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ABSTRACT: The branch-and-bound method was originally developed to cope with difficulties caused by dis­
continuous design variables in linear programming. When the branch-an~-bound method is applied to solve
nonlinear programming (NLP) problems with a large number of mixed discontinuous and continuous design
variables. the slow rate of convergence becomes a major drawback of the method. In thIs study. a number
of enhancements are proposed to speed up the rate of convergence of the conventIOnal branch-an~~bound
algorithm. Three NLP in the form of truss-design examples ar~ tested to compare the capabilitIes and effIcIency
of the proposed enhancements. It is shown that of the five CrIterIa for arranglllg the order III which the deSign
variables are branched. the criterion of maximum cost difference dramatically reduces the number of branch
nodes. thereby reducing the total number of continuous-optimization runs executed. Moreover. neighboring
search. a branching procedure restricted in the neighborhood of the contllluous optImum. IS proven to be
effective in speeding up the convergence. Investigation also shows that branching several deSign varIables
simultaneously is not as efficient as sequentially branching one variable at a time. The proposed enhancements
are incorporated along with a sequential quadratic programming algorithm mto a software package that IS

shown to be very useful in the optimal design of engineering structures.

INTRODUCTION

As computer technology advances. optimization is becom­
ing a powerful tooJ in engineering design. In conventional
optimization algorithms. complications such as nonlinear
functions. multiple objective functions, and a large number
of design variables have been dealt with successfully [see, for
example. Arora (1989)J. Although continuous design varia­
bles are usually assumed in conventional algorithms, discon­
tinuous design variables are frequently encountered in prac­
tical applications. Examples are the size of a set of standard
components (discrete), the number of teeth of a gear (inte­
ger). or a choice between different design options (zero-one).
The capability to deal with discontinuous design variables via
conventional nonlinear-programming (NLP) problem algo­
rithms would be a major expansion of the applications of
structural optimization.

To make use of well-established continuous-optimization
algorithms. most discrete-optimization techniques are based
on the assumption of transforming the discontinuous solution
space into multiple continuous solution subspaces. The op­
timization problems in each of these continuous subspaces
are solved sequentially by imposing constraints on discrete­
ness of the design variables. The optimal discrete solution is
chosen from among the continuous solutions obtained (Gochet
and Smeers 1979). In addition to application cases of the
branch-and-bound method that have been reported in ref­
erences (Siddall 1982: Gupta and Ravindran 1981: Lee 1983).
a general algorithm for solving NLP problems with integer
and discrete design variables is presented by Sandgren (1990).
However. there is a major obstacle to applying this algorithm
to problems with a large number of discontinuous design var­
iables: it requires too many executions of the continuous­
optimization scheme and thus is very time consuming (Tseng
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and Wang 19X9). Hager and Balling (198H) have solved the
discrete-variable optimization problem for the design of steel
frames. The problem is first converted into a linear program­
ming (LP) problem after the continuous-optimum solution is
obtained. Then the LP problem is solved using the branch­
and-bound method in the neighborhood of the continuous
optimum. This approach enables the branch-and-bound method
to solve large-scale discrete-optimization problems effec­
tively. Generally speaking. a survey of the literature
(Vanderplaats and Thanedar 1991) shows that little numerical
experience in using the branch-and-bound method has been
reported.

In this studv, a number of enhancements to the conven­
tional branch-illld-bound method are proposed to reduce the
number of executions of the continuous-optimization scheme.
The effectiveness of the following are investigated: (I) Se­
lected branching order of nodes; (2) selected branching order
of design variables; (3) neighboring search in the subspace
near the continuous optimum; and (4) modified branching
algorithm itself to improve the efficiency of the branch-and­
bound method. The objective is to maximize the efficiency
of using the branch-and-bound method in solving large-scale
discrete-optimization problems. The proposed enhancement
are coded in IDESNC to be readily incorporated with a se­
quential quadratic programming (SQP) algorithm in an op­
timization program IDESIGN3.51 [a modified version of the
package IDESIGN3.5 used for solving continuous-optimi­
zation problems (Arora 1989)J. To evaluate and compare the
numerical performance of the various enhancements pro­
posed. we developed the software IDESNC to solve three
typical truss-design problems.

