
NOllTH - H O ~

A n O b j e c t - O r i e n t e d A p p r o a c h t o C o n s t r u c t i n g C o m m u n i c a t i o n
P r o t o c o l s

JIUN-LIANG CHEN

FENG-JIAN WANG

and

YUNG-CHAO TING
Institute of Computer Science and Information Engineering, National Chiao Tung Uni-
versity, Hsznchu, Taiwan, R.O.C.

Communicated by Stephen S. Yau

ABSTRACT

~_?he development of communication protocols for computer networks and dis-
tributed systems is an increasingly complex and cost-sensitive process. This paper
presents an object-oriented concurrent (OOC) model for the development of com-
munication protocols. This model consists of three kinds of entities: data entities,
which represent the communicated data units, state entities, which describe their
behavior, and connection entities, which are responsible for communication ser-
vices. The state transitions in a protocol are modeled by using state entities, and
a communication service is performed by a group of connection and state entities.
A C + + library based on our OOC model is described that contains three class
hierarchies, for data, state, and connection entities, respectively. In addition, an
approach to constructing a protocol using this OOC model and the library is
presented. An example in which a T.62 protocol is constructed shows that this
approach provides a high level of modeling, concurrency, and reusability.

1. I N T R O D U C T I O N

Compute r s connected into a network interact according to a common
set of rules known as a protocol, and different communica t ion protocols
may be needed by software applicat ions using computer networks. One ap-
proach to developing a communica t ion protocol is to use formal descr ipt ion
techniques (FDT ' s) , such as SDL [9], Estelle [7], and Lotos [6], to describe

I N F O R M A T I O N SCIENCES 84, 15-38 (1995)
@ Elsevier Science Inc., 1995
655 Avenue of the Americas, New York, NY 10010

0020-0255/95/$9.50
SSDI 0020-0255(94)00072-J

16 CHEN ET AL.

specifications and to translate the specifications into programs. However,
this approach has two shortcomings: it requires the construction of a conr-
plex translator to handle translation from the specification language to the
programnfing language [4], and existing FDT descriptions are generally not
reusable. Object-oriented approaches to software developmet offer a high
level of modularity, extensibility, and reusability. In this paper, we present
an object-oriented concurrent (OOC) model for communication protocols
that has the virtues of object-orientation and concurrency.

An OOC model consists of active and passive objects. An active ob-
ject serves as a thread of control, while a passive object is similar to a
regular C + + [12] object. An OOC model is composed of the following
three types of objets: (1) data entities, which describe the structure of the
communicated data units in a protocol, (2) state entities, which work on
state transitions and the corresponding services, and (3) connection enti-
ties, which are responsible for nranipulating communication services. The
first two types of entities are passive, while the third type is active. We have
constructed a class library of three class hierarchies, one corresponding to
each of the above types of entities. In addition to classes and inheritance
relationships, the library uses programming techniques such as double dis-
patching and delegation to simplify extension. Double dispatching is a way
of choosing a service method for a message based on the classes of the
receiver and the first argument in the message. Delegation provides the
power to inherit states as well as behavior dynamically [8]. In this paper,
we describe the construcion of a library for C + + [12] using a lightweight
process library [11]. Our library provides reusable components for imple-
menting different protocols. In addition, a list of guidelines for developing a
protocol with the OOC model and the library are also presented. The T.62
protocol [2] is used to illustrate reuse. This example shows that our l ibrary
provides a high level of reusability, including modeling, extendibility, and
concurrency.

The remainder of this paper is organized as follows. Section 2 presents
the OOC model and double dispatching and delegation techniques. Sec-
tion 3 explains how object-orientation and concurrency are integrated in
our approach. Section 4 describes the class library, and Section 5 presents
the developmen~ guidelines. Section 6 concludes the paper.

2. OOC MODEL FOR PROTOCOLS

2.1. AN OOC MODEL

In an OOC model, a communication protocol consists of data, state, and
connection entities. The data entities represent the packed communication
data. The state entities, including state and event objects, interpret the

AN O B J E C T - O R I E N T E D APPROACH 17

Upper layer A

' t "
Lower layer

@ active obje~ G

• asynchronous message passing _ _ .

t> synchronous message passing o-o--o

double dispatching

passive object

associated object

delegation

Fig. 1. OOC model for communicat ion protocols.

mapped service primitives of state transitions. The connection entities are
responsible for manipulating communication services. Each of the entities
is specified as an object. Figure 1 shows the architecture of a protocol in
which the connection entities, the active objects, are expressed by ellipses,
while the data and state entities, the passive objects, are represented by
rounded rectangles.

In a layered architecture, a layer of a communication protocol can be
des.eribed with our model as follows. The upperReceiver and lowerReceiver
ob~iects receive input messages from the upper and lower layers, respec-
tively, whereas the upperSender and lowerSender objects send messages to
the upper and lower layers, respectively. The connectionManager object
takes over all the communication channels, each of which is handled by a
connectionObject object. A connectionObject object cooperates with state
objects and event objects to perform communication services. The time-
O~.t object monitors the timing constraints on the communication. The
execution flows in a protocol are indicated by the arrows in Figure 1.

18 CHEN ET AL.

I InW.,rfaceDataUnit)

I I

t ?
! F

(ServiceDataUnit) (ProtocolContrllafo)

(~ data entity

• part-of relationship

Fig. 2. Relationship between data entities.

