact “X is 4,”, where

Ao = {(u1, [0, 01), (uz, [0, 01), (3, [0.90, 0.957), (ua, [1, 17, (us, [0.90, 0.957),

(uG’ [0’ 08])’ (U7, [O’ 0])5 (u8’ [O’ 0])7 (u9’ [03 0])’ (ulO’ [0’ 0])’
(ul 1s [0’ 0])3 (u125 [0’ 0])’ (u13’ [09 0])a (u149 [0, 0])}a

347
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then
(1) Because k; = M(A4,, 4,) = 0.47, we can get
BY = {(v4, [0.47,0.47]), (v5, [0.44, 0.457), (vs, [0, 0.3]), (v4, [0, O]), (vs, [0, O]),
(ve [0, 0]), (vs, [0, O1), (vs, [0, OT), (v, [0, OT), (v10, [0, OT),
(011, [0, 0]), (v12, [0, O), (vy3, [0, 0]), (v14, [0, 0])}.
(i1) Because k, = M(Aq, A,) = 0.53, we can get
% = {(v1, [0, 07), (v, [0, 0.32]), (v3, [0.46, 0.49]), (v4, [0.53, 0.53]), (vs, [0.46, 0.49]),
(v, [0, 0.32]), (v7, [0, O]). (vs, [0, 0]), (vo, [0, OT), (v10, [0, O]
(011, [0, 01), (v12, [0, 01), (v13, [0, OF), (v14, [0, OD)}-
(iii) Because k3 = M(Ay, 43) = 0, we can get
BY = {(v, [0,0D)]1 <i< 14},
{(iv) Because k4 = M(Aq, A4) = 0, we can get
3= {(v;, [0,0])]1 < i< 14}
(v) Because ks = M (A, As) = 0, we can get
BY = {(v;, [0,0D|1 < i< 14}

Finally, we can get the deduced consequence “Y is B,” of the SISO interval-valued approximate reasoning

scheme, where,

B, = BfuB¥UBY UBYUB?

= {(vy, [0.47, 0.47]), (v,, [0.44, 0.45]), (vs, [0.46, 0.49]), (v4, [0.53, 0.53]), (vs, [0.46, 0.46]),

(065 [0, 032])’ (1)7, [05 O])’ (087 [07 0])7 (09’ [O’ O])’ (0109 [07 0])’
(Ul 1s [0’ O])7 (029 [0’ O])s (DISa [05 0])5 (014’ [07 0])}

The reasoning result is shown in Fig. 2. Because M (Ao, A,) has the largest value among the values of
M(Aq, A1), M(Ay, A,), M(Ay, A3), M(Ag, A4) and M (A,, As), we can see that the interval-valued fuzzy set B,

is the most similar to the interval-valued fuzzy set B,.
Conversely, let us consider the following SISO approximate reasoning scheme:

R, IF Xis A, THEN Y is B,
R,y IF Xis A, THEN Y is B,

R, IF Xis A, THEN Y is B,
Fact: Y is By

Consequence: X is 4,
where
Ai = {(ul’ [xl'b xl*l])’ (u27 [xi23 xz*Z]) ERE 7(um [xim x;l;l])}>

B; = {(01, [yjb }’}"1]), (2, [yj2= Y}kz]): ey (U [yjma ,V}km])},
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Fig. 2. The reasoning result of Example 4.1.
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where 1 <i<p and 0<j<p. Based on formulas (9) and (10), the=interval-valued fuzzy sets B; can be

represented by the subscript vectors B; and the superscript vectors Bj, 0 <j < p, where
B—o = (Yo1: Yoz -+ » YomDs
B—l = (Y11 Vizs oo Yimds

Fz = Va1, Y225 e s Vam)s

EI; = <yp17 ypZ’--- sypm>a
EO = <y(>§17y327'~' vygm>’
B—l = T yie, o ¥Tms

BZ = <y§1» ,ngs--- 9y3=m>’

Bp = <y:1’ y:Z’ ’y:m>-
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Based on the previous discussions, we can get the following results:
M(By, By) =s; = the deduced consequence of rule R; is “X is A¥”, where
AT = {(uy, [s1%x1 1, 51* xT1]), (w2, [s1*x12, s1*x%50), -0, (i, [51% 1, s1*xta))},
M(By, B;) =s, = the deduced consequence of rule R, is “X is 4%”, where

A} = {(“1, [s2*x21, 52*x51]), (ua, [s2*x22, $2*x%50), ..., (s [s2%x 2, SZ*X;II])},

M(Bo, B,) = s, = the deduced consequence of rule R, is “X is 4%, where
A; = {(ula [Sp* xp19 Sp* x:l])’ (u2’ [Sp*po’ Sp*x;l:l])a 9(um [Sp*xpm Sp* X:" )}a

where s; € [0, 1] and 1 < i < p, and the deduced consequence of the SISO approximate reasoning scheme is
“Y is A,”, where

Ao = ATUAU - VAL, (23)
and “U” is the union operator of the interval-valued fuzzy sets. That is,

Ao = {(“1, [wi, wiD), (ug, [wa, wE1), ..o, (U, [Wi Wf])}, (24)
where

wy = Max(s*x11, $2*X21, ..., 5,%%,1),

wi = Max(s;*x¥, s,*x3,, ..., 5,%x}),

wy = Max(s1*xy3, $3%X25, ..., 5,%Xp,),

w3 = Max(s;*x¥,, 52%x%,, ..., 5,%x%,), (25)

Wy = Max(s*X 1, $2%X25, ..., SEXpn),

wy = Max(s;*x},, s,%x%,, ..., s,%xk,),
0w, <wf<1, and 1 <i<n If 5 is the largest value among the values s;, s, ..., and s, then the

interval-valued fuzzy set A, is the most similar to the interval-valued fuzzy set 4;, where 1 <i < p.

