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ABSTRACT 

~_?he development of communication protocols for computer networks and dis- 
tributed systems is an increasingly complex and cost-sensitive process. This paper 
presents an object-oriented concurrent (OOC) model for the development of com- 
munication protocols. This model consists of three kinds of entities: data entities, 
which represent the communicated data units, state entities, which describe their 
behavior, and connection entities, which are responsible for communication ser- 
vices. The state transitions in a protocol are modeled by using state entities, and 
a communication service is performed by a group of connection and state entities. 
A C + +  library based on our OOC model is described that contains three class 
hierarchies, for data, state, and connection entities, respectively. In addition, an 
approach to constructing a protocol using this OOC model and the library is 
presented. An example in which a T.62 protocol is constructed shows that this 
approach provides a high level of modeling, concurrency, and reusability. 

1. I N T R O D U C T I O N  

Compute r s  connected into a network interact  according to a common 
set of rules known as a protocol, and different communica t ion  protocols 
may be needed by software applicat ions using computer  networks. One ap- 
proach to developing a communica t ion  protocol is to use formal descr ipt ion 
techniques  (FDT ' s ) ,  such as SDL [9], Estelle [7], and Lotos [6], to describe 
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specifications and to translate the specifications into programs. However, 
this approach has two shortcomings: it requires the construction of a conr- 
plex translator to handle translation from the specification language to the 
programnfing language [4], and existing FDT descriptions are generally not 
reusable. Object-oriented approaches to software developmet offer a high 
level of modularity, extensibility, and reusability. In this paper, we present 
an object-oriented concurrent (OOC) model for communication protocols 
that  has the virtues of object-orientation and concurrency. 

An OOC model consists of active and passive objects. An active ob- 
ject serves as a thread of control, while a passive object is similar to a 
regular C + +  [12] object. An OOC model is composed of the following 
three types of objets: (1) data entities, which describe the structure of the 
communicated data  units in a protocol, (2) state entities, which work on 
state transitions and the corresponding services, and (3) connection enti- 
ties, which are responsible for nranipulating communication services. The 
first two types of entities are passive, while the third type is active. We have 
constructed a class library of three class hierarchies, one corresponding to 
each of the above types of entities. In addition to classes and inheritance 
relationships, the library uses programming techniques such as double dis- 
patching and delegation to simplify extension. Double dispatching is a way 
of choosing a service method for a message based on the classes of the 
receiver and the first argument in the message. Delegation provides the 
power to inherit states as well as behavior dynamically [8]. In this paper,  
we describe the construcion of a library for C + +  [12] using a lightweight 
process library [11]. Our library provides reusable components for imple- 
menting different protocols. In addition, a list of guidelines for developing a 
protocol with the OOC model and the library are also presented. The T.62 
protocol [2] is used to illustrate reuse. This example shows that  our l ibrary 
provides a high level of reusability, including modeling, extendibility, and 
concurrency. 

The remainder of this paper is organized as follows. Section 2 presents 
the OOC model and double dispatching and delegation techniques. Sec- 
tion 3 explains how object-orientation and concurrency are integrated in 
our approach. Section 4 describes the class library, and Section 5 presents 
the developmen~ guidelines. Section 6 concludes the paper. 

2. OOC MODEL FOR PROTOCOLS 

2.1. AN OOC MODEL 

In an OOC model, a communication protocol consists of data, state, and 
connection entities. The data entities represent the packed communication 
data. The state entities, including state and event objects, interpret the 
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Fig. 1. OOC model for communicat ion protocols. 

mapped  service primitives of state transitions. The connection entities are 
responsible for manipulating communication services. Each of the entities 
is specified as an object. Figure 1 shows the architecture of a protocol in 
which the connection entities, the active objects, are expressed by ellipses, 
while the data  and state entities, the passive objects, are represented by 
rounded rectangles. 

In a layered architecture, a layer of a communication protocol can be 
des.eribed with our model as follows. The upperReceiver and lowerReceiver 
ob~iects receive input messages from the upper and lower layers, respec- 
tively, whereas the upperSender and lowerSender objects send messages to 
the upper  and lower layers, respectively. The connectionManager object 
takes over all the communication channels, each of which is handled by a 
connectionObject object. A connectionObject object cooperates with state 
objects and event objects to perform communication services. The time- 
O~.t object monitors the timing constraints on the communication. The 
execution flows in a protocol are indicated by the arrows in Figure 1. 
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Fig. 2. Relationship between data entities. 