2.2. DATA AND STATE ENTITLES

Data entities, such as Service Data Units (SDU's), Protocol Control
Information (PCI), Protocol Data Units (PDU's), Interface Control Infor-
mation (ICI), Interface Data Units (IDU's), and Control Blocks (CB's),
represent the transferred and control information. State entities include
state, event and timer objects. These describe the rules of state transitions
and specify the timing constraints on an event. These two types of entities
are passive objects.

Data entities are passive objects. An SDU object represents user data,
and a PCI object represents a header attached to user data to identify
the data to be transferred. A PDU object is composed of a PCI object
and a SDU object. A ICI object records the interface information of the
service primitive which is to be invoked in the next layer. An IDU object,
which is composed of an ICI object and a PD U object, is an encapsulated
message passed to the adjacent layer. On the other hand, a CB object
contains information specifying the handling rules of each connection. The
relationships between data entities are depicted in Figure 2.

A protocol machine can be treated as a finite state machine with a state
transition diagram such as that shown in Figure 3. In the figure, there
are three states, ready, established, and close, and four kinds of events,
request, confirm, indication, and response. The finite state machine can
be implemented by using a table-driven approach or a procedure-driven
approach. A table-driven approach uses a two-dimensional array in which
a row element represents a state and a column represents a distinct input
event. A procedure-driven approach treats an event as a signal to trigger
the current state. With these two approaches, it is difficult to extend a finite

AN OBJECT-ORIENTED APPROACH

ii!}i!i
" co. iillii

Dall ~. ~ D~ i::i!::!
indicati request

Fig. 3. State transition diagram of a protocol machine.

19

state machine for a protocol, because input events and changed states are
t ightly coupled.

We employ state and event objects to implement a finite state machine
for a protocol. A state object represents one state of a protocol machine,
and e.n event object represents the service that is requested. For t iming
constcaints, an event object is associated with a timer object specifying a
period of time. State objects, collaborating with event objects, perform
state transitions by means of the double dispatching technique (described
in a later subsection. The relationships between state entities are shown in
Figure 4.

2.3. C O N N E C T I O N E T I T I E S

From the viewpoint of protocols, each communication service is manip-
ulated through the following three steps: 1) messages are received from the
upper or lower layer, 2) messages are processed according to the rules of
the current layer, and 3) messages are sent to the upper or lower layer. Ac-
cording to these steps, a protocol entity can generally be divided into three
parts: receiving, sending, and message processing. These parts can execute
concurrently. In order to increase concurrency and modularity, these parts

20 CHEN ET AL.

double dispatching
- - associated object

Fig, 4. Rela t ionship between s t a t e entit ies.

can be decomposed into finer-grain entities, each of which is specified as an
active object.

The receiving and the sending parts are refined individually to be up-
peT"Receive~5 lowerReceive~ ~, upperSender, and lowe~'Sende~" objects in order
to make message exchanging between layers more efficient. The message
processing part establishes a connection to process incoming messages. A
number of connections are allowed to exist at the same time, and each
can be served by a distinct connectionObject object. On the other hand,
a connectionObject object serves connections one by one: Each time it is
in charge of one connection only. The object manipulates all the messages
in the connection until the connection ends. All cormectionObject objects
are managed by a connectionManager 1 object. The connection entities,
including upperReceiver, upperSender, eonnectio~zManage~, connectionOb-
ject, lowerRecciver, and lowerSenderobjects, are all active objects. In other
words, each of them has its own thread of control.

An upper'Receiver object and a lowe~'Receiver object are responsible for
receiving messages from the upper layer and lower layer, respectively, and
for checking the legality of the messages. These objects deliver incoming
messages to a connectionManager object, if the messages are legal, In addi-
tion, an upperReceiver object handles all requesting and responding events,
and a lower'Receiver object handles all indicating and confirming events.

A eonnectionManager object manages all eonnectionObject objects by
creating and removing them. After receiving messages from an upper-
Receiver • or a lower'Receive~" object, a conr~ectionManager object determines
the connection to which the messages belong. If the connection does not
exist, the connectionManager object will create a new connectionObject
object to handle the messages. The messages are forwarded to their cor-
responding connectionObject objects by a connectionManager object, as
shown in Figure 5.

An upperSender object and a lowerSender object are responsible for
sending messages to the next upper layer and lower layer, respectively.

AN O B J E C T - O R I E N T E D AP P R OAC H

IDU Objects

Asynchronous me~sa~ passing

Fig. 5. The connectioT~Ma~ager and connectionOb3ect objects.

21

These objects receive messages from a connectionObject object, encode and
then pass the messages to the next upper or lower layer. An upperSender
object is responsible for sending all indication and confirmation events, and
a lowerSender object sends all request and response events.

A connectionObject object performs the state transitions of a protocol
machine by collaborating with state and event objects. A connectionObject
object changes its behavior based on its current state and an input event.
When a connectionObjct object is created, it is given its s tate according
to an input event. After changing into another state, the object invokes
the service function of the state object to process the messages. Because
a :o~tnectionObject object and a state object are distinct entities without
shared data, the delegation technique (which will be described later) is
applied to these two objects.