Example 4.2. Consider the following single-input-single-output (SISO) approximate reasoning scheme:
Ri: IF X is A, THEN Y is B,
R,: IF X is A, THEN Y is B,
Ra: IF X is A; THEN Y is By
Ry IF X is Ay THEN Y is B,
Rs: IF X is As THEN Y is B;
Fact: Y is B,

Consequence: X is Ag
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where X and Y are linguistic variables, Ao, Ay, A,, A3, A4, and A5 are interval-valued fuzzy sets of the
universe of discourse U, U = {uy, u,, ... ,uy4}, By, By, B3, By, and Bs are interval-valued fuzzy sets of the
universe of discourse V, V = {v,, v,, ... ,v,4}. These interval-valued fuzzy sets are the same as those shown in
Example 4.1, where the membership functions of these interval-valued fuzzy sets are shown in Fig. 1. Assume
that given the fact “Y is B,”, where

By = {(v1, [0, 0]), (v2, [0, 01), (v3, [0, 0), (vs, [0, 0.25]). (vs, [0.35, 0.67]),
(v, [0.88,0.907), (v, [1, 1]), (vs, [0.88,0.90]), (vs, [0.55, 0.67]), (v, [0, 0.25]),

(Ull’ [07 0])’ (012’ [0’ O])’ (Dl 3 [0’ 0])’ (014’ [0’ 0])}'

then
(1) Because k; = M(B,, B,) = 0, we can get

At = {(, [0,0])|1 <i < 14).
(ii) Because k, = M(Bo, B,) = 0.27, we can get
A% = {(uy, [0, 0]), (2, [0, 0]), (u3, [0, 0.14]), (s, [0.20, 0.221), (us, [0.25, 0.26]),
(g, [0.27,0.277), (u, [0.25, 0.261), (us, [0.20, 0.22]), (us, [0, 0.147), (14,0, [0, 0]),
(1, [0, 01), (12, [0,01), (uy3, [0, 01), (uy4. [0, OD)}.
(iii) Because k3 = M(Bo, B3) = 0.89, we can get
A = {(uy, [0, 0]), (u2, [0, O), (u3, [0, O]), (us, [0, 0]), (us, [0, 0]),
(u6, [0, 07), (145, [0, 0.53]), (ug, [0.77, 0.82]), (uto, [0.89, 0.897), (0, [0.77, 0.82]),
(11, [0, 0.53]), (uy2, [0, 01), (us3, [0, O), (114, [0, 0])}-
(iv) Because k, = M(By, B,) = 0.38, we can get
A% = {(uy, [0, 0]), (uz, [0, O1), (u3, [0, O), (ua, [0, 01), (us, [0, 0]),
(6, [0, 01), (5, [0, 01), (us, [0, 07), (uto, [0, 0.23), (4, [0.33, 0.35]),
(uy 1, [0.38, 0.38]), (i1, [0.33, 0.35]), (u; 3, [0, 0.23]), (u14, [0, 01)}.
(v) Because ks = M(By, Bs) = 0, we can get
A% = {(u;, [0,0]]1 <i< 14}

Finally, we can get the deduced consequence “X is A,” of the SISO interval-valued approximate reasoning
scheme, where

Ao = ATU AU AT L AX U AY
= {(uy, [0, 01), (uz, [0, 07), (u3, [0, 0.147), (ua, [0.20, 0.227), (us, [0.25, 0.26]),
(g, [0.27,0.27]), (s, [0.25, 0.531), (s, [0.77, 0.82]), (s, [0.89, 0.897), (i11,, [0.77, 0.82]),
(w11, [0.38, 0.53]), (uy2, [0.33, 0.351), (uy 3, [0, 0.23]), (u14, [0, O])}.
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Fig. 3. The reasoning result of Example 4.2.

The reasoning result is shown in Fig. 3. Because M(B,, B3) has the largest value among the values of
M(By, By), M(B,, B;), M(By, B3), M(By, B,) and M(B,, Bs), we can see that the interval-valued fuzzy set
Ap is the most similar to the interval-valued fuzzy set A4;.

5. Conclusions

In [1], Bien and Chun have presented an inference network for bidirectional approximate reasoning based
on an equality measure, where the fuzzy input and fuzzy output data are represented by fuzzy sets. In this
paper, we have extended the work of [1] to propose a new method for bidirectional approximate reasoning
based on interval-valued fuzzy sets. If an interval-valued fuzzy input is given for the rule-based system, then
the system renders a reasonable interval-valued fuzzy output after performing approximate reasoning based
on a similarity measure, and conversely, for a given interval-valued fuzzy output, the system can yield its
corresponding reasonable interval-valued fuzzy input after performing approximate reasoning. The pro-
posed method is more flexible than the one presented in [1] due to the fact that it allows the fuzzy terms
appearing in the fuzzy production rules of a rule-based system to be represented by interval-valued fuzzy sets
rather than general fuzzy sets. Furthermore, because the proposed method requires only simple arithmetic
operations, and because it allows bidirectional approximate reasoning, it can be executed much faster and
more flexible than the single-input-single-output approximate reasoning scheme presented in [12]. The
proposed method allows the rule-based systems to perform bidirectional approximate reasoning in a more
flexible and more simple manner.
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