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Summary. Recurrent events data are commonly seen in longitudinal follow-up studies. Dependent censoring often occurs
due to death or exclusion from the study related to the disease process. In this article, we assume flexible marginal regression
models on the recurrence process and the dependent censoring time without specifying their dependence structure. The
proposed model generalizes the approach by Ghosh and Lin (2003, Biometrics 59, 877–885). The technique of artificial
censoring provides a way to maintain the homogeneity of the hypothetical error variables under dependent censoring. Here
we propose to apply this technique to two Gehan-type statistics. One considers only order information for pairs whereas the
other utilizes additional information of observed censoring times available for recurrence data. A model-checking procedure
is also proposed to assess the adequacy of the fitted model. The proposed estimators have good asymptotic properties. Their
finite-sample performances are examined via simulations. Finally, the proposed methods are applied to analyze the AIDS
linked to the intravenous experiences cohort data.
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1. Introduction
Multiple-events data are commonly seen in medical applica-
tions. Recurrence data are a special type of multiple-events
data in which the same type of events may occur more than
once. Examples include sequences of asthmatic attacks, bleed-
ing incidents, epileptic seizures, infection episodes, tumor re-
currences, or hospitalization care, just to name a few. A
number of recurrent events models have appeared in the
literature. The majority of analyses assume independent cen-
sorship. Existing approaches differ in the chosen model quan-
tities and whether the recurrence history is incorporated into
the model. Another important aspect is how covariates af-
fect the model quantity. The framework of counting processes
has been adopted by many authors. Andersen and Gill (1982);
Prentice, Williams, and Peterson (1981); Pepe and Cai (1993);
Chang and Wang (1999); and Zeng and Lin (2007a) assumed
that the intensity rate of the recurrence process is propor-
tionally affected by covariates. The mean function was mod-
eled by Lawless and Nadeau (1995) assuming multiplicative
covariate effects and by Lin, Wei, and Ying (1998) assum-
ing a time transformation that corresponds to the accelerated
failure time (AFT) model. Another alternative is to model
the gap times between adjacent recurrences. For example,
Huang (2000) considered an AFT model on the gap times
and Schaubel and Cai (2004) proposed a proportional haz-
ards (PH) model. It is worth mentioning that, even under the

independent censorship, the second and subsequent gap times
are subject to induced dependent censoring.

In practical applications, a recurrence process may be cen-
sored by two types of events. One type of censoring happens
when the study period ends or a patient withdraws from the
study for reasons unrelated to the disease status. The other
type of censoring occurs when a patient dies or is excluded
from the study due to biological reasons related to the disease
process. How to handle the association between the recurrence
process and the dependent censoring event is the key feature
of this research, which has received increasing attention in re-
cent years. The frailty approach has been adopted by Wang,
Qin, and Chiang (2001); Huang and Wang (2004); Liu, Wolfe,
and Huang (2004); Miloslavsky et al. (2004); Ye, Kalbfleisch,
and Schaubel (2007); and Zeng and Lin (2007b). The above
papers differ in the chosen model quantity for the recurrence
processes (i.e., intensity, mean, or occurrence rate functions)
and that for the dependent censoring variable (i.e., hazard
or the failure time). Also, the mechanism of how the latent
frailty variable and observed covariates affect the model quan-
tities may be different. For example, Huang and Wang (2004)
assumed multiplicative frailty and covariate effects on the in-
tensity function of the recurrent process and on the hazard of
the dependent censoring variable. Cook and Lawless (1997)
proposed to modify the occurrence rate function, which also
incorporates the effect of dependent censoring. On the other
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hand, some authors proposed inference methods for assessing
marginal covariate effects without specifying the underlying
dependence structure. For example, Chang (2000) assumed
AFT models on the gap time between recurrences and de-
pendent censoring time. Ghosh and Lin (2003) assumed AFT
models on the total time (measured from the beginning to a
recurrence event) and dependent censoring time.

In this article, we also focus on marginal regression analysis
without specifying the form of the dependent censoring. We
broaden the approach of Ghosh and Lin (2003) to allow more
flexible modeling of the recurrence process and the depen-
dent censoring time. Notations and model assumptions are
described in Section 2. Section 3 presents the proposed meth-
ods and asymptotic analysis. A model-checking procedure for
assessing the goodness of fit of the imposed assumption and
a related model-selection procedure are discussed in Section
4. Simulation results and data analysis are provided in Sec-
tions 5 and 6, respectively. Section 7 contains some concluding
remarks.

2. Notations and Models
Let N ∗(t) be the number of recurrent events that occur over
the time interval [0, t], D be the dependent censoring time,
C be the independent censoring time, and Z be the vector
of covariates. Throughout the article, we assume that C may
depend on Z but C is independent of N ∗(t) and D given Z .
On the other hand, D is correlated with the process N ∗(t),
despite Z . The recurrence process can also be expressed in
terms of recurrence times. Define Tk as the time from the
origin to the kth recurrent event (k = 1, 2, . . .). Hence N ∗(t) =∑∞

k=1 I(Tk ≤ t). Observed variables can be denoted as N (t)
= N ∗(t ∧ D ∧ C), X = D ∧ C , and δ = I(D ≤ C). There are
K = N (X) events observed successively at times Tk = min {t:
N (t) ≥ k} for k = 1, . . . , K .

In this article, the effect of covariates on N ∗(t) is the ma-
jor interest and that on D is of secondary interest, and the
dependence between {N ∗(t), D} is nuisance. Accordingly we
assume the following regression models:

h1(Tk ) = β′
0Z + εk ,

h2(D) = η ′
0Z + ξ, (1)

where h1( · ) is a known monotone function, h2( · ) is a mono-
tone function that may be known or unknown, θ0 = (β0, η0)′

are the true parameters, εk and ξ are the error variables. εk

and ξ may be correlated with each other but both are indepen-
dent of Z . The marginal distribution of εk is unspecified. The
marginal distribution of ξ is unspecified for known h2( · ) and
is specified for unknown h2( · ). When h1(t) = h2(t) = log (t)
(i.e., an AFT assumption for both recurrences and dependent
censoring), the models in (1) reduce to the case studied by
Ghosh and Lin (2003). This setting allows for more flexible
assumptions on D, say the PH model with h2(t) unknown and
ξ following the extreme value distribution.