2.,L HANDLING ABNORMAL CASES

Abnormal cases include sending expedited data, responding to internal
ercors, and handling time-outs. These abnormal cases can be dealt with
by msgQueue, timer, and timeOut objects.

A FIFO queue is implemented in typical asynchronous message passing
schemes, but the queue alone is unable to process messages i n a special
order. Instead, a msgQueue object, an object with a priority queue, is
used to handle expedited data and internal errors to which a high priority
is assigned. An active object with a msgQue'ue object can process high-
priority data first.

A timeT" object records the t ime limit of an event object. To manage
t iming constraints efficiently, t~mer objects are organized as a linked list

22 CHEN ET AL.

~ e O u t

Tune-out e n ~ occur ~ TI, TI+T2, TI+T2÷T3, and TI÷T2+T3+T4 time units in event
object I, event object 2, *vent object 3, and event object 4, ~spvctiv¢ly.

Fig. 6. L i s t of t i m e r o b j e c t s a n d a s s o c i a t e d e v e n t o b j e c t s .

sorted by the t ime limit (see Figure 6). A timeOut object is an independent
thread of control responsible for detecting t ime-out situations. Because
the t ime limit of a timer object is relative, a timeOut object only needs to
decrease the amount in each timer object on the list. When the t ime limit
of the first timer object reaches zero, the associated event object has t imed
out. A corresponding t ime-out handling routine is then invoked. The time-
out handling routines may abort or reestablish a connection, depending on
the specification of a protocol.

2.5. DOUBLE DISPATCHING IN STATE ENTITIES

The state transitions of a protocol machine are determined not only by
the input event, but also by the current state. The double dispatching
technique allows matching of the service method to be performed based on
the classes of the receiver and the first argument object in the message.
The double dispatching technique is applied in state entities to control the
state transitions.

In an OOC model, state and event objects describe a protocol machine.
A state object, such as a ready, established, or close object, represents
the state of a protocol during communication. An event object, such as
a request, indication, response, or confirm object, is the desired service
decoded from an ICI object. A state object has to specify an action for
each possible event. The relationships between state and event objects are
shown in Figure 7. List 1 shows the implementation of state transitions in
the traditional approach. In List 1, Ready is a state object with method
doIt() to specify the actions for events. This programming style reduces

AN O B J E C T - O R I E N T E D APPROACH 23

Event Object State Object

Request ~ Ready
Indication Established
Response Close
Confirm

Fig. 7. M a p p i n g be tween event and s t a t e objects ,

Ready: :doIt (eventType *eventObj)
if (eventObj->isRequest ()) {

};
if

};
if

};
}

t

/ * code for request event * /

(eventOb3->isIndication()){
/* code for indication event */

(eventObj->isResponse()){
/* code for response event */

List 1. Trad i t iona l approach to s t a t e and event objects .

the reusability of these codes, since the method Ready::doIt() has to be
redefined when an event object is changed.

The double dispatching mechanism, also called multiple polymorphism
[5], (:an improve the reusability of the codes. Current object-oriented pro-
gramming languages, such as C + + , do not support this mechanism. How-
ever. we can specify a s ta tement with dynamic binding and object invoca-
tion to perform the same function as this mechani,"m. An example of such
a s ta tement is curEvent ---+ dolt(curSta4e) in ~ ~gure 8, where curEvent and

Event Object State Object

Request ~ ~ Ready
Indication curEvent->dolt(curState) Established
Response Close
Conf~rm

Fig. 8. App ly ing double d i spa tch ing to event and s t a t e objects .

24 CHEN ET AL.

inline void Request::doIt(stateMgr *curState) {
curState->Request(...); // relay function

};
inline void Indication::doIt(stateMgr *curState) {

curState->conIndication(...); // relay function
};
inline void Response::doIt(stateMgr *curState) {

curState->conResponse(...); // relay function
};
inline void Confirm::doIt(stateMqr *curState) {

curState->conConfirm(...); // relay function
};
..

void Ready::Request(...) {
// the action for Request

};
void Ready::Indication(...) {

// the action for conIndication
};
void Ready::Response(...) {

// the action for conResponse
};

void Ready::Confirm(...) {
// the action for conConfirm

};

List 2. Double dispatching using C++ code,

curState are dynamically bound to an event object and a state object, re-
spectively, and the method doIt() selects an action according to the bound
state object. For example, curState is bound to a state object Ready and
curEvent is bound to an event object Request. Both bindings occur before
the statement curEvent ~ doIt(curState) is executed. When the event ob-
ject Request is invoked, its method doIt(curState) selects an appropriate
function according to the passed argument object Ready. In other words,
the function Ready::Request() is selected for execution. As illustrated in
List 2, state objects and event objects can be developed independently.

2.6. DELEGATION IN CONNECTION AND STATE ENTITIES

Delegation is often regarded as a language feature used to replace in-
heritance [10]; it may be regarded as a relationship between objects. With
delegation, a delegator object can commission another object to perform
a desired service for the delegator. We can separate the service definition
Kom the connection entities via delegation.