METHODOLOGY

Branching Order of Nodes

To locate a discrete optimum solution using continuous­
optimization schemes, the branch-and-bound method re­
peatedly deletes portions of the original design space that do
not contain allowable values of the discontinuous design var­
iables. This procedure is called "branching." First of all, the
problem is solved by using a continuous-optimization algo­
rithm. If the continuous optimum occurs at an allowable dis­
crete value for each of the design variables. the branching
procedure should be stopped. Otherwise. the procedure should
be continued. As illustrated in Fig. 1. the original design space
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FIG. 1. Conceptual Layout of Branching Procedures

is divided into three subspaces with the allowable discontin­
uous design values nearest the continuous-optimum solution
as the upper and the lower bound of the left and the right
subspaces, respectively. The center subspace, including the
original continuous solution but excluding the feasible dis­
continuous solution, is dropped. In each of the remaining two
subspaces, the minimum cost may occur at a value of the
design variable other than the newly assigned bound. A con­
ventional continuous-optimization scheme has to be used again
to find the optimum for each of the two remaining subspaces.
If the new optimum does not occur at an allowable discrete
value of the design variable in either of the subspaces, the
foregoing branching procedure has to be repeated in each of
the subspaces until a feasible optimal design is located. In
the process, the combination of design subspaces always in­
cludes all feasible discrete design variables, no matter how
many levels of branching have been done. In addition, as the
design space of the subproblem grows smaller, it becomes
easier to identify the continuous solution in a subspace.

The "'tree" of the branch-and-bound method, i.e., a dia­
gram of the branching, is shown in Fig. 2. Each design sub­
space is depicted as a "'node." In principle, a di~crete solution
can be found if an exhaustive search of the tree is made.
Conceptually, the exhaustive search can be either depth first
or breadth first, as illustrated in Figs. 2(a and b), respectively.
In a depth-first search, searching proceeds downward as far
as possible before the search of another branch begins. In
contrast, a breadth-first search proceeds one level at a time:
one level is searched completely before descending to the
next lower level. Both searching methods involve a large num­
ber of continuous optimization and thus are very time-con­
suming for the computer. Choosing an appropriate route in
the tree so that the solution is reached more directly would
drastically reduce the computing time required for the branch­
and-bound method. Such a search route is depicted in Fig.
2(c).

In discrete optimization, the minimum cost in the original
continuous design space is always less than or equal to that
in the design subspaces that have been branched from the
original space. This fact provides a guideline about when to

FIG. 3. Branching Order of Design Variables: (a) Minimum Clear­
ance; (b) Maximum Clearance; (c) Minimum Clearance Difference;
(d) Maximum Clearance Difference; (e) Maximum Cost Difference
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FIG. 2. Historical Diagrams of Searching Methods: (a) Depth-First
Search; (b) Breadth-First Search; (c) Best-First Search

EX: f(x) = f(xl,

stop branching further in depth. If a feasible discontinuous
solution is obtained in the process of branching, the corre­
sponding cost-function value can be taken as a bound. Any
other design subspace that possesses a continuous minimum
cost larger than this bound need not be further branched,
because further branching will only generate higher costs.
This strategy is called "'bounding," and can be used to choose
a branching route intelligently so as to avoid complete and
impartial searching through the tree. The idea of bounding
is useful only when the continuous-optimization scheme em­
ployed yields the global minimum in each of the design sub­
spaces. Theoretically, this is not always the case, because

Sub-design domain III

1
i
ISub-design domain II,Sub-design domain I
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where Xi = optimum value of the ith design variable; Xii and
Xi" = lower and upper allowable values of the ith design
variable, respectively; Llxi = smallest clearance of design var­
iable i; and X"h; = design variable to be branched.

2. Maximum Clearance: The criterion is the same as just
described except that the design variable with the maximum
clearance is branched first. as follows:

Xl

(b)

4

Design spaces for nodes Corresponding Branch Tree

Xl

(a)

(I)

(2)x"',, = min(.lx,. ,i,c' ... , .lx",)

.lx, = min( lx, - X"I.lx, - Xi"l)

Branching Order of Design Variables

The comments in last section concentrated on the branch­
ing order of nodes for a single design variable. When there
are a large number of design variables, the order of design
variables to be branched at the same node influences the
efficiency of the method largely. In the following, we propose
five different criteria to determine the priority in which the
design variables are branched (Fig. 3).