2.2. DATA AND STATE ENTITLES 

Data entities, such as Service Data Units (SDU's), Protocol Control 
Information (PCI), Protocol Data Units (PDU's), Interface Control Infor- 
mation (ICI), Interface Data Units (IDU's), and Control Blocks (CB's), 
represent the transferred and control information. State entities include 
state, event and timer objects. These describe the rules of state transitions 
and specify the timing constraints on an event. These two types of entities 
are passive objects. 

Data entities are passive objects. An SDU object represents user data, 
and a PCI object represents a header attached to user data to identify 
the data to be transferred. A PDU object is composed of a PCI object 
and a SDU object. A ICI object records the interface information of the 
service primitive which is to be invoked in the next layer. An IDU object, 
which is composed of an ICI object and a PD U object, is an encapsulated 
message passed to the adjacent layer. On the other hand, a CB object 
contains information specifying the handling rules of each connection. The 
relationships between data entities are depicted in Figure 2. 

A protocol machine can be treated as a finite state machine with a state 
transition diagram such as that shown in Figure 3. In the figure, there 
are three states, ready, established, and close, and four kinds of events, 
request, confirm, indication, and response. The finite state machine can 
be implemented by using a table-driven approach or a procedure-driven 
approach. A table-driven approach uses a two-dimensional array in which 
a row element represents a state and a column represents a distinct input 
event. A procedure-driven approach treats an event as a signal to trigger 
the current state. With these two approaches, it is difficult to extend a finite 



AN OBJECT-ORIENTED APPROACH 

ii!}i!i 
" co.  iillii 

Dall ~.  ~ D~ i::i!::! 
indicati request 

Fig. 3. State transition diagram of a protocol machine. 

19 

state  machine for a protocol, because input events and changed states are 
t ightly coupled. 

We employ state and event objects to implement a finite state machine 
for a protocol. A state object represents one state of a protocol machine, 
and e.n event object represents the service that  is requested. For t iming 
constcaints, an event object is associated with a timer object specifying a 
period of time. State objects, collaborating with event objects, perform 
state  transitions by means of the double dispatching technique (described 
in a later subsection. The relationships between state entities are shown in 
Figure 4. 

2.3. C O N N E C T I O N  E T I T I E S  

From the viewpoint of protocols, each communication service is manip- 
ulated through the following three steps: 1) messages are received from the 
upper  or lower layer, 2) messages are processed according to the rules of 
the current layer, and 3) messages are sent to the upper or lower layer. Ac- 
cording to these steps, a protocol entity can generally be divided into three 
parts: receiving, sending, and message processing. These parts can execute 
concurrently. In order to increase concurrency and modularity, these parts 
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can be decomposed into finer-grain entities, each of which is specified as an 
active object. 

The receiving and the sending parts are refined individually to be up- 
peT"Receive~5 lowerReceive~ ~, upperSender, and lowe~'Sende~" objects in order 
to make message exchanging between layers more efficient. The message 
processing part establishes a connection to process incoming messages. A 
number of connections are allowed to exist at the same time, and each 
can be served by a distinct connectionObject object. On the other hand, 
a connectionObject object serves connections one by one: Each time it is 
in charge of one connection only. The object manipulates all the messages 
in the connection until the connection ends. All cormectionObject objects 
are managed by a connectionManager 1 object. The connection entities, 
including upperReceiver, upperSender, eonnectio~zManage~, connectionOb- 
ject, lowerRecciver, and lowerSenderobjects, are all active objects. In other 
words, each of them has its own thread of control. 

An upper'Receiver object and a lowe~'Receiver object are responsible for 
receiving messages from the upper layer and lower layer, respectively, and 
for checking the legality of the messages. These objects deliver incoming 
messages to a connectionManager object, if the messages are legal, In addi- 
tion, an upperReceiver object handles all requesting and responding events, 
and a lower'Receiver object handles all indicating and confirming events. 

A eonnectionManager object manages all eonnectionObject objects by 
creating and removing them. After receiving messages from an upper- 
Receiver • or a lower'Receive~" object, a conr~ectionManager object determines 
the connection to which the messages belong. If the connection does not 
exist, the connectionManager object will create a new connectionObject 
object to handle the messages. The messages are forwarded to their cor- 
responding connectionObject objects by a connectionManager object, as 
shown in Figure 5. 

An upperSender object and a lowerSender object are responsible for 
sending messages to the next upper layer and lower layer, respectively. 
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These objects receive messages from a connectionObject object, encode and 
then pass the messages to the next upper or lower layer. An upperSender 
object  is responsible for sending all indication and confirmation events, and 
a lowerSender object sends all request and response events. 