In an OOC model, a communication service is performed by a connec-
tionOb]ect object cooperating with a state object. A state object is a service
provider, and a connectionObject object manipulates all the messages in the
connection. These two objects are different kinds of entities. On the other

AN O B J E C T - O R I E N T E D APPROACH 25

// class construction of connection0bject
connection0bject l

int data;

// curEvent is bound to "Request" event object
// curState is bound to "Ready" state object
curEvent->doIt(curState, this);
// delegating a message to the curState object
/* connection0bject forwards a message to the current state

object, and passes its object
point as an arqument of the function doIt(...) */

};

// laember function "doIt" of the class of an event object, Request.
inl:[ne void

i~equest::doIt(stateMgr *curState, connection0bject *c0bj) {
curState->eventAction(c0bj,...);

// forwarding a message to curState
}

// member function "Request" of the class of an state object,Ready.
void Ready::Request(connection0bject* c0bj,...) {
// accessing the data of connection0bject via c0bj passed from the
// extra argument

c0bj->data; // access the data of the original object
... // the code for the eventAction

}

List 3. Delegation in C + +

hand, the delegation technique allows a connectionObject object to change
its behavior according to its state object.

If a delegation mechanism is not provided in a language, as is the case
with C + + , then delegation can be implemented using a programming tech-
nique which appends an original receiver as an extra argument to each
delegated message. List 3 shows such an implementation example. In this
example, the connectionObject object passes its object reference, this, to an
event object in the s ta tement curEvent--*doIt(curState, this), which per-
forms the double dispatching described in the previous subjection. In List
3, curEvent is bound to the Request event object and curState is bound
to the Ready state object. Then the event object, Request, receives the
reference of a connectionObjeet object, cObj, and passes it to the state ob-
ject, Ready. Finally, the state object, Ready, receives the reference of the
connectionObjeet object, and performs the service function, Request, on the
da ta of the connectionObjeet object.

26 CHEN ET AL.

3. CONCURRENCY IN THE OOC MODEL

Most object-oriented languages are strong on reusability but weak on
concurrency [14]. It is difficult to apply concurrency to object-oriented
languages, because of the conflict between exclusive synchronization and
inheritance [1]. Hence, we do not permit exclusive synchronization in the
communication protocols using our approach.

An object is a well-defined entity that encapsulates data with a set
of operations. When processing an input message, an object invokes its
corresponding operation(s) to perform a service. With classification and
inheritance (classes), an object is instantiated from a class, and a class may
inherit or be inherited by another class. There are two kinds of objects in
our OOC: active and passive objects. A active object encompasses its
own thread of control, whereas a passive object does not. An object is
either active or passive, neither both nor switchable. An active object is
generally autonomous: It is associated with an (implicit) queue to buffer
input messages. After being created, an active object has its own thread
until the object reaches the end of the thread (or is killed). A passive object,
on tile other hand, executes its routine only when it receives a message, i.e.,
when a thread of control enters implicitly. It returns the service's result
and the thread of control after completing the service.

An interaction between two objects occurs when one object requests the
other's service by sending it a message. There are two kinds of message
passings between objects: synchronous and synchronous. In synchronous
message passings, a sender blocks until it gets a reply from the receiver.
In asynchronous message passings, a sender continues its execution right
after passing a message. In other words, the sender of a synchronous mes-
sage passes its thread to the receiver implicitly, while the sender of an
asynchronous message does not. Synchronous messages are sent to passive
objects only, while asynchronous messages are sent to active objects only.
Both active and passive objects are able to issue both synchronous and
asynchronous messages.

Obviously, parallelism is integrated into the OOC model by means of
active objects. Having these active objects execute simultaneously is anal-
ogous to having several processes run concurrently. The active objects in
C + + language can be implemented with a task library. 1

It is not necessary to consider the exclusive synchronization of active ob-
jects, since they have their own thread and receive asynchronous messages
only. Data inconsistency may occur in a passive object when concurrent
accesses to it occur.

lone such task library is the lightweight process library provided in Objectkit\C++,
which is a product of ParcPlace Systems, Inc.

AN O B J E C T - O R I E N T E D AP P R OAC H 27

In our OOC model, the concurrent executing parts of a communication
protocol are the connection entities, since they are modeled as active ob-
jects. The passive objects include data and state entities. The data entities
are always treated as asynchronous messages passed during the execution
flout of a protocol. Therefore, it is not necessary to apply exclusive synchro-
nization to da ta entities, since they are processed in a single active object
at one time. The state entities are shared by connectionObject objects,
tha t is, a passive object may be concurrently accessed by several active
objects. In order to avoid da ta inconsistency and eliminate additional syn-
chronization protection, the state entities are defined so as to include no
da ta shared between connectionObject objects: Each state entity performs
operation(s) on the data of i connectionObject object via the delegation
technique, but does not retain any information shared by connectionObject
objects.

4. T H E CLASS LIBRARY FOR P R O T O C O L S

This section discusses the class hierarchies abstracted from the entities of
the OOC model. A class definition can be divided into two parts: interface
and body definitions. A class with an interface definition only is an abstract
class. I t is usually used as a base class. A class with both interface and body
definitions is called a concrete class. The notation used in the rest of this
paper, such as classes, objects, and inheritance and whole-part s tructure
symbols, is adopted from [3].

4.1. CLASS HIERARCHY FOR DATA ENTITIES

The class hierarchy designed for data entities specifies the classes for
SDU, PCI, PDU, ICI, IDU, and CB objects. The classes designed include
ServiceDataUnit, ProtocolCtrllnfo, ProtocolDataUnit, Interface-

CtzlInfo, InterfaceDataUnit, and CtrlBlock. Common features are
abstracted as the base class InternalObj. Classes ServiceDataUnit,
PrctocolCtrlInfo, InterfaceCtrlInfo, and CtrlBlock can be speci-
fied as concrete classes when developing a new communication protocol.
The class hierarchy is shown in Figure 9.