I. Minimum Clearance: For each design variable, we cal­
culate the clearance between the nonallowable optimum point
and the nearest allowable design value. The design variable
possessing the minimum clearance is selected to be branched
in the next step. The criterion is as follows:

there is no conventional optimization scheme that guarantees
convergence to the global minimum except for the convex
problems. Nevertheless, in the branch-and-bound method,
the good news is that the possibility of converging to a global
minimum increases enormously in practice because the same
optimization problems are solved repeatedly in different de­
sign subspaces with different initial guesses of design varia­
bles.

4. Maximum Clearance DiHerence: This is the same as cri­
terion 3 except that the design variable with the maximum
clearance difference is taken as the branch object, as follows:

x"", = max(.lCost" .lCostc..... .lCost",.) (12)

where Cost il and Cost i " = cost value of the lower and upper
bounds, respectively. of ith design variable at a node. and

(13)
I
iiI I.lCost, = ~ (X", - Xii)
rix,

(e)

.lCost i = difference between the two costs. This criterion has
been used in Hager and Balling's 1988 paper.

The linear sensitivity coefficient, df"/dX" of the cost function
at the optimum solution in the last higher level of the branch­
ing tree can be used to estimate the cost difference between
the lower and upper bounds of the ith design variable using
the following equation:

FIG. 4. Conceptual Layout of Branching Algorithms: (a) Single
Branch; (b) Multiple Branch; (c) Unbalanced Branch

If this linear approximation is used to calculate /lCost,. it is
not necessary to use (9) and (10) to call the cost-function
routine to evaluate the cost values. This :tpproximation thus
greatly reduces the number of function calls.

In the first four criteria, the clearance between a continuous
optimal point and its nearest discontinuous design point is
taken as the criterion. By implication, the sensitivities of the
cost function to all design variables are the same. This as­
sumption makes evaluation and judgment fast and easy at
the expense of accuracy. It is clear that the last criterion
improves accuracy.

After a continuous-optimum solution is obtained at the first
node, the algorithm searches through the subspace between
NB (a number of discrete value) larger and NB smaller dis­
crete values of each design variable out from the optimum to
look for the discrete minimum. The value of N B can be chosen

Neighboring Search

(3)

(4)

(5)

(6)

(7)

(8)

(9)

( 10)

(11)

~ Xill~ .. ,XI/•.)

,i" = Ilx, - x,,1 - IXi - Xi"! I

,i" = Ilxi - Xiii - lx, - Xi,,11

x"", = min(,i". ,i,c' .... .lx",,)

,i" = max( lx, - X"I.lxi - Xi,,!)

.lCost, = 'Costil - Cost,,,'

Cost" = f(x,. x, ..

Cost", = fIx,. x" .

3. Minimum Clearance Difference: This criterion is the dif­
ference between the clearances of the nonallowable optimum
point and the nearest lower and upper allowable values of
each design variable. The design variable with the minimum
clearance difference is taken as the branch object, as follows:

5. Maximum Cost Difference: At a node, we fix the values
of all design variables except one, and then evaluate the costs
at the lower and upper bounds for the remaining variable.
The design variable with the largest difference between these
two costs is the branch object. as follows:
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~ Continuous solution

o Optimum solution

IIJIl Infeasible node

• Action node

FIG. 5. Historical Diagram of Branching of 1O-Bar-Truss Exam­
ple

as one, two, or larger. For example, NB = 1 means that one
bigger and one smaller discrete allowable values for each
design variable in the neighborhood of the continuous opti­
mum are taken as the subspace for searching in the remaining
procedure. If some design variables of the continuous opti­
mum are right at the lowermost (or uppermost) discrete val­
ues then the right (or left) subspace for NB larger (or smaller)
discrete values for that design variable are taken as neighbors.
If NB = all in present paper, it means that all discrete values
for each design variable in the original design space are used
for the branching procedure.

Branching Algorithms

In branching algorithms; one node is always branched into
two nodes in the next level in the tree, as shown in Fig. 4(a).
If several design variables are dealt with simultaneously, the
next level can be of more than two nodes. In this study, the
following two new branching algorithms are proposed to im­
prove the efficiency of the branch-and-bound method.