The first model can also be expressed in terms of counting
processes. Define N ∗

ε (t) =
∑∞

k=1 I(εk ≤ t) as the number of
occurrences for εk over the time interval [0, t]. The models
are equivalent to the following

[
N ∗{h−1

1 (t + β′
0Z)}

h2(D) − η ′
0Z

]
d=

[
N ∗

ε (t)

ξ

]
, (2)

where “ d=” means “with the same distribution.”
Estimation of η0 is straightforward by applying existing

methods that assume independent censorship. Estimation of
β0 is complicated due to dependent censoring. To avoid spec-
ifying the dependent relationship, we propose to modify non-
parametric statistics originally constructed based on random
replicates of (N ∗

ε (t), ξ)′.

3. The Proposed Inference Methods
Let {N ∗

i (.), Tik , Ci , Di , Z i} be independent realizations of
{N ∗(.), Tk , C, D, Z} for k = 1, . . . and i = 1, 2, . . . , n. Let
εik (β) = h1(Tik ) − β′Z i and ξi (η) = h2(Di ) − η ′Z i . It is easy
to see that (εik , ξi ) ≡ {εik (β0), ξi (η0)} for i = 1, . . . , n are in-
dependent and identical replications of (εk , ξ). Define N ∗

εi (t) =
N ∗{h−1

1 (t + β′
0Z i )}. Accordingly {(N ∗

εi (t), ξi ) (i = 1, . . . , n)}
constitute a bivariate random sample with the joint distri-
bution independent of Z i . In the presence of censoring, the
observed counting process becomes Ni (t) = N ∗(t ∧ Xi ), which
can also be represented in terms of the error scale by defin-
ing Nεi (t) = N{h−1

1 (t + β′
0Z i )}. Note that Nε i (t) and Nε j (t)

no longer have the same distribution for Z i 
= Z j due to the
dependence between εik and ξi .

3.1 Estimation of θ0 When h2( · ) Is Known
We suggest estimating θ0 = (η0, β0)′ by first estimating η0
and then β0. Estimation of the latter is the challenge. To
motivate the proposed idea, we first discuss estimation of η0
when h2( · ) is known. Define ξ̃i (η) = h2(Xi ) − η ′Z i . When
δi = 1, ξ̃i (η) = ξi (η); whereas when δi = 0, ξ̃i (η) = ξC

i (η) =
h2(Ci ) − η ′Z i . Two statistics can be applied. The first one is
the log-rank type statistic:

UL
1 (η) =

1√
n

n∑
i=1

∫ ∞

0

⎡⎢⎢⎢⎢⎣Z i −

n∑
j=1

I{ξ̃j (η) ≥ t}Z j

n∑
l=1

I{ξ̃l (η) ≥ t}

⎤⎥⎥⎥⎥⎦ dNξ i (t; η),

(3)

where Nξi (t; η) = I(ξ̃i (η) ≤ t, δi = 1). The other is the
Gehan-type statistics:

UG
1 (η) = 2

√
n
∑

1≤i< j≤n

(Z i − Z j )Φij (η)
n(n − 1)

, (4)

where

Φij (η) = I{ξ̃i (η) ≤ ξ̃j (η), δi = 1} − I{ξ̃j (η) ≤ ξ̃i (η), δj = 1}.
(5)

Note that Φij (η0) and Φj i (η0) have the same distribution for
i 
= j. Estimators of η are the zero-crossing points of the
corresponding estimating functions.

It is well known that the Gehan statistics can be expressed
as weighted log-rank statistics, which can be further repre-
sented as a martingale integral asymptotically. In Appendix
A, we explore the other direction by writing the log-rank
statistics in terms of pairwise notations. The new expression
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will provide us some insight for estimating β in the presence
of dependent censoring.

Under the error scale, εik is subject to censoring by εC
i =

h1[h−1
2 {(ξi ∧ ξC

i ) + η ′
0Z i}] − β′

0Z i . As a result, (εik , εC
i ) no

longer have the same distribution for Z i 
= Z j due to depen-
dence between εik and ξi . The technique of artificial censoring
has been adopted by several authors to remove the bias aris-
ing from dependent censoring. It provides a way to create the
homogeneity for observations under comparison. Now we il-
lustrate how this idea is applied to the two types of statistics.

For the log-rank type statistics, we replace εC
i by a new cen-

soring variable ε̃C
i (θ) = Hθ{ξi (η) ∧ ξC

i (η)}, where Hθ(t) =
infall zh1{h−1

2 (t + η ′z)} − β′z. The corresponding estimating
function for β, which also depends on η, can be written as

UL
2 (β, η) =

n∑
i=1

∫ ∞

0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z i −

n∑
j=1

I
{
ε̃C

j (θ) ≥ t
}
Z j

n∑
j=1

I
{
ε̃C

j (θ) ≥ t
}
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

dÑεi (t; θ),

(6)

where Ñεi (t; θ) =
∑∞

k=1 I{εik (β) ≤ t ∧ ε̃C
i (θ)}. It follows that

(εik , ε̃C
i (θ0)) are identically and independently distributed

for all i = 1, . . . , n. When h1(t) = h2(t) = log (t), this ap-
proach reduces to the proposal of Ghosh and Lin (2003). Ding
et al. (2009) considered log-rank type statistics under flexible
forms of hj ( · ) (j = 1, 2) for semicompeting risks data (i.e.,
k = 1). Here because ε̃C

j (θ0) ≤ εC
j , some observations are ar-

tificially censored. Consequently if such extra artificial cen-
soring is heavy, which may occur when Z has a wide range,
the resulting estimator of β becomes inefficient.

The Gehan statistics requires the homogeneity only be-
tween a pair rather than for the whole sample. Define a dif-
ferent censoring variable ε̃C

i(j )(θ) = Hij
θ {ξi (η) ∧ ξC

i (η)}, where
Hij

θ (t) = infz=Z i ,Z j
h1{h−1

2 (t + η ′z)} − β′z. Let ε̃k
i(j )(θ) =

εik (β) ∧ ε̃C
i(j )(θ) and δ̃k

i(j )(θ) = I{εik (β) ≤ ε̃C
i(j )(θ)}. We may

consider the following Gehan-type statistic

UG
2 (β, η) = 2

√
n
∑

1≤i< j≤n

(Z i − Z j )Ψij (θ)
n(n − 1)

, (7)

where

Ψij (θ) =
∑

k

[
I
{
ε̃k

i(j )(θ) ≤ ε̃k
j (i)(θ), δ̃k

i(j )(θ) = 1
}

− I
{
ε̃k

j (i)(θ) ≤ ε̃k
i(j )(θ), δ̃k

j (i)(θ) = 1
}]

. (8)

Note that the kernel Ψij (θ) can be viewed as a modification
of (5). When k = 1, UG

2 (β, η) reduces to the method devel-
oped for semicompeting risks data proposed by Peng and Fine
(2006).