A connectionObject object performs the state transitions of a protocol 
machine by collaborating with state and event objects. A connectionObject 
object changes its behavior based on its current state and an input event. 
When a connectionObjct object is created, it is given its s tate according 
to an input event. After changing into another state, the object invokes 
the service function of the state object to process the messages. Because 
a :o~tnectionObject object and a state object are distinct entities without 
shared data, the delegation technique (which will be described later) is 
applied to these two objects. 

2.,L HANDLING ABNORMAL CASES 

Abnormal  cases include sending expedited data, responding to internal 
ercors, and handling time-outs. These abnormal cases can be dealt with 
by msgQueue, timer, and timeOut objects. 

A FIFO queue is implemented in typical asynchronous message passing 
schemes, but the queue alone is unable to process messages i n a  special 
order. Instead, a msgQueue object, an object with a priority queue, is 
used to handle expedited data  and internal errors to which a high priority 
is assigned. An active object with a msgQue'ue object can process high- 
priority data  first. 

A timeT" object records the t ime limit of an event object. To manage 
t iming constraints efficiently, t~mer objects are organized as a linked list 
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sorted by the t ime limit (see Figure 6). A timeOut object is an independent 
thread of control responsible for detecting t ime-out situations. Because 
the t ime limit of a timer object is relative, a timeOut object only needs to 
decrease the amount in each timer object on the list. When the t ime limit 
of the first timer object reaches zero, the associated event object has t imed 
out. A corresponding t ime-out handling routine is then invoked. The time- 
out handling routines may abort  or reestablish a connection, depending on 
the specification of a protocol. 

2.5. DOUBLE DISPATCHING IN STATE ENTITIES 

The state transitions of a protocol machine are determined not only by 
the input event, but also by the current state. The double dispatching 
technique allows matching of the service method to be performed based on 
the classes of the receiver and the first argument object in the message. 
The double dispatching technique is applied in state entities to control the 
state transitions. 

In an OOC model, state and event objects describe a protocol machine. 
A state object, such as a ready, established, or close object, represents 
the state of a protocol during communication. An event object, such as 
a request, indication, response, or confirm object, is the desired service 
decoded from an ICI  object. A state object has to specify an action for 
each possible event. The relationships between state and event objects are 
shown in Figure 7. List 1 shows the implementation of state transitions in 
the traditional approach. In List 1, Ready is a state object with method 
doIt( ) to specify the actions for events. This programming style reduces 
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Ready: :doIt (eventType *eventObj) 
if (eventObj->isRequest ()) { 

}; 
if 

}; 
if 

}; 
} 

t 

/ *  code for request event * /  

(eventOb3->isIndication()){ 
/* code for indication event */ 

(eventObj->isResponse()){ 
/* code for response event */ 

List 1. Trad i t iona l  approach  to s t a t e  and  event  objects .  

the reusability of these codes, since the method Ready::doIt( ) has to be 
redefined when an event object is changed. 

The double dispatching mechanism, also called multiple polymorphism 
[5], (:an improve the reusability of the codes. Current object-oriented pro- 
gramming languages, such as C + + ,  do not support  this mechanism. How- 
ever. we can specify a s ta tement  with dynamic binding and object invoca- 
tion to perform the same function as this mechani,"m. An example of such 
a s ta tement  is curEvent ---+ dolt(curSta4e) in ~ ~gure 8, where curEvent and 

Event Object State Object 

Request ~ ~ Ready 
Indication curEvent->dolt(curState) Established 
Response Close 
Conf~rm 

Fig. 8. App ly ing  double  d i spa tch ing  to event  and  s t a t e  objects .  
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inline void Request::doIt(stateMgr *curState) { 
curState->Request(...); // relay function 

}; 
inline void Indication::doIt(stateMgr *curState) { 

curState->conIndication(...); // relay function 
}; 
inline void Response::doIt(stateMgr *curState) { 

curState->conResponse(...); // relay function 
}; 
inline void Confirm::doIt(stateMqr *curState) { 

curState->conConfirm(...); // relay function 
}; 
.......................................................... 

void Ready::Request(...) { 
// the action for Request 

}; 
void Ready::Indication(...) { 

// the action for conIndication 
}; 
void Ready::Response(...) { 

// the action for conResponse 
}; 

void Ready::Confirm(...) { 
// the action for conConfirm 

}; 

List 2. Double dispatching using C++ code, 

curState are dynamically bound to an event object and a state object, re- 
spectively, and the method doIt() selects an action according to the bound 
state object. For example, curState is bound to a state object Ready and 
curEvent is bound to an event object Request. Both bindings occur before 
the statement curEvent ~ doIt(curState) is executed. When the event ob- 
ject Request is invoked, its method doIt(curState) selects an appropriate 
function according to the passed argument object Ready. In other words, 
the function Ready::Request() is selected for execution. As illustrated in 
List 2, state objects and event objects can be developed independently. 