I. Multiple Branching: Fig. 4(b) for Multi-2 demonstrates
the idea of multiple branching using the case of two discon­
tinuous design variables. For each of the variables, two sub­
spaces are generated. Therefore, if the number of simulta­
neously treated design variables is n for Multi-n, the number
of nodes in one branching will be 2". Comparing Figs. 4(a
and b) show that to achieve the same state of design subspaces
in the next lower level of a tree, single-branching requires
two steps of branching and 6 nodes in total produced, while
the multi branching algorithm needs one step only with 4 nodes
produced. Thus, in principle, multiple branching should be
able to reduce the computing power required.

2. Unbalanced Branching: A conceptual layout of this al-

834 I JOURNAL OF STRUCTURAL ENGINEERING / MAY 1995

gorithm is illustrated in Fig. 4(c). This layout represents a
compromise of the multiple-branching algorithm that avoids
the disadvantages of complete and impartial branching. The
algorithm can be thought of as a combination of the first and
second steps of the single branching algorithm with one of
the two nodes selected according to the concept of bounding.

NUMERICAL EXAMPLES

To investigate the performance of the foregoing methods,
the branch-and-bound method with the proposed enhance­
ments is incorporated with a SQP algorithm to solve three
truss-diagram problems each with seven, ro, and 28 design
variables, respectively. All three problems has been solved
by Haug and Arora (1979), Thanedar et a!. (1986), and Arora
and Tseng (1988) as continuous-optimization problems. The
finite-element method is used for structural analysis. A hybrid
design sensitivity method (Tseng and Kao 1989) that com­
bines the advantages ofthe direct differentation method (DDM)
and the adjoint variable method (AYM) is used to calculate
the sensitivity coefficients. All the computations are done on
an HP 835 workstation.

1. JO-Member Cantilever Truss: The structure and its load­
ing is fully described in the case 11 of Example 4.5 by Haug
and Arora (1979, page 242). The objective is to minimize the
weight of the truss. The cross-sectional areas are taken as
design variables. Nineteen constraints on stress, displace­
ment, member buckling, and fundamental vibration fre­
quency are imposed. The design formulation of the discrete­
optimization problem is the same as that in the continuous
case except the cross-sectional area of the truss members
needs to be selected from the following set of discrete values:
1.62,1.80,1.99,2.13,2.38,2.62,2.63,2.88,2.93,3.09,3.13,
3.38,3.47,3.55, 3.63, 3.84, 3.87,3.88,4.18,4.22,4.49,4.59,
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5,
16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, and 33.5. In
practice, these discrete values may be those prescribed in the
construction codes, e.g., the American Institute of Steel Con­
struction (AISe) code.

Five criteria for the branching order of the design variables
[(I) minimum clearance; (2) maximum clearance; (3) mini­
mum clearance difference; (4) maximum clearance differ­
ence; and (5) maximum cost difference), four neighboring
searches (NB = AlL 3, 2, and 1), and the three branching
algorithms (single, multiple, and unbalanced) are tested. Table
1 shows the results of these studies and the comparable results
given by Arora and Tseng (1988). The discontinous-optimum
solution found by IDESNC is 0.9% better than that reported
by Arora and Tseng (1988), which was only a guess solution
obtained by the interactive capability of IDESIGN3.5. Fig.
5 is the tree diagram when the maximum-cost-difference cri­
terion with NB = all is adopted. Altogether, there are 67
nodes and 442 function evaluations, and the cost-function
value increases 0.33% as compared to the continuous opti­
mum. Eleven nodes are deleted because they contained no
feasible variable, and the first allowable discrete solution was
obtained at node 32. The optimum cost value at this node
was set as the bound for the nodes not yet branched, because
they may possess optimum cost lower than the bound. The
branching of each of the remaining nodes was terminated
once an optimum was found that was larger than the estab­
lished bound. This case took the central processing unit (CPU)
approximately 20 times longer than the time required by the
corresponding continuous optimization.

The results of the single branching and the maximum-cost­
difference criterion with neighboring search for the number
of discrete values (NB = 1,2,3, and all) are also shown in
Table 1. The number of nodes and the function calls and the
CPU time decreased when a smaller NB number was used.