In light of Appendix A, we may also apply artificial censor-
ing to the reexpressed log-rank statistics in terms of pairwise
notations. As in Appendix A, we can write

UL
2 (β, η)=

n∑
i=1

n∑
j=1

(Z i − Z j )
∫ ∞

0

I
{
ε̃C

j (θ) ≥ t
}

n∑
l=1

I
{
ε̃C

l (θ) ≥ t
}dÑεi

(t; θ).

We propose to modify the denominator of the above ex-
pression. Specifically replacing the number at risk calculated
based on the whole sample by the number at risk based on a
pair, we obtain

n∑
i=1

n∑
j=1

(Z i − Z j )

×
∫ ∞

t=0

{
I
{
ε̃C

j (i)(θ) ≥ t
}

I
{
ε̃C

i(j )(θ) ≥ t
}

+ I
{
ε̃C

j (i)(θ) ≥ t
}}dÑεi (j ) (t; θ),

where Ñεi (j ) (t; θ) =
∑∞

k=1 I{εik (β) ≤ t ∧ ε̃C
i(j )(θ)}. Multiply-

ing the above estimating function by a factor 4
√

n/n(n − 1),
we obtain

ULG
2 (β, η) = 2

√
n
∑

1≤i< j≤n

(Z i − Z j )Ωij (θ)
n(n − 1)

, (9)

where

Ωij (θ) =
∑

k

[
I
{
ε̃k

i(j )(θ) ≤ ε̃C
j (i)(θ), δ̃k

i(j )(θ) = 1
}

−I
{
ε̃k

j (i)(θ) ≤ ε̃C
i(j )(θ), δ̃k

j (i)(θ) = 1
}]

. (10)

Now we compare the two kernels Ψij (θ) and Ωij (θ) in (8) and
(10), respectively. The first kernel Ψij (θ) utilizes only order
information for each pair. On the other hand, Ωij (θ) computes
the difference of observed events before the common censoring
time, ε̃C

i(j )(θ) ∧ ε̃C
j (i)(θ), for (i, j) pair. Hence ULG

2 (β, η) uses
the extra information of observed censoring times, which is a
special feature of recurrence events.

Formally θ can be estimated by solving

U (θ) =

(
U 1(η)

U 2(θ)

)
= 0, (11)

where U 2(θ) = U 2(β, η) can be UL
2 (θ) or the recommended

UG
2 (θ) or ULG

2 (θ) with either kernel function. A convenient
solution can be obtained by first obtaining η̂ and then solving
U 2(β, η̂) = 0.

3.2 Estimation of θ0 When h2( · ) Is Unknown
Now we modify the proposed inference methods when D |Z
follows a transformation model with h2(t) unknown but the
distribution of ξ completely specified. Define Sξ (t) = Pr(ξ >
t), which is a known function and SD 0 (t) = Pr(D > t |Z = 0),
which is the baseline survival function if death is the event
of dependent censoring. Because SD 0 (t) = Sξ (h2(t)), we have
h2(t) = S−1

ξ ◦ SD 0 (t) and h−1
2 (t) = S−1

D 0
◦ Sξ (t).

Existing methods can be applied to estimate SD 0 (t). For
the Cox PH model with t being an observed failure time of
D, the Nelson–Aalen estimator of SD 0 (t) is given by

∏
X i ≤t

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − exp(η̂ ′

Z i )
n∑

j=1

I(Xj ≥ Xi ) exp(η̂ ′
Z j )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

δ i exp(−η̂
′
Z i )

.

Under the proportional odds model, Murphy, Rossini, and
Van Der Waart (1997) proposed the maximum likelihood
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estimator of SD 0 (t). Denote ŜD 0 (t) as a uniformly consistent
estimator of SD 0 (t). The proposed estimating functions for
θ discussed above can be modified by replacing h2(t) with
ĥ2(t) = S−1

ξ ◦ ŜD 0 (t) and h−1
2 (t) by ĥ−1

2 (t) = Ŝ−1
D 0

◦ Sξ (t). Chen,
Jin, and Ying (2002) and Zeng and Lin (2007a) proposed
methods for estimating η and h2( · ), which are applicable
to the whole class of transformation models. The moment-
type estimating equations proposed by Chen et al. (2002) are
easier to implement than the nonparametric maximum likeli-
hood estimation (NPMLE) approach of Zeng and Lin (2007a)
and usually comparable in efficiency. These estimators of h2(t)
also denoted as ĥ2(t) can be directly applied. Therefore, we
can obtain θ̂ by solving U ∗(θ) = 0, where U ∗(θ) is U (θ) with
h2(t) in the expression replaced by ĥ2(t) and h−1

2 (t) replaced
by ĥ−1

2 (t).

3.3 Asymptotic Properties of θ̂

Now we derive asymptotic properties of θ̂, which solves
U (θ) = 0 with U 2(θ) = UG

2 (θ) or ULG
2 (θ).

Theorem 1:

(1) E[U (θ0)] = 0 where θ0 is the true parameter value.
(2) Under the regularity conditions listed in Appendix B, θ̂ is

a consistent estimator.
(3)

√
n(θ̂ − θ0)

d→ N2p (0,Λ−1
0 Σ0(Λ−1

0 )′), (12)

where Λ0 = ∇θE[U (θ)]|θ=θ0 and Σ0 can be estimated by

n−1
∑

i
J iJ

′
i , where J i = (

J
(1)
i

J
(2)
i

) and

J
(1)
i = δi

⎡⎢⎢⎢⎢⎣Z i −

n∑
j=1

{ξ̃j (η̂) ≥ ξ̃i (η̂)}Z j

n∑
j=1

{ξ̃j (η̂) ≥ ξ̃i (η̂)}

⎤⎥⎥⎥⎥⎦
−

n∑
l=1

δl I{ξ̃i (η̂) ≥ ξ̃l (η̂)}
n∑

j=1

I{ξ̃j (η̂) ≥ ξ̃l (η̂)}

×

⎡⎢⎢⎢⎢⎣Z i −

n∑
j=1

{ξ̃j (η̂) ≥ ξ̃l (η̂)}Z j

n∑
j=1

{ξ̃j (η̂) ≥ ξ̃l (η̂)}

⎤⎥⎥⎥⎥⎦ ,

J
(2)
i =

2
n − 1

n∑
j=1

(Z i − Z j )Qij (θ̂), (13)

where Qij = Ψij or Ωij .