]in the class hierarchy, class P r o t o c o l D a t a U n i t contains a service data
unit and protocol control information, instances of classes S e r v i c e D a t a U n i t
and P r o t o c o l C t r l I n f o , respectively. A S e r v i c e D a t a U n i t object expresses
t ransmi t ted user data, containing a data buffer and the size. It also pro-
vides the methods retrieving/sending the user data f rom/to. A p r o t o c o l -
C t r l I n f o object represents a header or tailor, which is the information
exchanged by peer layers at different sites of network. Class P r o t o c o l -

28 CHEN ET AL.

ctrlBIock [

I
strMsg

I
[~ o b j

Inmfface
DmaUnit

I
I ProtOcol

ctrlInro

ill
I Service

D~aaUnit

- @ hthcrittncc rclgtioa I A~mct class

Ptrt,-ofr*htion ~ Almtrtet cirri pmvlded by the
llght'vmight p~oceM tlbttry

Fig. 9. The class hierarchy ef data entities.

C t r l l n f o , a base class for extension, includes coded data of protocol con-
trol information, a service type, a source address, and a destination address,
and the oeprations on them.

Class I n t e r f a e e D a t a U n i t contains an instance of class I n t e r f a c e C t r l -
I n f o and an instance of class Pro toco lDataUni t . It has priority by inher-
iting class I n t e r n a l 0 b j . A P ro toco lDa taUn i t object represents the data
transferred across layer boundaries. The methods encode () and decode
() are responsible for data conversion, where encode () converts the ob-
ject's internal data to the form of a string and decode () converts the
data back into its original form.

Class I n t e r f a c e C t r l I n f o (Interface Control Information) is a base class
which contains the temporary data passed between adjacent layers to invoke
a service function. It contains socked pointer, an index of c o n n e c t i o n -
0b jTable , and an event object corresponding to the service type in class
P r o t o c o l C t r l l n f o . Class CtrlBlock is an empty base class to be extended
when developing a specific protocol. An instance of its subclass represents
all the control information about the state transitions of a connection.

AN O B J E C T - O R I E N T E D APPROACH 29

EventMgr +
--~ ~ - c o ~ [

double dispatching

" @ Inheritance relation

Part-of relation

L~gend
con: connection
discen: d i s c ~ c t i o n
ll.=t: l~que.,~t
Co~: Confu'm

Fig. 10. The class hierarchy of state entities.

The classes described above are extracted directly from a protocol speci-
fication. For implementation, several additional classes, such as StringMsg
(String Message), AddrTable (Address Table), and c o n n e c t i o n 0 b j e c t T a b
(Connection Object Table), are needed. A StringMsg object is an encoded
form of an I n t e r f a c e D a t a U n i t object and is passed between adjacent lay-
ers. It has the priority by inheriting class I n t e r n a l 0 b j . An AddressTable
object represents an address table based on caller addresses. Each entry
points to a related index of a connec t ion0b jTab le object which stores
each :onnection object. Each connection can be identified by the address
of the caller. Under asynchronous message passing, this message passing
scheme is not enough to express a message with priority. One way to re-
solve this problem is to use a msgQueue, a priority queue. The methods
dequeue () retrieving an element, dequeue () appending an element,
and, pu tback () adding an element according to its priority are provided
in class msgQueue.

4.2. CLASS HIERARCHY FOR STATE ENTITLES

This class hierarchy contains the classes of state entities. The classes
s t a t eMgr , eventMgr, and t imer are defined for state, event, and timer
objects. Becuase of the relationship of double dispatching between state
objects and event object, classes s ta teMgr and eventMgr have to be spec-
ified as base classes of state and event classes, respectively. The class
hieracchy for state entities is shown in Figure 10.

Class StateMgr is a base class for state classes. Each state class concerns
one state of a protocol specification. The method of s ta teMgr delegates

30 CHEN ET AL.

its operation to the first argument, a connectionObject object. Class
eventMgr is a base class for event classes. It contains a timer object, a
method d o I t () , a t ime-out handling method t i m e E x p i r e d () , and an
error handling method e r r o r H a n d l e r () . The t imer object represents a
specified t ime period during which this associated event must be performed.
The method d o l t () is the relay function of the double dispatching tech-
nique. Both t ime-out handling and error handling methods are vir tual
member functions which must be refined in each subclass. Class t i m e r is
the class of timer objects and contains three methods, s t o p () , r e s e t
() , and e x p i r e d () . The method s t o p () is invoked when this event
object has been completed successfully. The method r e s e t () is invoked
when an event object is re-transferred. The method e x p i r e d () is invoked
when a t ime period has elapsed.