J. Struct. Eng. 1995.121:831-837.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 o

n 
05

/0
1/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



TABLE 1 Summary of Results for 10-Bar-Truss Design Example

SINGLE BRANCH AND BOUND MULTI BRANCH AND BOUND

(1) (2) (3) (4) (5) Multi-2 Multi-3 Multi-4 Un-bala
Branch order of
design variables NB = all NB = 3 NB = 2 NB = 1

Number of nodes 471 101 275 X'J 67 53 43 5 105 205 12\ 'J'J

Funetion calls 3.725 6X2 2.0X4 5'JX 442 360 320 51 %3 1.727 1.113 1.076
Weight 5,431 5,414 5.414 5,415 5,414 5,414 5,414 5,4X'J 5,415 5,415 5,415 5,415
CPU time (see) 211.5 40.1 12'J.2 40.0 2'J.5 26.1 23.2 3.X 54.'J 102.'J 6X.5 4X.6

Oplimum SolutIOns

Continuous design variabks I

I
2

I
3

I
4

I
5

I
6

I
7

I
X

I
'J

I
10

2X.27'J 1.620 27.261 13.727 1.620 4.0m 13.5'J5 17.544 1'J.130 1.62

Funetion ealls 22
Weight 5.3%.530
CPU time (see) 1,4

Discontinuous discr<:tc I

I
2

1

3

I
4

I
5

I
6

I
7

I
X

I
'J

I
10

design variables" 30.00 2.62 26.50 13.'JO 1.62 2.62 13.50 IX.XO IX.XO 1.62

Weight 5,465.430
Weight increase ('Ir ) 1.27

Discontinuous discrete I

I
2

I
3

I
4

I
5

I
6

I
7

I
X

I
'J

I
10

design variahlcsb 30.00 I.XO 26.50 14.20 1.62 3.X4 13.'JO 16.'JO IX.XO 1.62

\Vcight 5,414.256
Weight increasl' (":' ) O.32X
CPU time (sec) 2'J.5

Note: 10 (discrcte) design variabks: I'J constraints: and 420 (42 x 10) dIscrete values.
"Arora and Tscng (I'JXX).
"IDESNC: NR = all.

TABLE 2 Summary of Results for 25-Member Transmission-Tower Design Example

SINGLE BRANCH AND BOUND MULTI BRANCH AND BOUND

Branch order of (1 ) (2) (3) (4) (5) Multi-2 Multi-3 Multi-4 Un-bala

design variables NB = all NB = 3 NB = 2 NB = 1

Number of nodes 25 27 25 I'J 15 15 13 7 25 23 23 24
Function calls 121 133 121 122 70 X2 X7 50 161 204 272 17'J
Weight 720,4 722.X 720.4 722.X 720,4 720,4 720,4 722.X 720.4 720.4 720.4 720.4
CPU time (sec) 26.6 2X.I 26.7 25.0 15.3 17.6 IX.X 10.2 33.3 3'J.3 5l.3 30.1

Optimum Solutions

Continuous design variables 1

I
2

I
3

I
4

I
5

I
6

I
7

1.62 2.147 2.334 1.62 1.62 1. 'J74 3.431

Function calls 13
Weight 716.132
CPU time (see) O.X

Discontinuous discr<:te I

I
2

I
3

I
4

I
5

I
6

I
7

design variabks" 1.620 2.130 2.3XO 1.620 1.620 I.'J'JO 3.470

Weight 720.42'J
Weight increase (r::, ) 0.600
CPU time (see) 15.3

Not<:: 7 (discr<:te) design variabks: X7 constraints: and 2'J4 (42 x 7) discrete values.
'IDESNe: NR = all.

The final value of the cost function increased when NB was
a small number because the subspace of neighbors about the
continuous optimum was small. The neighboring search makes
the process more efficient but not very accurate.

2. 25-Bar Tower: The geometry and dimensions of a 25­
member transmission tower are given by Haug and Arora
(1979. page 245). Because of the symmetry of the structure
and the use of the design-variable linking technique. seven
design variables are used to represent the cross-sectional areas
of the 25 truss members. There are '1:1,7 constraints imposed.
The five criteria for the branching order of the design vari­
ables. four neighboring searches. and the three branching
algorithms are also tested. Table 2 shows the results of these
investigations. The number of nodes decreased as smaller

NBs were used. However. the number of function calls and
the CPU time increased for the cases when NB = 2 and 3
compared with that where NB = all. Checking the procedure
in detail shows that one of the branching nodes needed a
larger number of function calls and iterations to obtain con­
vergence in the SQP algorithm.