Theorem 2: Assume that | ŜD 0 (t) − SD 0 (t) | → 0 in prob-
ability uniformly on the interval [0, τ 0] for all τ 0 > 0. Let η̃
and β̃ denote the solutions to U ∗

1(η) = 0 and U ∗
2(β, η) = 0.

Then η̃ and β̃ have the same asymptotic distribution as (12)

and the variance formula is (13) with h2(t) replaced by ĥ2(t) =
S−1

ξ ◦ ŜD 0 (t).

The proofs of Theorems 1 and 2 are presented in Web Ap-
pendix A.

Estimation of the variance involves evaluating Λ0 =
∇θE[U (θ)]|θ=θ0 , which is quite complicated. Because the ob-
served estimating function U (θ) is a step function, we cannot
directly compute its numerical derivatives to estimate Λ0. As
suggested by Kalbfleisch and Prentice (2002, p. 238), we ap-
ply the resampling technique originally developed by Parzen,
Wei, and Ying (1994) for variance estimation and construct-
ing confidence intervals. Specifically given the observed data,
define the equation:

U (θ) =

(
U 1(η)

U 2(θ)

)
= −n−1/2

n∑
i=1

J iGi , (14)

where (G1, G2, . . ., Gn) are independent standard normal vari-
ables. Define θ∗ = (η∗, β∗)′ as the root of equation (14). Ap-
plying similar arguments in Lin, Robins, and Wei (1996), the
conditional distribution of

√
n(θ∗ − θ̂), given the observed

data, is asymptotically the same as the unconditional dis-
tribution of

√
n(θ̂ − θ0). To approximate the distribution

of θ̂, we can obtain a large number of realizations of θ∗,
(θ∗

1, θ
∗
2, . . . , θ

∗
B ), by repeatedly generating random samples of

(G1, G2, . . ., Gn) for solving equation (14) B times while fixing
the observed data {(Ni (.), Xi , δi , Z i ) : i = 1, 2, . . . , n}. Then
we can estimate the SE of θ̂ from the B resampled estimators
by

ŜE(β̂j ) =

√√√√(B − 1)−1

B∑
i=1

(
β∗

j,i − β
∗
j

)2
,

ŜE(η̂j ) =

√√√√(B − 1)−1

B∑
i=1

(
η∗

j,i − η∗
j

)2
, (15)

with β
∗
j = B−1

∑B

i=1 β∗
j,i and η∗

j = B−1
∑B

i=1 η∗
j,i . The 95%

confidence interval (Cov) is calculated as β̂j ± 1.96ŜE(β̂j ) and
η̂j ± 1.96ŜE(η̂j ), where β̂j is the jth component of β̂, η̂j is
the jth component of η̂, β∗

j,i is the jth component of β∗
i , and

η∗
j,i is the jth component of η∗

i .

4. Model Checking and Selection
Recall that we have defined the two counting processes:
Nξi

(t; η) = δi I{ξ̃i (η) ≤ t} and Ñεi
(t; θ) =

∑∞
k=1 I{εik (β) ≤

t ∧ ε̃C
i (θ)}. Then define M̂1i (t; η) = Nξi

(t; η) − ∫ t

0 I{ξ̃i (η) ≥
u}dĤ0(u; η) and M̂2i (t; θ) = Ñεi

(t; θ) − ∫ t

0 I{ε̃C
i (θ) ≥ u}dR̂0

(u; θ), where

Ĥ0(t; η) =
n∑

i=1

∫ t

0

dNξi
(u; η)

n∑
j=1

I{ξ̃j (η) ≥ u}
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and

R̂0(t; θ) =
n∑

i=1

∫ t

0

dÑεi
(u; θ)

n∑
j=1

I{ε̃C
j (θ) ≥ u}

.

To verify the two marginal regression assumptions in (2), con-
sider the score processes

S1(t; η) = n−1/2
n∑

i=1

Z i M̂1i (t; η);

S2(t; θ) = n−1/2
n∑

i=1

Z i M̂2i (t; θ).

Let S(u, v; θ̂) = (
S1(u ;̂η)

S2(v ;̂θ)
). By the argument in Appendix 2

of Lin et al. (1996), under the assumed models, S(u, v; θ̂) =

(
S1(u ;̂η)

S2(v ;̂θ)
) converges weakly to a zero-mean Gaussian process

whose distribution can be approximated by that of Ŝ(u, v) =

(
Ŝ1(u )

Ŝ2(v )
), where

Ŝ1(t) = n−1/2
n∑

i=1

∫ t

0

⎡⎢⎢⎢⎢⎣Z i −

n∑
j=1

I{ξ̃j (η̂) ≥ s}Z j

n∑
j=1

I{ξ̃j (η̂) ≥ s}

⎤⎥⎥⎥⎥⎦
× dM̂1i (s; η̂)Gi + S1(t; η∗) − S1(t; η̂),

Ŝ2(t) = n−1/2
n∑

i=1

∫ t

0

⎡⎢⎢⎢⎢⎣Z i −

n∑
j=1

I{ε̃C
i (θ̂) ≥ s}Z j

n∑
j=1

I{ε̃C
j (θ̂) ≥ s}

⎤⎥⎥⎥⎥⎦
× dM̂2i (s; θ̂)Gi + S2(t; θ∗) − S2(t; θ̂).

To approximate the null distribution of S(u, v; θ̂), we gen-
erate a large number of realizations of Ŝ(u, v) by repeatedly
generating standard normal random samples (G1, G2, . . ., Gn).