2.6. DELEGATION IN CONNECTION AND STATE ENTITIES 

Delegation is often regarded as a language feature used to replace in- 
heritance [10]; it may be regarded as a relationship between objects. With 
delegation, a delegator object can commission another object to perform 
a desired service for the delegator. We can separate the service definition 
Kom the connection entities via delegation. 

In an OOC model, a communication service is performed by a connec- 
tionOb]ect object cooperating with a state object. A state object is a service 
provider, and a connectionObject object manipulates all the messages in the 
connection. These two objects are different kinds of entities. On the other 
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// class construction of connection0bject 
connection0bject l 

int data; 

// curEvent is bound to "Request" event object 
// curState is bound to "Ready" state object 
curEvent->doIt(curState, this); 
// delegating a message to the curState object 
/* connection0bject forwards a message to the current state 

object, and passes its object 
point as an arqument of the function doIt(...) */ 

}; 

// laember function "doIt" of the class of an event object, Request. 
inl:[ne void 

i~equest::doIt(stateMgr *curState, connection0bject *c0bj) { 
curState->eventAction(c0bj,...); 

// forwarding a message to curState 
} 

// member function "Request" of the class of an state object,Ready. 
void Ready::Request(connection0bject* c0bj,...) { 
// accessing the data of connection0bject via c0bj passed from the 
// extra argument 

c0bj->data; // access the data of the original object 
... // the code for the eventAction 

} 

List 3. Delegation in C + +  

hand, the delegation technique allows a connectionObject object to change 
its behavior according to its state object. 

If a delegation mechanism is not provided in a language, as is the case 
with C + + ,  then delegation can be implemented using a programming tech- 
nique which appends an original receiver as an extra argument to each 
delegated message. List 3 shows such an implementation example. In this 
example,  the connectionObject object passes its object reference, this, to an 
event object in the s ta tement  curEvent--*doIt(curState, this), which per- 
forms the double dispatching described in the previous subjection. In List 
3, curEvent is bound to the Request event object and curState is bound 
to the Ready state object. Then the event object, Request, receives the 
reference of a connectionObjeet object, cObj, and passes it to the state ob- 
ject, Ready. Finally, the state object, Ready, receives the reference of the 
connectionObjeet object, and performs the service function, Request, on the 
da ta  of the connectionObjeet object. 
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3. CONCURRENCY IN THE OOC MODEL 

Most object-oriented languages are strong on reusability but weak on 
concurrency [14]. It is difficult to apply concurrency to object-oriented 
languages, because of the conflict between exclusive synchronization and 
inheritance [1]. Hence, we do not permit exclusive synchronization in the 
communication protocols using our approach. 

An object is a well-defined entity that encapsulates data with a set 
of operations. When processing an input message, an object invokes its 
corresponding operation(s) to perform a service. With classification and 
inheritance (classes), an object is instantiated from a class, and a class may 
inherit or be inherited by another class. There are two kinds of objects in 
our OOC: active and passive objects. A active object encompasses its 
own thread of control, whereas a passive object does not. An object is 
either active or passive, neither both nor switchable. An active object is 
generally autonomous: It is associated with an (implicit) queue to buffer 
input messages. After being created, an active object has its own thread 
until the object reaches the end of the thread (or is killed). A passive object, 
on tile other hand, executes its routine only when it receives a message, i.e., 
when a thread of control enters implicitly. It returns the service's result 
and the thread of control after completing the service. 

An interaction between two objects occurs when one object requests the 
other's service by sending it a message. There are two kinds of message 
passings between objects: synchronous and synchronous. In synchronous 
message passings, a sender blocks until it gets a reply from the receiver. 
In asynchronous message passings, a sender continues its execution right 
after passing a message. In other words, the sender of a synchronous mes- 
sage passes its thread to the receiver implicitly, while the sender of an 
asynchronous message does not. Synchronous messages are sent to passive 
objects only, while asynchronous messages are sent to active objects only. 
Both active and passive objects are able to issue both synchronous and 
asynchronous messages. 