3. 200-Member Structure: To demonstrate the use of the
enhanced branch-and-bound method for large-scale prob­
lems, a structure with 200 members, 77 joints. 150 degrees
of freedom, and three independent loading conditions was
selected as an example. The detailed design data of the struc­
ture can be found in Haug and Arora (1979. page 250). De­
sign-variable linking is used to represent the cross-sectional
areas for 200 members in 29 design variables. The optimi-
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TABLE 3. Summary of Results for 200-Bar 29-Design Variables Truss-Design Example

SINGLE BRANCH AND BOUND

Branch order of (1 ) (2) (3) (4) (5)

design variables NB = all NB = 3 NB = 2 NB = 1

Number of nodes 3,000' 3,000' 3,000+ IR7 131 59 49 13
Function calls 19,R05 ' 23,224 ' 19,30R+ 1,317 R59 512 347 59
Weight + + + 34.5R5 34,5R5 34,5R5 34,593 34,09R
CPU time (sec) 124,325 ' 147,100' 124,924 ' R,995,5 0,210.R 3,3R7.2 2,207.R 404.5

Optimum Solutions

Continuous

Design variables 1.020 1.020 1.020 1.020 1.020 1.020 1.020 2.27R 1020 3.27R
1.020 1.020 4.R37 1.020 5.R37 1.020 1.020 7,RoO 1.020 R.Rol
1.020 1.020 11.997 1.020 13.997 2.304 4.04R R.312 16.R27

Function calls 16
Weight 32,974.725
CPU time (sec) 174.R

Discontinuous"

Discrete design variables" 1.620 1.620 1.620 1.620 1.620 1.620 1.620 2.3RO 1.020 3.3RO
1.620 1.620 4.ROO 1.620 5.740 1.620 1.620 7.970 1.020 11.500
1.020 1.020 11.500 1.620 13.500 2.130 3.R40 11.500 15.500

Weight 34,5R5.147
Weight increasc (%) 4.RR4
CPU time (sec) 0,216.R

Note: 29 (discrete) design variables; 1.600 constraints; and I ,2IR (42 x 29) discrete values.
"IDESNC; NB = all.

Object Cost

FIG. 6. Cost-increment Diagram of 1O-Bar-Truss Example

zation problems has 600 constraints in terms of member stress,
nodal displacement, buckling, and the fundamental vibration
frequency. Explicit design-variable bounds are also imposed.
The formulation of this optimization is the same as that given
in Haug and Arora (1979) and Arora and Tseng (1988) except
that the design variables are discrete.

The continuous and discrete solutions are both listed in
Table 3. The five criteria for the branching order of the design
variables are again tested. When minimum clearance, maxi­
mum clearance, and minimum clearance difference are used
as the criteria to determine the order of the branching design
variables (cases 1 to 3), the solutions did not converge until
the number of generated nodes reached 3,000. For the max­
imum clearance difference and maximum cost difference cri-

Neighboring Search

If a discrete-optimum solution is near the continuous-op­
timum solution or if the optimization problem is not highly
nonlinear, N B allowable discrete values for each design var­
iable in the neighborhood of the continuous-optimum solu-

COMMENTS

Branching Order of Design Variables

All five criteria proposed for determining the order in which
the design variables are branched are tested for both the 10­
member cantilever truss and the 25-bar-tower examples to
compare their effectiveness in improving the efficiency of the
branch-and-bound method. The results are shown in Tables
1 and 2. The rate of convergence and number of nodes created
are significantly different. The criterion of maximum cost
different performs best. This branching order promotes growth
of the tree in depth rather than breadth, In Fig. 6, the cost­
function values of the lO-member cantilever truss are plotted
against the number of nodes for the five proposed criteria.
The slopes of the best-fit lines indicate the rate of convergence
of each criterion. The obvious difference in the slope of these
lines indicates that the order of the branching design variable
is the dominant criterion in determining the rate of conver­
gence of the branch-and-bound method. As shown in Fig. 6,
the criterion of maximum cost difference has the steepest
slope and thus converges fastest.

teria (cases 4 and 5), however, only 187 nodes and 131 nodes,
respectively, are generated in the process and the cost func­
tion increases by only 4.9%. Although a large amount of CPU
time is needed, the enhanced branch-and-bound method pro­
vides a discrete-optimum solution.

The trend for the neighboring search is the same as that
in the 10-bar-truss example. The number of nodes and func­
tion calls and the CPU time decreased tremendously, and the
final value of cost function increases slightly for the case in
which NB = 1 compared with the case in which NB = all.