Graphical diagnostics can be conducted by plotting
S(u, v; θ̂) together with a few, say 20 to 30, resampled
realizations of Ŝ(u, v). Furthermore, a formal testing pro-
cedure can be conducted based on the deviation statis-
tics supt ‖S1(t; η̂)‖ and supt ‖S2(t; θ̂)‖ with the p-values be-
ing approximated by the empirical probabilities obtained
from resampling the process Ŝ(u, v) many times. Specifi-
cally in the ith resampling step, we first obtain η̂

∗
i and

θ̂
∗
i and then calculate M̂S1, i = supt ‖S1(t)‖ and M̂S2, i =

supt ‖S2(t)‖ for i = 1, 2, . . . , B. Consider the p-values de-
fined as p1 = B−1

∑B

i=1 I{M̂S1, i ≥ supt ‖S1(t; η̂)‖} and p2 =
B−1
∑B

i=1 I{M̂S2, i ≥ supt ‖S2(t; θ̂)‖}. Formal testing proce-
dures can be conducted. Specifically the model assumption
h2(D) = η ′

0Z + ξ or h1(Tk ) = β′
0Z + εk is rejected when p1 or

p2 is smaller than a prespecified level, respectively. In practice,

more than one model may be selected. The one which gives
the largest p-values can be chosen as the best fitted model.
Specifically we first select the model for D, which gives the
largest p1 value and then choose the model with the largest
p2 value for fitting Tk ’s.

In summary, we recommend the following procedure for
analyzing the recurrent events data with dependent censor-
ing. First, we consider models for the dependent censoring
times D in model (1): either linear regression models (h2(t)
being specified) fitted by log-rank statistics (3) or Gehan-
type statistics (4), or the linear transformation models (h2(t)
unknown and the distribution of ξ being specified) fitted by
standard methods in the literatures cited in Section 3.2. For
each fitted model on D, we calculate the p-value p1 by ap-
plying the model-checking procedure based on supt ‖S1(t; η̂)‖
through resampling. The selected model of D is the one which
gives the largest value of p1. Then we consider linear regres-
sion models for the recurrent events Tk ’s in model (1). We fit

candidate models by β̂
G

in (7) or β̂
LG

in (9). For each model
of Tk ’s, we calculate the p-value p2 based on supt ‖S2(t; θ̂)‖
through resampling. The one with the largest value of p2 is
selected as the model for Tk ’s. Diagnostics plots for all the
fitted models can also be reported.

5. Simulation Studies
First, we compare several estimators of β under four simula-
tion settings. The two proposed estimators β̂G and β̂LG solve
the Gehan-type estimating equations UG

2 (β, η̂) = 0 in (7) or
ULG

2 (β, η̂) = 0 in (9). The estimator of Ghosh and Lin (2003)
assumes the AFT models and solves UL

2 (β, η̂) = 0 in (6) with
h1(t) = h2(t) = log (t). Alternatively Huang and Wang (2004)
assume the proportional intensity (PI) model for recurrent
events and the Cox PH model for the dependent censoring
event conditional on a common latent frailty variable ν. That
is,

E[dN (t) | ν, Z ] = νE[dN0(t)] exp(−β0Z), (16)

E[dI{D ≤ t} | ν, Z ] = νE[dI{D0 ≤ t}] exp(−β0Z). (17)

The PI and PH models are conditional on both ν and Z but,
conditional on Z , the PH and PI assumptions may not hold.
Notice that when h2(t) is unknown and ξ follows the extreme
value distribution, our model (1) for D is the PH model con-
ditional on Z only with

E[dI{D ≤ t} |Z ] = E[dI{D0 ≤ t}] exp(−β0Z). (18)

We first evaluate the situation (case 1) that all four differ-
ent estimators are valid. This happens when D0 follows the
exponential distribution so that D follows both the PH and
AFT models. In addition the PI model (16) for N (t) concurs
with the AFT model (1) for Tk ’s when the marginal distribu-
tions for Tk are exponential distributions. We first generate
a latent random variable ν from a Gamma distribution with
mean and variance both equal to 1. The latent variable ν
is used to create the association between εk and ξ through
model (16) and (17). Let W and exp (ξ) follow exponential
distributions with hazard rates 5ν and ν, respectively. Set
exp(εk ) =

∑k

j=1 Wj , where Wj > 0, Wi and Wj are indepen-
dent for i 
= j but follow the same distribution as W . We set
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h1(t) = h2(t) = log (t) in (1) and (2) for the marginal gen-
eration of W and exp (ξ). That is, Tk = exp(β0Z)

∑k

j=1 Wj

and D = exp (η0Z)exp (ξ). Hence the recurrent events process
and the dependent censoring time both follow AFT models as
assumed by Ghosh and Lin (2003), and also follows model (16)
and (17) as assumed by Huang and Wang (2004). Note that
the Gamma frailty variable ν means that (D, W )|Z follow a
Clayton copula. In the second setup (case 2), data are gener-
ated similar to the first case, except that W and exp (ξ) follow
Weibull distributions such that Pr(W > t) = exp{−10ν( t

2 )
4}

and Pr(exp(ξ) > t) = exp{−ν( t
2 )

4}. Accordingly the recurrent
events process and the dependent censoring time still both fol-
low AFT models but no longer satisfy the assumption in (16).
For case 3, we let (D, W )|Z follow the Clayton copula with
Kendall’s tau equal to 0.5, with W following an exponential
distribution Pr(W > t) = exp{−10t} and D following a log-
logistic distribution Pr(D > t |Z) = {1 − 1

1+t−8 }exp(η 0Z ). Then,

set Tk = exp(β0Z)
∑k

j=1 Wj . Hence, the recurrent events pro-
cess follow the AFT model, and the dependent censoring time
follow the PH model (18). However, the dependent censor-
ing time does not follow the AFT model due to the log-
logistic distribution. For case 4, we let (exp (ξ), W ) follow
the Clayton copula with Kendall’s tau equal to 0.5, W fol-
low an exponential distribution Pr(W > t) = exp{−10t}, and
exp (ξ) follow an exponential distribution Pr(exp(ξ) > t) =
exp{−t}. Then set h1(t) = t and h2(t) = log (t) in (1) and
(2) for the marginal generation of W and exp (ξ). That is,
Tk = β0Z +

∑k

j=1 Wj follows the location-shift (Loc) model
and D = exp (η0Z)exp (ξ) follows the AFT model. The model
assumptions in both Ghosh and Lin (2003) and Huang and
Wang (2004) are violated in the last two cases. Three differ-
ent configurations of Z are evaluated in cases 1 ∼ 4, namely,
Z ∼ Ber(0.5), Z ∼ U (0, 2), and Z ∼ a truncated N (0, 1)
constrained within [ − 2, 2]. For case 4, the third configu-
ration is replaced by Z , which follows a truncated N (2, 1)
constrained within [0, 4] to keep the covariate values positive.
The independent censoring variable C is generated from U (0,
a) distribution, where a = 5 or a = 20. The sample size is set
to be n = 100. The parameter values are set to be (η0, β0) =
(1, 0.5) or (0.5, 1).