Obviously, parallelism is integrated into the OOC model by means of 
active objects. Having these active objects execute simultaneously is anal- 
ogous to having several processes run concurrently. The active objects in 
C + +  language can be implemented with a task library. 1 

It is not necessary to consider the exclusive synchronization of active ob- 
jects, since they have their own thread and receive asynchronous messages 
only. Data inconsistency may occur in a passive object when concurrent 
accesses to it occur. 

lone such task library is the lightweight process library provided in Objectkit\C++, 
which is a product of ParcPlace Systems, Inc. 
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In our OOC model, the concurrent executing parts of a communication 
protocol are the connection entities, since they are modeled as active ob- 
jects. The passive objects include data and state entities. The data  entities 
are always treated as asynchronous messages passed during the execution 
flout of a protocol. Therefore, it is not necessary to apply exclusive synchro- 
nization to da ta  entities, since they are processed in a single active object 
at one time. The state entities are shared by connectionObject objects, 
tha t  is, a passive object may be concurrently accessed by several active 
objects. In order to avoid da ta  inconsistency and eliminate additional syn- 
chronization protection, the state entities are defined so as to include no 
da ta  shared between connectionObject objects: Each state entity performs 
operation(s) on the data  of i connectionObject object via the delegation 
technique, but does not retain any information shared by connectionObject 
objects. 

4. T H E  CLASS LIBRARY FOR P R O T O C O L S  

This section discusses the class hierarchies abstracted from the entities of 
the OOC model. A class definition can be divided into two parts: interface 
and body definitions. A class with an interface definition only is an abstract 
class. I t  is usually used as a base class. A class with both interface and body 
definitions is called a concrete class. The notation used in the rest of this 
paper,  such as classes, objects, and inheritance and whole-part s tructure 
symbols, is adopted from [3]. 

4.1. CLASS HIERARCHY FOR DATA ENTITIES 

The class hierarchy designed for data  entities specifies the classes for 
SDU, PCI, PDU, ICI, IDU, and CB objects. The classes designed include 
ServiceDataUnit, ProtocolCtrllnfo, ProtocolDataUnit, Interface- 

CtzlInfo, InterfaceDataUnit, and CtrlBlock. Common features are 
abstracted as the base class InternalObj. Classes ServiceDataUnit, 
PrctocolCtrlInfo, InterfaceCtrlInfo, and CtrlBlock can be speci- 
fied as concrete classes when developing a new communication protocol. 
The class hierarchy is shown in Figure 9. 

]in the class hierarchy, class P r o t o c o l D a t a U n i t  contains a service data  
unit and protocol control information, instances of classes S e r v i c e D a t a U n i t  
and P r o t o c o l C t r l I n f o ,  respectively. A S e r v i c e D a t a U n i t  object expresses 
t ransmi t ted  user data,  containing a data  buffer and the size. It  also pro- 
vides the methods retrieving/sending the user data  f rom/to.  A p r o t o c o l -  
C t r l I n f o  object represents a header or tailor, which is the information 
exchanged by peer layers at different sites of network. Class P r o t o c o l -  
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Fig. 9. The class hierarchy ef data entities. 

C t r l l n f o ,  a base class for extension, includes coded data of protocol con- 
trol information, a service type, a source address, and a destination address, 
and the oeprations on them. 

Class I n t e r f a e e D a t a U n i t  contains an instance of class I n t e r f a c e C t r l -  
I n f o  and an instance of class Pro toco lDataUni t .  It has priority by inher- 
iting class I n t e r n a l 0 b j .  A P ro toco lDa taUn i t  object represents the data 
transferred across layer boundaries. The methods encode ( ) and decode 
( ) are responsible for data conversion, where encode ( ) converts the ob- 
ject's internal data to the form of a string and decode ( )  converts the 
data back into its original form. 

Class I n t e r f a c e C t r l I n f o  (Interface Control Information) is a base class 
which contains the temporary data passed between adjacent layers to invoke 
a service function. It contains socked pointer, an index of c o n n e c t i o n -  
0b jTable ,  and an event object corresponding to the service type in class 
P r o t o c o l C t r l l n f o .  Class CtrlBlock is an empty base class to be extended 
when developing a specific protocol. An instance of its subclass represents 
all the control information about the state transitions of a connection. 
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Fig. 10. The class hierarchy of state entities. 