350 400 450
Node Numbe'

1: eno,2 = 0.164

1: erro,2= 0.180

1: erro,2= 0.103

1: erro,2= 0.075

1: erro,2= 0.141

300250200

y = 5408.7 + 0.10523 x

y = 5406.4 + 0.23816 x

y = 5401.5 + 0.13626 x

y = 5411.2 + 0.22289 x

y = 5405.9 + 0.32579 x

ISO10050

(1) 0 Minimum Oearance

(2) • Maximum Oearance

(3) + Minimum Clearance difference

(4) • Maximum Clearance difference:

(5) Maximum Cost difference

5415

5425

5435

5445

5455

5495

5465

5415

5485
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tion can be sought to obtain the discrete-optimum solution
very efficiently and accurately. If tpe problem does not fall
into one of these categories. the value of NB must be in­
creased to obtain a feasible solution. and the neighboring
search becomes less efficient. In the results of the 25-bar­
tower example. the number of function calls increases when
the neighboring search is employed simply because a larger
number of function calls and iterations is needed in the SQP
algorithm. In practical usage for large-scale problems. it sug­
gests the use of a smaller value of N B to obtain the value of
the objective function in the beginning. Then a user can in­
crease the value of N B to obtain the new value of the objective
function. If the new value of the objective function is con­
verged. it can stop process for increasing the value of N B.
However. the value of NB = all is still optional for the user
to obtain the accurate solution if CPU time is accessible.

Branching Algorithms

The underlying concept of using alternative branching al­
gorithms is to eliminate the middle nodes of a tree by allowing
a branch of more than one design variable at a time. The
proposed methods are applied to the lO-member cantilever
truss and the 25-member transmission tower; the results are
shown in Tables I and 2. The efficiency of the branch-and­
bound method has not improved as expected.

To understand why. let us refer to Figs. 3(a and b) again.
In multiple branching, one step of branching gives four nodes;
however, these are different from and not as good as the four
obtained by the two steps of the single branching. This is
beeause the two algorithms use different information to select
branching objects. In step two of single branching. new in­
formation on the nodes obtained in the first step is used; in
multiple branching. only the original information on the nodes
is available to select the two branch objects in a single step.

In single branching. sometimes one of the nodes generated
in the first step will not be further branched in the second
step, as illustrated in Fig. 3(a). In every step. one of the nodes
may be abandoned, for reasons discussed previously. In mul­
tiple branching. however. 2n nodes are generated directly
without providing the opportunity to check whether some of
the nodes should be dropped. More nodes than necessary
may be generated, thereby slowing down the rate of conver­
gence of the solution process.

Unbalanced branching is proposed to overcome the afore­
mentioned disadvantages of multiple branching. Test results
show that it does improve the rate of convergence. Never­
theless unbalanced branching cannot totally overcome the
disadvantages of multiple branching, and the solution speed
of this algorithm is slower than that of the single branching
algorithm.

CONCLUSION

Third. single branch algorithm, which simplifies the branch
tree the most, is more effective than the multiple and un­
balanced branching algorithms for discrete optimization.

The software IDESNC, which combines the enhancements
with the SQP optimization scheme. can be effective and ef­
ficient in solving three structural-optimization problems in­
volving discrete design variables. In the future. the problems
of different scales (e.g., a larger number of design variables)
and different types (mixed, discrete, and continuous) should
be further investigated to make the branch-and-bound method
more useful for solving engineering problems.
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APPENDIX II. NOTATION

The following symbols are lIsed in Ihis paper:

The following conclusions may be drawn from the numer­
ical study presented here.

First, maximum cost difference. proposed by Hager and
Balling (llJSS), is the most effective criterion among the five
proposed criteria for determining the order of branching of
the design variables.

Second. a modified branch-and-bound method with the
capability of performing neighboring search is efficient but
less accurate. The modified method is more suitable for solv­
ing large-scale engineering problems.

Cost i"

NB
Xi'
XiII
X"h;

6.Cost,
Ill i

cost value of lower bounds of ith design variable at
node:
cost value of upper bounds of ith design variable at
node:
number used in neighboring search:
lower allowable values of ith design variable:
upper allowable values of ith design variahle:
design variable to be branched:
difference between two costs: and
smallest clearance of design variable i.
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