For each simulation run, the four estimators, namely pro-
posed β̂G , β̂LG , the Ghosh–Lin estimator, and the Huang–
Wang estimator are calculated. Based on r = 500 simula-
tion runs, we report the average bias (Bias)

∑500
i=1 β̂i /500 −

β0, the empirical SE
√∑500

i=1(β̂i − β)2/499, where β =∑500
i=1 β̂i /500, the average of the standard error estimator

(SEE)
∑500

i=1 ŜE(β̂i )/500 with ŜE defined in (15), and the
coverage probability of nominal 95% Cov and calculated from
B = 50 resampling datasets. Tables 1 and 2 summarize the
results of case 1 and case 4, respectively. The results of case
2 and case 3 can be found in Web Appendix B.

The two proposed estimators perform well and are more
efficient than the two competitors in all the cases. For the
first case, all four estimators have small biases as their model
assumptions are all satisfied. The two proposed estimators
have smaller SE than the two competitors in this case. In
particular, β̂LG outperforms the Ghosh–Lin estimator β̂L .
This confirms that the pairwise construction does alleviate
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the drawback of artificial censoring. The Ghosh–Lin estima-
tor produces large biases in cases 3 and 4 under which the
imposed model assumptions do not hold. For similar reasons,
the Huang–Wang estimator produces large biases in cases 2
to 4 when the underlying assumptions are violated. We also
see that the average of the SEE for the proposed estimators is
close to the empirical SE and the 95% Cov has accurate cov-
erage probability. This confirms the validity of the resampling
approach for variance estimation.

The summary statistics of the censoring proportions and
the average number of observed recurrent events per subject
for the four settings can be found in Web Appendix B. We
also compare the percentages of artificial censoring for the two
proposed estimators and the Ghosh–Lin estimator. We first
need to define a formula for the proportion of artificial censor-
ing with recurrent events. Recall that δk

i = I{Tik ≤ Xi}, δ̃k
i =

I{εik (β̂) ≤ ε̃C
i (θ̂)}, and δ̃k

i(j ) = I{εik (β̂) ≤ ε̃C
i(j )(θ̂)}. Hence the

pairwise adjusted estimators use
∑

k

∑
i

∑
j 
=i

δ̃k
i(j ) pairs of

events in the estimating equation. The number of artificially
censored pairs is the difference between

∑
k

∑
i

∑
j 
=i

δ̃k
i(j ) and∑

k

∑
i

∑
j 
=i

δk
i , which is the number of uncensored event

pairs in the original data set. Hence the proportion of artifi-
cially censored pairs in the proposed estimator can be defined
as:

ACP1 = 1 −

∑
k

∑
i

∑
j 
=i

δ̃k
i(j )∑

k

∑
i

∑
j 
=i

δk
i

= 1 −

∑
k

∑
i

∑
j 
=i

δ̃k
i(j )

(n − 1)
∑

k

∑
i
δk

i

.

For the Ghosh–Lin estimator without pairwise adjustment,
the proportion then becomes

ACP2 = 1 −

∑
k

∑
i

∑
j 
=i

δ̃k
i∑

k

∑
i

∑
j 
=i

δk
i

= 1 −

∑
k

∑
i

δ̃k
i∑

k

∑
i

δk
i

.

The two proposed estimators based on pairwise adjustment
yield a much lower proportion of artificial censoring than
Ghosh–Lin estimator in all simulation settings. This may ex-
plain why the proposed estimators have smaller variances
than the Ghosh–Lin estimator. See detailed summary results
in Web Appendix B.

We also evaluate the performances of β̂
G

and β̂
LG

in the
presence of multiple covariates. When there is only one co-
variate, we calculated the root β̂ based on the bisection ap-
proach. When there are multiple covariates, we need to find
the roots of several step and nondifferentiable functions. We
apply the Nelder–Mead algorithm (Nelder and Mead, 1965) to
find the value of β, which minimizes the norms of the estimat-
ing functions: ‖UG

2 (β, η̂)‖ in (7) and ‖ULG
2 (β, η̂)‖ in (9). Here

‖(x1, x2, . . . ; , xk )′‖ =
√

x2
1 + x2

2 + · · · + x2
k denotes the vector

norm. The four simulation settings mentioned earlier are still
adopted with Z = (Z1, Z2)′, where Z1 ∼ ber(0.5), Z2 ∼ U (0,
2), (η01, η02) = (0.5, 0.5), and (β01, β02) = (0.5, 0.5). The
results based on r = 500 simulation runs each with sample
size n = 100 are reported in Web Appendix B. The two pro-
posed estimators still perform well in the presence of multiple
covariates.
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Table 3
Performances of β̂G and β̂LG under model misspecification for D

β̂G β̂LG

Data and method Z (η0, β0) Bias SE SEE Cov Bias SE SEE Cov

D: AFT–AFT Ber(0.5) (1,0.5) −0.0151 0.0807 0.0869 0.956 −0.0104 0.0809 0.0851 0.962
(case 2) (0.5,1) −0.0086 0.1087 0.1167 0.956 −0.0112 0.1034 0.1113 0.948
M: AFT–PH U (0, 2) (1,0.5) −0.0047 0.0809 0.0792 0.942 −0.0040 0.0789 0.0755 0.932

(0.5,1) −0.0058 0.1197 0.1354 0.956 −0.0056 0.1173 0.1291 0.952
tN (0, 1) ((1,0.5) −0.0205 0.0631 0.0674 0.944 −0.0224 0.0611 0.0639 0.942