4.3. CLASS HIERA'RCHY FOR CONNECTION ENTITIES

The class hierarchy for connection entities speefies classes such as upper-
R e c e i v e r , l o w e r R e c e i v e r , uppe rSende r , lowerSender , c o n n e c t i o n -
Ob jec t , cormect ionManager , and t ime0ut . These classes are defined for
upperReceiver, lowerReceiver, upperSender, lowerSender, connectionOb-
jeet, conneetionManager, and timeOut objects, respectvely. All of these
classes are subclasses of class t a sk , from which they inherit the prop-
erty of being active objects. In addition, several base classes, P r o t o c o l ,
Rece ive r , and Sender, are introduced to develop these classes. The class
hierarchy is depicted in Figure 11, where the classes t a s k (representing
a lightweight process in this library) and P r o t o c o l are the root (base)
classes.

Class P r o t o c o l is an abstract class used as the root class for active ob-
jects except for the class Schedule r , and contains three objects, instances
of class AddrTab, class Connec t ion0b jec tTab , and class Schedu le r , and
two methods, p u t 2 S c h e d u l e r () and Schedu l ing () . The AddrTab ob-
ject is used for an address table and the Connec t ion0bj ec tTab object is for
a connection object table. In addition, the metod p u t 2 S c h e d u l e r () adds
an active object to the scheduling queue by its priority, and the method
Schedu l ing () checks which active object can run next. A S c h e d u l e r
object is used to handle the scheduling of connection entities.

In class Rece iver , method eventMapping () converts input requests to
the corresponding event objects, method check In () determines the entry
of the associated c o n n e c t i o n 0 b j T a b l e object according to an input mes-
sage, and method decode () converts an input string into an associated
I n t e r f a c e D a t a U n i t object. Classes u p p e r R e c e i v e r and l o w e r R e c e i v e r
are subclasses of class Rece iver . An u p p e r R e c e i v e r object is responsible

AN O B J E C T - O R I E N T E D AP P R OAC H 31

/ Pm~cclLay~

I t I I I ,I Iieoeiv~ on ~

A . A

•

Fig. 11. The class hierarchy for connection entities.

for requesting and confirming events. A l o w e r R e c e i v e r object is respon-
sible [or indicating and responding events. Both of these send messages to
a connec t ionManager object. In class Sender, method encode () con-
verts an I n t e r f a c e D a t a U n i t object into the associated string. Classes
uppe rSender and lowerSender , subclasses of Sender, deal with the mes-
sages from a c o r m e c t i o n O b j e c t object and then deliver appropriate mes-
sage('~) to the l o w e r R e c e i v e r and u p p e r R e c e i v e r objects of the adjacent
lower and upper layers.

A connec t ionManager object is a dispatcher for all connections; its
method g e t 0 b j I D () determines the c o r m e c t i o n 0 b j e c t object to which
an input message is sent. A c o n n e c t i o n 0 b j e c t object contains a state
record, a control block for handling rules, a data unit (IDU object), and
t iming constraints. Such an independent active object makes dynamic ad-
jus tments (through setting priority) possible. In addition, a c o n n e c t i o n -
Obje(:t object delegates the message of a state transition, received from
the connec t ionManager , to the current state object.

A t ime0ut object is responsible for monitoring a set of t imed objects,
which are t i m e r objects associated with a specific event object. To make

32 CHEN ET AL.

the management efficient, t i m e r objects are stored in a linked list in order
of expiration time. The timing of a t i m e r object in the list is relative to
tha t of the previous object, while the timing of the first is relative to the
current time. When the timing in the first t i m e r object reaches zero, the
associated event object times out, and the corresponding t ime-out handle
method t i m e E x p i r e d () is invoked.

5. D E V E L O P I N G A P R O T O C O L W I T H T H E OOC MODEL

5.1. A REUSE APPROACH WITH THE OOC MODEL

The specification of a protocol generally comprises two sets of docu-
ments: a service definition document and a protocol specification docu-
meat. The service definition document contains a specification of services
provided by the protocol to its upper layer. The protocol specification
document contains a precise definition of protocol data units and a precise
definition of the operations of the protocol. Furthermore, it is necessary
to consider the temporal order ad run-time behavior (e.g., the order of a
sequence of service requests and the maximum number of connections al-
lowed at one time) during the implementation phase. In the OOC model,
the definitions of protocol data units can be specified as data entities. Each
of the services provided can be specified as an event object, and the oepra-
tions can be described in state objects. The temporal order and run-time
behavior can be defined in connection entities. After being interpreted in
terms of data, state, and connection entities, a protocol specification can
be developed by the approach presented in the following subsection.

The class hierarchies in Section 4 can be constructed easily. Because
the OOC model is used, the components in the library can be reused di-
rectly to develop different protocols. Here we present an object-oriented
approach to constructing a protocol with an OOC model and the library.
In the analysis phase, the requirements of the protocol are specified with
our model (and additional constraints). In the design phase, the spec-
fled entities are mapped to the classes in the library. Specifically, the
classes S e r v i c e D a t a U n i t , P r o t o c o l D a t a U n i t , I n t e r f a c e C t r l n f o , and
I n t e r f a c e D a t a U n i t provided by our library can be applied for SDU, PDU,
ICI, and IDUentit ies directly. In addition, classes c 0 n n e c t i o n 0 b j e c t and
Connect ionManager can be reused directly. The rest of the classes era-
ployed dm'ing the design (and implementation) of a protocol can be created
according to the following steps, where steps 1 and 2 are for data entities,
steps 3 and 4 are for sate entities, and step 5 is for connection entities.