The classes described above are extracted directly from a protocol speci- 
fication. For implementation, several additional classes, such as StringMsg 
(String Message), AddrTable (Address Table), and c o n n e c t i o n 0 b j e c t T a b  
(Connection Object Table), are needed. A StringMsg object is an encoded 
form of an I n t e r f a c e D a t a U n i t  object and is passed between adjacent lay- 
ers. It has the priority by inheriting class I n t e r n a l 0 b j .  An AddressTable 
object represents an address table based on caller addresses. Each entry 
points to a related index of a connec t ion0b jTab le  object which stores 
each :onnection object. Each connection can be identified by the address 
of the caller. Under asynchronous message passing, this message passing 
scheme is not enough to express a message with priority. One way to re- 
solve this problem is to use a msgQueue, a priority queue. The methods 
dequeue ( )  retrieving an element, dequeue ( )  appending an element, 
and, pu tback  ( ) adding an element according to its priority are provided 
in class msgQueue. 

4.2. CLASS HIERARCHY FOR STATE ENTITLES 

This class hierarchy contains the classes of state entities. The classes 
s t a t eMgr ,  eventMgr, and t imer  are defined for state, event, and timer 
objects. Becuase of the relationship of double dispatching between state 
objects and event object, classes s ta teMgr and eventMgr have to be spec- 
ified as base classes of state and event classes, respectively. The class 
hieracchy for state entities is shown in Figure 10. 

Class StateMgr is a base class for state classes. Each state class concerns 
one state of a protocol specification. The method of s ta teMgr delegates 
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its operation to the first argument,  a connectionObject object. Class 
eventMgr is a base class for event classes. It  contains a timer object, a 
method d o I t ( ) ,  a t ime-out handling method t i m e E x p i r e d  ( ) ,  and an 
error handling method e r r o r H a n d l e r  ( ) .  The t imer object represents a 
specified t ime period during which this associated event must be performed. 
The method d o l t  ( ) is the relay function of the double dispatching tech- 
nique. Both t ime-out handling and error handling methods are vir tual  
member  functions which must be refined in each subclass. Class t i m e r  is 
the class of timer objects and contains three methods, s t o p  ( ) ,  r e s e t  
( ) ,  and e x p i r e d  ( ) .  The method s t o p  ( )  is invoked when this event 
object has been completed successfully. The method r e s e t  ( ) is invoked 
when an event object is re-transferred. The method e x p i r e d  ( ) is invoked 
when a t ime period has elapsed. 

4.3. CLASS HIERA'RCHY FOR CONNECTION ENTITIES 

The class hierarchy for connection entities speefies classes such as upper-  
R e c e i v e r ,  l o w e r R e c e i v e r ,  uppe rSende r ,  lowerSender ,  c o n n e c t i o n -  
Ob jec t ,  cormect ionManager ,  and t ime0ut .  These classes are defined for 
upperReceiver, lowerReceiver, upperSender, lowerSender, connectionOb- 
jeet, conneetionManager, and timeOut objects, respectvely. All of these 
classes are subclasses of class t a sk ,  from which they inherit the prop- 
erty of being active objects. In addition, several base classes, P r o t o c o l ,  
Rece ive r ,  and Sender,  are introduced to develop these classes. The class 
hierarchy is depicted in Figure 11, where the classes t a s k  (representing 
a lightweight process in this library) and P r o t o c o l  are the root (base) 
classes. 

Class P r o t o c o l  is an abstract  class used as the root class for active ob- 
jects except for the class Schedule r ,  and contains three objects, instances 
of class AddrTab, class Connec t ion0b jec tTab ,  and class Schedu le r ,  and 
two methods, p u t 2 S c h e d u l e r  ( ) and Schedu l ing  ( ) .  The AddrTab ob- 
ject is used for an address table and the Connec t ion0bj  ec tTab  object is for 
a connection object table. In addition, the metod p u t 2 S c h e d u l e r  ( ) adds 
an active object to the scheduling queue by its priority, and the method 
Schedu l ing  ( )  checks which active object can run next. A S c h e d u l e r  
object is used to handle the scheduling of connection entities. 

In class Rece iver ,  method eventMapping ( ) converts input requests to 
the corresponding event objects, method check In  ( ) determines the entry 
of the associated c o n n e c t i o n 0 b j T a b l e  object according to an input mes- 
sage, and method decode ( )  converts an input string into an associated 
I n t e r f a c e D a t a U n i t  object. Classes u p p e r R e c e i v e r  and l o w e r R e c e i v e r  
are subclasses of class Rece iver .  An u p p e r R e c e i v e r  object is responsible 
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Fig. 11. The class hierarchy for connection entities. 

for requesting and confirming events. A l o w e r R e c e i v e r  object is respon- 
sible [or indicating and responding events. Both of these send messages to 
a connec t ionManager  object. In class Sender,  method encode ( )  con- 
verts an I n t e r f a c e D a t a U n i t  object into the associated string. Classes 
uppe rSender  and lowerSender ,  subclasses of Sender,  deal with the mes- 
sages from a c o r m e c t i o n O b j e c t  object and then deliver appropriate  mes- 
sage('~) to the l o w e r R e c e i v e r  and u p p e r R e c e i v e r  objects of the adjacent 
lower and upper layers. 