(0.5,1) −0.0083 0.0616 0.0638 0.950 −0.0069 0.0602 0.0599 0.946
D: AFT–AFT Ber(0.5) (1,0.5) −0.0126 0.0881 0.0912 0.962 −0.0010 0.0826 0.0868 0.950
(case 2) (0.5,1) 0.0365 0.1137 0.1184 0.942 0.0377 0.1123 0.1144 0.940
M: AFT–Loc U (0, 2) (1,0.5) −0.0173 0.0704 0.0721 0.940 −0.0091 0.0684 0.0672 0.948

(0.5,1) 0.0584 0.1164 0.1349 0.938 0.0560 0.1132 0.1290 0.944
tN (0, 1) (1,0.5) −0.0506 0.0606 0.0594 0.858 −0.0378 0.0577 0.0573 0.886

(0.5,1) 0.0368 0.0604 0.0612 0.934 0.0289 0.0582 0.0573 0.930
D: AFT–PH Ber(0.5) (1,0.5) 0.0544 0.1379 0.1398 0.928 0.0459 0.1322 0.1319 0.930
(case 3) (0.5,1) 0.0210 0.1401 0.1509 0.960 0.0161 0.1309 0.1395 0.948
M: AFT–AFT U (0, 2) (1,0.5) 0.0835 0.1254 0.1320 0.900 0.0703 0.1180 0.1204 0.914

(0.5,1) 0.0318 0.1495 0.1494 0.936 0.0246 0.1374 0.1364 0.930
tN (0, 1) (1,0.5) 0.0366 0.0786 0.0777 0.916 0.0317 0.0759 0.0730 0.930

(0.5,1) 0.0159 0.0882 0.0863 0.930 0.0128 0.0817 0.0811 0.942

Note: “D” means the data generation model and “M” means the fitted model. Sample sizes n = 100 and replications r = 500.

Table 3 reports the results for checking the robustness of β̂G

and β̂LG in (7) and (9) with h2(t) misspecified. True data are
generated either from the AFT–AFT model or the AFT–PH
model with one covariate. The data are analyzed based on
three model alternatives: namely, AFT–PH, AFT–Loc, and
AFT–AFT models. We report the bias, SE, SEE, and empir-
ical coverage probability of the 95% confidence intervals for
β̂G and β̂LG with C ∼ U (0, a = 20) based on r = 500 simula-
tion runs. The results show that the performances of β̂G and
β̂LG are robust when fitting AFT–PH model to AFT–AFT
data. They are also somewhat robust most of the time in the
other two settings. But for the last two settings (fitting AFT–
Loc to AFT–AFT data, and fitting AFT–AFT to AFT–PH
data), they do produce larger bias and sometimes result in
Covs with coverage probabilities significantly lower than the
nominal level of 95%.

Finally, we evaluate the proposed model-checking proce-
dure when data follow the AFT–AFT combination with one
covariate based on r = 400 replications with B = 400 re-
sampling times within each run. The results are summarized
in Web Appendix B. The tests based on supt ‖S1(t; η̂)‖ and
supt ‖S2(t; θ̂)‖ are both conservative. That is, the percentages
of falsely rejecting the correct AFT assumption (type I error)
are less than the nominal level 0.05 in all cases. For the first
test, the powers under the PH model assumption are rela-
tively low (15% and 11%) but become higher (65% and 77%)
under the Loc model. This is because the AFT model is more
similar to the PH model than the Loc model. As we have
seen in the robustness study, wrongly fitting AFT–PH model
to AFT–AFT data still yields reasonably good performance
for β̂G and β̂LG . For the second test, the power of rejecting
the Loc assumption for recurrent event times is large, above
90%.

We also evaluate the model-selection procedure. There are
six choices of model combinations, namely, AFT–AFT, AFT–

Table 4
Performance of the proposed model-selection procedure when

data follow AFT–AFT models

Selected proportions

AFT–AFT AFT– AFT– Loc– Loc– Loc–
(true) PH Loc AFT PH Loc

Z ∼ Ber(0.5) 0.795 0.115 0.088 0 0 0.003
Z ∼ U (0, 2) 0.863 0.108 0.030 0 0 0

Note: Sample sizes n = 200, resampling times B = 400, and replica-
tions r = 400.

PH, AFT–Loc, Loc–AFT, Loc–PH, and Loc–Loc when the
true data are generated from AFT–AFT models. We first se-
lect among the three models on survival time (2): AFT, PH,
and Loc by choosing the one with the highest p-value based
on supt ‖S1(t; η̂)‖; then we select the recurrence events model
with the highest p-value based on supt ‖S2(t; θ̂)‖. Table 4 re-
ports the proportion of each model combination being selected
based on r = 400 simulation runs with B = 400 resampling
times within each run. We see that the model-selection proce-
dure does choose the correct AFT–AFT model combination
most of the time (80% and 86% of the time). The AFT–PH
model combination, which still provides good estimates in the
robustness study, is selected in another 10% to 11% of the
time. Other worse choices are rarely selected.

Comparing the two proposed estimators, β̂LG is slightly less
variable than β̂G in cases 1 to 3. However under case 4, the
standard deviation of β̂LG is much larger than β̂G in case 4. So
no one estimator is always better than the other. We suggest
choosing the one with smaller estimated SE. Notice that in
the simulations, SEE provides reliable information about the
magnitude of SE (when one estimator has smaller SE, it also
has smaller SEE in all cases).
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Table 5
Summary of ALIVE cohort data

Number Number of hospitalizations Number
HIV of of
status subjects 0 1 2 3 4 5 ≥6 deaths

Negative 746 294 98 65 68 76 33 112 23
Positive 297 70 40 31 34 35 20 67 47

Figure 1. Kaplan–Meier survival curves for the HIV-
negative and HIV-positive groups.

6. Data Analysis
The proposed methodology is applied to the AIDS linked
to the intravenous experiences (ALIVE) cohort study.
Covariates include the information of inpatient admissions,
HIV status, and other variables from a group of injection drug
users in Baltimore. This study is a prospective cohort study
with semiannual follow-up visits to gather clinical, behavioral,
and laboratory data. Self-reported repeated hospitalizations
were systematically recorded since February 1, 1988. Here we
analyze the recent 10 years data, collected from January 1,
1998 to June 30, 2008, which contains 1043 injection drug
users. Note that we exclude five subjects whose HIV status
changed from negative to positive during the study period.
The HIV status is coded as a binary covariate with 1 indicat-
ing HIV negative and 0 indicating HIV positive.