1. Idetify the PCI entity and construct a class for this object based on
the class ProtocolCtrlInfo.

AN O B J E C T - O R I E N T E D APPROACH 33

2. Identify the object that Handles the procedural rules for state transi-
tions. Construct a class for this object based on the class c t r l B l o c k .

3. Identify all service primitives in the protocol. Construct a class for
each service primitive (event), a subclass of class eventMgr, wih its
own functionality.

4. Identify all states in the protocol. Construct a class for each state
object, a subclass of class s ta teMgr , and define its responsibility by
overriding or augmenting member functions.

5. Identify all possible input requests (events) for lowerReceiver and Up-
perReceiver entities, respectively. Construct two classes for each of
these two entities, respectively, by (1) inheriting classes u p p e r R e c e i v e r
and l o w e r R e c e i v e r and by (2) overriding the virtual function R e c e i -
v e r : : eventMapping () with double dispatching.

5.2. AN EXAMPLE

~re here use C C I T T recommendation T.62 [2] as an example to illustrate
the reuse of our library. This recommendation defines the end-to-end pro-
cedures to be used within the Teletex and Group 4 facsimile services and
concerns the end-to-end control procedures that are network-independent.
By e~pplying the guidelines in the design phase, we can develop an appro-
priate protocol. The following is a brief description of our development of
T.62 after modeling it.

S!ep 1: The class t62PCI is extended from the base class P r o t o c o l C t r l -
I n f o to describe the T.62 protocol control information with additional data
members.

class t62PCI : public ProtocolCtrlInfo {

public :

m~signed int transfer_time; //reliable transfer mode II
mlsigned int document_reference_information;

// reliable transfer mode I

unsigned int synchronization_point ;

int checkpoint_mechanism;

// map onto session using Mechanism 2

mlsigned int token_priority;

// D_TOKEN_PLEASE service parameters

char service_ID;
char document_reference_number ; // S_ACIVITY_START

char document_type_ID ;

char checkpoint_reference_number; // S_ACIVITY_END

t~2signed int checkpoint_serial~number ;

void show () ; // overriding

34

void

};

CHEN ET AL.

t62PCl::t62PCIDefault (); //default setting

t62PCI(int, char*, char*, char*=NULL); //initialize

Step 2: The class t62ctrlBlkis derived Komthe base class ctrlBlock

by adding the elements which are specified in the T.62 protocol.

class t62ctrlBlk : public ctrlblk {

public:

t62ctrlBlk (); //constructor

int S;// The next expected checkpoint reference number

int R

int P

int

int

int

int

int
};

; / /
; / /

/ /
Q / /

/ /
z ; / /
K;//
C;//

/ /
W;//

the next allowed expected checkpoint reference number

the next expected checkpoint reference number to be

acknowledged

the next allowed expected checkpoint reference number

to be acknowledged

an actual checkpoint reference number in CDPB or CDE

an actual checkpoint reference number in RDPBP or RDEP

a checkpoint reference number from which the source

will resume transmission

acknowledgment window size

Step 3: These services in T.62 include S-CONNECT, S-RELEASE, S-U-
ABORT, S-DATA, S-TOKEN-PLEASE, S-SYNC-MINOR, S-ACTIVITY-
START, S-CONTROL-GIVE, and so on. Each communication service is
performed through a sequence of service primitives such as request, in-
dication, response, or confirm. Every service primitive is regarded as an
event object, an instance of (newly defined) event classes inheriting class
eventMgr but overriding the method. The abst ract definitions of all event
objects are alike. One such definition is shown below.

class tokenPlsResp:public eventMgr {

public :
tokenPlsResp (int time =-i): eventMgr(c'tokenPleaseResponse''

time)
{}
inline void doIt (connection0bject*); //relay function

void timeExpired (); //handling time out
void errorHandler(); //handling error
};

A N O B J E C T - O R I E N T E D A P P R O A C H 35

Step 4: T h e s t a t e t r ans i t i on d i ag ram in T.62 includes four teen s t a tes
state6-1~. Each s t a t e is r ega rded as an ins tance of one of the s t a t e classes
inher i t ing class s t a t e M g r bu t overr id ing several re la ted service pr imi t ives .
Each ex t ended s t a t e class can be also used as a base class if th is s t a t e
con ta ins genera l p rope r t i e s of a set of subs t a t e s (such as state2). Some
s t a t e : lasses are shown below.

void
void
void
void
void

};
class

class state0_l:public stateMgr {
public:

state0_l() : stateMgr (~sate0_1'');
void conReq(connection0b]ect*); //overriding service

primitive
void conInd(connection0b3ect*) ;'
void conResp(connection0bject*);

conConf(connection0bject*);
dataReq(connection0bject*);
dataInd(connection0bject*);
discReq(connection0bject*);
discInd(connection0bject*);

statel_1 : public stateMgr {
public:
state1_1() : stateMgr (~statel_l'');
void conConf(connection0bject*);// overriding service primitive
void conResp(connection0bject*);
};
class state2 : public stateMgr {
public:
state2(char *name):stateMgr(name);
void discInd(connectionObject*);// overriding service primitive
void ctrlGiveInd(connectionObject~);
void actIntReq(connectionObject*);
void actDcadReq(connection0bject*);
};
class state2_l_l : public state2 {
public:
state2_l_l() : state2 (C~state2_l_l'');
void actBegContInd(conection0bject*);

//overriding service primitive
void actBegStrtInd(conection0bject*);

36 CHEN ET AL.

void capabDataInd(conection0bject*);

void actDcadReq(conection0bject*);

The defiitions of the service primitives depend on the protocol specifi-
cation. The definition of one service primitive is shown as follows.