A connec t ionManager  object is a dispatcher for all connections; its 
method g e t 0 b j I D  ( )  determines the c o r m e c t i o n 0 b j e c t  object to which 
an input message is sent. A c o n n e c t i o n 0 b j e c t  object contains a state 
record, a control block for handling rules, a data  unit (IDU object), and 
t iming constraints. Such an independent active object makes dynamic ad- 
jus tments  (through setting priority) possible. In addition, a c o n n e c t i o n -  
Obje(:t object delegates the message of a state transition, received from 
the connec t ionManager ,  to the current state object. 

A t ime0ut  object is responsible for monitoring a set of t imed objects, 
which are t i m e r  objects associated with a specific event object. To make 
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the management  efficient, t i m e r  objects are stored in a linked list in order 
of expiration time. The timing of a t i m e r  object in the list is relative to 
tha t  of the previous object, while the timing of the first is relative to the 
current time. When the timing in the first t i m e r  object reaches zero, the 
associated event object times out, and the corresponding t ime-out handle 
method t i m e E x p i r e d  ( ) is invoked. 

5. D E V E L O P I N G  A P R O T O C O L  W I T H  T H E  OOC MODEL 

5.1. A REUSE APPROACH WITH THE OOC MODEL 

The specification of a protocol generally comprises two sets of docu- 
ments: a service definition document and a protocol specification docu- 
meat.  The service definition document contains a specification of services 
provided by the protocol to its upper layer. The protocol specification 
document  contains a precise definition of protocol data  units and a precise 
definition of the operations of the protocol. Furthermore, it is necessary 
to consider the temporal  order ad run-time behavior (e.g., the order of a 
sequence of service requests and the maximum number of connections al- 
lowed at one time) during the implementation phase. In the OOC model, 
the definitions of protocol data  units can be specified as data  entities. Each 
of the services provided can be specified as an event object, and the oepra- 
tions can be described in state objects. The temporal  order and run-time 
behavior can be defined in connection entities. After being interpreted in 
terms of data, state, and connection entities, a protocol specification can 
be developed by the approach presented in the following subsection. 

The class hierarchies in Section 4 can be constructed easily. Because 
the OOC model is used, the components in the library can be reused di- 
rectly to develop different protocols. Here we present an object-oriented 
approach to constructing a protocol with an OOC model and the library. 
In the analysis phase, the requirements of the protocol are specified with 
our model (and additional constraints). In the design phase, the spec- 
fled entities are mapped to the classes in the library. Specifically, the 
classes S e r v i c e D a t a U n i t ,  P r o t o c o l D a t a U n i t ,  I n t e r f a c e C t r l n f o ,  and 
I n t e r f a c e D a t a U n i t  provided by our library can be applied for SDU, PDU, 
ICI, and IDUentit ies directly. In addition, classes c 0 n n e c t i o n 0 b j e c t  and 
Connect ionManager  can be reused directly. The rest of the classes era- 
ployed dm'ing the design (and implementation) of a protocol can be created 
according to the following steps, where steps 1 and 2 are for data  entities, 
steps 3 and 4 are for sate entities, and step 5 is for connection entities. 

1. Idetify the PCI  entity and construct a class for this object based on 
the class ProtocolCtrlInfo. 
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2. Identify the object that  Handles the procedural rules for state transi- 
tions. Construct  a class for this object based on the class c t r l B l o c k .  

3. Identify all service primitives in the protocol. Construct a class for 
each service primitive (event), a subclass of class eventMgr, wih its 
own functionality. 

4. Identify all states in the protocol. Construct a class for each state 
object, a subclass of class s ta teMgr ,  and define its responsibility by 
overriding or augmenting member  functions. 

5. Identify all possible input requests (events) for lowerReceiver and Up- 
perReceiver entities, respectively. Construct two classes for each of 
these two entities, respectively, by (1) inheriting classes u p p e r R e c e i v e r  
and l o w e r R e c e i v e r  and by (2) overriding the virtual function R e c e i -  
v e r  : : eventMapping ( ) with double dispatching. 