Table 5 provides a brief summary of the data including the
number of hospitalizations and the number of deaths for users
with different HIV status. The Kaplan–Meier estimators of
the survival functions are plotted in Figure 1. For example,
the 5-year survival probabilities are 0.959 for HIV-negative
subjects and 0.762 for HIV-positive subjects. The value of
log-rank statistic is 36.1 with p-value equal to 1.9 × 10−9.
Thus, the difference of the two survival curves is significant.

The first step is to choose a suitable regression model
for the survival time. Based on 1000 resampling runs,
supt ‖S1(t; η̂)‖ = 0.0442 with p-value = 0.991 for the AFT
model, supt ‖S1(t; η̂)‖ = 0.1069 with p-value = 0.711 for the
Cox PH model, and supt ‖S1(t; η̂)‖ = 0.2263 with p-value =
0.008 for the Loc model. Thus we fit the AFT model for D
and then choose between the AFT and Loc models for Tk .

Based on 1000 replications, supt ‖S2(t; θ̂)‖ = 0.7473 with p-
value = 0.374 for AFT model and supt ‖S2(t; θ̂)‖ = 0.7943
with p-value = 0.339 for Loc model. Hence we fit the AFT
model for recurrent event times. In Web Appendix C, we
present graphical model-checking plots for S1(t; η̂) and S2(t; θ̂)
with 20 realizations of Ŝ1(t) and Ŝ2(t) based on the AFT–AFT
model combination. The figures also show that the AFT–AFT
assumption is suitable.

In Web Appendix C, we also provide the fitted results of
three estimators, namely, the proposed estimators based on
(7) and (9) and the Ghosh–Lin estimator (2003). On average,
the survival time for a HIV-negative subject is almost three
times of that for a HIV-positive subject and the difference is
significant. However, on average, the time to each hospital-
ization for a HIV-negative subject is about the same as the
time for a HIV-positive subject (i.e., 1.003 times based on
β̂G , 1.07 based on β̂LG , and 1.05 based on the Ghosh–Lin es-
timator). Among the three estimators, β̂G gives the smallest
estimated SE. Covs for all three estimators β̂ contain zero, in-
dicating that HIV status has no significant effect on the times
to repeated hospitalizations. In summary, our analysis shows
that the two groups with different HIV status do not differ
in the time to repeated hospitalizations but are significantly
different in survival time. Furthermore, for the artificial cen-
soring proportion, ACP1 is 0.127 for our proposed method
and ACP2 is 0.441 for the Ghosh–Lin estimator, which indi-
cates that our proposed method indeed reduces the artificial
censoring proportion in analysis of the ALIVE data.

7. Concluding Remarks
The proposed estimating functions are originally derived from
nonparametric statistics so that distributional assumptions
can be avoided. To handle dependent censoring, the tech-
nique of artificial censoring is applied to maintain the homo-
geneity for (hypothetical) observations used in the computa-
tion. In particular, we propose to apply artificial censoring to
two Gehan-type statistics constructed based on pairwise com-
parison that can utilize more data. The two proposals differ
in their kernel functions. One kernel function is a direct ex-
tension from the Gehan statistics suitable for semicompeting
risks data to recurrence events data. The other type of kernel
function uses extra time information in pairwise comparison.
The simulations indicate that neither of the two estimators
dominate each other. The simulation analysis suggests using
the one with smaller estimated SE.

For practical applications, the proposed approach permits
flexible model combination for the recurrent event times and
the survival time without specifying the form of dependence.
We also provide concrete guidelines for selecting the best fit-
ted model combination and a more efficient estimator based
on the data at hand. Extension of the work to allow for h1

( · ) being unknown (i.e., transformation models for Tk ) will
be our future work.

8. Supplementary Materials
The Web Appendices referenced in Sections 3.3, 5, and 6 are
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org.
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Appendix

Appendix A: Relationship between Log Rank and Gehan Statis-
tics

The log-rank statistics in (3) can be reexpressed as

UL
1 (η) =

1√
n

n∑
i=1

∫ ∞

0

n∑
j=1

I{ξ̃j (η) ≥ t}(Z i − Z j )

n∑
l=1

I{ξ̃l (η) ≥ t}
dNξ i (t; η)

=
1√
n

n∑
i=1

n∑
j=1

(Z i − Z j )
∫ ∞

0

I{ξ̃j (η) ≥ t}
n∑

l=1

I{ξ̃l (η) ≥ t}
dNξ i (t; η).

The Gehan-type statistics in (4) can be written as

UG
1 (η) =

2
√

n

n(n − 1)

n∑
i=1

n∑
j=1

(Z i − Z j )I{ξ̃i (η) ≤ ξ̃j (η), δi = 1}

=
4
√

n

n(n − 1)

n∑
i=1

n∑
j=1

(Z i − Z j )

×
∫ ∞

0

I{ξ̃j (η) ≥ t}
I{ξ̃i (η) ≥ t} + I{ξ̃j (η) ≥ t}dNξ i (t; η).

The main difference between the two statistics is just in the
denominator: whether to sum over all observations (i.e., the
log rank) or sum over only pairs (i.e., the Gehan).

Appendix B: Regularity Conditions of Theorem 1

We assume the following regularity conditions:
C0: The regularity conditions for η in Ying (1993).
C1: The parameter space P for β is compact, and true

parameter β0 is an interior point of P.
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C2: θ0 is the unique solution to (11).
C3: |Z | is bounded. Conditional on Z , the condi-

tional densities of ξ, C , and εk , for k = 1, 2, . . . , and the
conditional second moment of K = N ∗(X) are all uni-
formly bounded. We denote a constant K0 for the uniform
bound.

C4: E[U (θ)] is differentiable and the Jacobian matrix is
nonsingular at the true parameter value θ0.

C5: Both limt→0 h′
1(t)/h′

2(t) and limt→∞ h′
1(t)/h′

2(t) exist
with the limits allowed to be ∞.

Compared to the regularity conditions in Peng and Fine
(2006), the conditions C1 and C2 are the same; the condition
C3 includes an additional bound for E(K2) to address the
generalization to recurrent events. The condition C5 is added
to address the general marginal model (1) including models
other than AFT.

Under these conditions, the theorems can be proved similar
to those in Peng and Fine (2006) although the proof is a bit
more technically involved with the generalized model. The
detailed proof is in Web Appendix A.