//primitive S-CON-REQ

void stateO_l::conReq(cormectionObject* cObj) {

//cObj stands for the related connectionObject, that is

//the delegator of this message

cout << ''\nL5: Session Connect request '' << endl;

//start the timing constraint associated to this event

c0bj--~getCurEvent ()--*getTime0bject ()-*reset\

(c0bj-~getCurEvent (), i);

//deal with something related to this service primitive

c0bj-~setCurrentState(&state81); // change state

c0bj-~getLS()~put(c0bj-~getIDU()); // put data into lowerSender

cout << 'tin state0_l to stateS_l'' << endl;

}

Step 5: The event types bound to an associated event object can be
specified in the overriding Rece ive r : :eventNapping () method. The
event types are the session commands and responses, such as command
session start (CSS), response session start positive (RSSP), command ses-
sion end (CSE), response session end positive (RSEP), response docu-
ment re-synchronize positive (RDRP), and so on. The following definition
is the method lowerReceiver: :eventMapping (). The upprReceiver-

: : eventMapping () can be defined analogously by replacing the Indication
with Request and Confirm with Response.

eventMgr* lowerReceiver : :eventMappng(unsigned char type) {

eventMgr *event ;

switch(type) {

case CSS :
event = &conIndication; break;

case RSSP :

event = &conConfirm; break;

case CSE:
event = g~discIndication; break;

AN O B J E C T - O R I E N T E D A P P R O A C H 37

};

case RSEP:

event = &discConfirm; break;

case RDRP:

event = ~actIntConfirm; break;

default:

event = NULL;

};
return event;

6. C O N C L U S I O N

This paper presents an object-oriented concurrent model to facilitate
the development of communica t ion protocols. The model consists of ac-
~iw~ objects, which accomplish services provided by a protocol, and passive
objects, which represent da ta units and state t ransi t ion diagrams. Dou-
ble dispatching and delegation are applied to increase the extensibility of
the protocol software. We have constructed a reusable l ibrary including a
number of general classes, the entities abst racted in our OOC model. Our
exl:erience shows tha t this model is well suited to developing communica-
t ion protocols since 1) its OO modeling allows communica t ion protocols to
be modeled natura l ly and intuitively; 2) its OO library provides good ex-
tensibili ty and flexibility for resue; and 3) it facilitates implicit concurrency
of communica t ion protocols• Planned enhancements to the l ibrary include
developing several specific classes for the needs of each specific layer and
expanding the l ibrary to suppor t verification and validation of communi-
cat ion protocols.

R E F E R E N C E S

1. C. Atkinson, Object-Oriented Reuse, Concurrency and Distribution, Addison-
Wesley, Reading, MA, 1991.

2. CCITT Blue Book volume VII-Fascicle VII.3, Control procedures for the Teltex
and Group 4 facsimile services. CCITT Recommendation T.62, 1988.

3. P. Coad and E. Yourdon, Ob2eet-Oriented Analyszs, second ed., Prentice-Hall, En-
glewood Cliffs, N J, 1991.

4. S.-J. Hsiao and F.-J. Wang, A framework and its class hierarchy for communica-
tion protocols, In Proceedings of National Computer Symposzum, Vol. 1, Taiwan,
R.O.C., 1991, pp. 294-299.

5. D. H. H. Ingalls, A simple technique for handling multiple polymorphism,
OOPSLA'86 Conference Proceedings, ACM. 1986, pp. 347 349.

38 CHEN ET AL.

6. ISO-IEC/JTC1/CS21/WG1/FDT/C, Lotus, a formal description technique based
on the temporal ordering of observation behavior, ISO International Standard
IS8807, Feb. 1989.

7. ISO- IEC/JTC1/CS21 /WG1/FDT/B , Estella, a formal description technique based
on extended state transition model, ISO International Standard IS8807, July 1989.

8. R .E . Johnson and J. M. Zweig, Delegation in C++, J. Object-Oriented Program-
ming, pp. 31-34, Nov./Dec. 1991.

9. A. Rockstrom, An Introduction to the CCITT SDL, Televerket, Stockholm 1985.
10. L.A. Stein, Delegation is inheritance, OOPSLA'87 Conference Proceedings, ACM,

1987, pp. 138-146.
11. B. Stroustrup and J. E. Shopiro, A set of C + + classes for coroutine style program-

ming, In Proceedings of the USENIX C++ Workshop, USENIX Association, 1987,
pp. 417 439.

12. B. Stroustrup, The C++ Programming Language, second ed., Addison-Wesley,
Reading, MA, 1991.

13. Y.-C. Ting, J.-L. Chen, and F.-J. Wang, An object-oriented concurrent model for
communication protocols, in Proceedings of International Conference on Telecom-
munications, l:)ubai, Jan. 1994, pp. 155-158.

14. C. Tomlinson and M. Scheevel, Concurrent object-oriented programming language,
in Object-Oriented Concepts, Databases, and Applications, ACM, 1989, pp. 79-124.

Received 1 December 1993; revised 1 April 1994