5.2. AN EXAMPLE 

~re here use C C I T T  recommendation T.62 [2] as an example to illustrate 
the reuse of our library. This recommendation defines the end-to-end pro- 
cedures to be used within the Teletex and Group 4 facsimile services and 
concerns the end-to-end control procedures that  are network-independent. 
By e~pplying the guidelines in the design phase, we can develop an appro- 
priate protocol. The following is a brief description of our development of 
T.62 after modeling it. 

S!ep 1: The class t62PCI is extended from the base class P r o t o c o l C t r l -  
I n f o  to describe the T.62 protocol control information with additional data  
members.  

class t62PCI : public ProtocolCtrlInfo { 

public : 

m~signed int transfer_time; //reliable transfer mode II 
mlsigned int document_reference_information; 

// reliable transfer mode I 

unsigned int synchronization_point ; 

int checkpoint_mechanism; 

// map onto session using Mechanism 2 

mlsigned int token_priority; 

// D_TOKEN_PLEASE service parameters 

char service_ID; 
char document_reference_number ; // S_ACIVITY_START 

char document_type_ID ; 

char checkpoint_reference_number; // S_ACIVITY_END 

t~2signed int checkpoint_serial~number ; 

void show ( ) ; // overriding 
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void 

}; 
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t62PCl::t62PCIDefault (); //default setting 

t62PCI(int, char*, char*, char*=NULL); //initialize 

Step 2: The class t62ctrlBlkis derived Komthe base class ctrlBlock 

by adding the elements which are specified in the T.62 protocol. 

class t62ctrlBlk : public ctrlblk { 

public: 

t62ctrlBlk (); //constructor 

int S;// The next expected checkpoint reference number 

int R 

int P 

int 

int 

int 

int 

int 
}; 

; / /  
; / /  

/ /  
Q / /  

/ /  
z ; / /  
K;// 
C;//  

/ /  
W;// 

the next allowed expected checkpoint reference number 

the next expected checkpoint reference number to be 

acknowledged 

the next allowed expected checkpoint reference number 

to be acknowledged 

an actual checkpoint reference number in CDPB or CDE 

an actual checkpoint reference number in RDPBP or RDEP 

a checkpoint reference number from which the source 

will resume transmission 

acknowledgment window size 

Step 3: These services in T.62 include S-CONNECT, S-RELEASE, S-U- 
ABORT, S-DATA, S-TOKEN-PLEASE, S-SYNC-MINOR, S-ACTIVITY- 
START, S-CONTROL-GIVE, and so on. Each communication service is 
performed through a sequence of service primitives such as request, in- 
dication, response, or confirm. Every service primitive is regarded as an 
event object,  an instance of (newly defined) event classes inheriting class 
eventMgr but overriding the method. The abst ract  definitions of all event 
objects are alike. One such definition is shown below. 

class tokenPlsResp:public eventMgr { 

public : 
tokenPlsResp (int time =-i): eventMgr( c'tokenPleaseResponse'' 

time) 
{} 
inline void doIt (connection0bject*); //relay function 

void timeExpired (); //handling time out 
void errorHandler( ); //handling error 
}; 
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Step 4: T h e  s t a t e  t r ans i t i on  d i ag ram in T.62 includes four teen s t a tes  
state6-1~. Each  s t a t e  is r ega rded  as an ins tance  of one of the  s t a t e  classes 
inher i t ing  class s t a t e M g r  bu t  overr id ing several  re la ted  service pr imi t ives .  
Each  ex t ended  s t a t e  class can be also used as a base class if th is  s t a t e  
con ta ins  genera l  p rope r t i e s  of a set of subs t a t e s  (such as state2). Some 
s t a t e  : lasses  are  shown below. 

void 
void 
void 
void 
void 

}; 
class 

class state0_l:public stateMgr { 
public: 

state0_l() : stateMgr (~sate0_1''); 
void conReq(connection0b]ect*); //overriding service 

primitive 
void conInd(connection0b3ect*) ;' 
void conResp(connection0bject*); 

conConf(connection0bject*); 
dataReq(connection0bject*); 
dataInd(connection0bject*); 
discReq(connection0bject*); 
discInd(connection0bject*); 

statel_1 : public stateMgr { 
public: 
state1_1() : stateMgr (~statel_l''); 
void conConf(connection0bject*);// overriding service primitive 
void conResp(connection0bject*); 
}; 
class state2 : public stateMgr { 
public: 
state2(char *name):stateMgr(name); 
void discInd(connectionObject*);// overriding service primitive 
void ctrlGiveInd(connectionObject~); 
void actIntReq(connectionObject*); 
void actDcadReq(connection0bject*); 
}; 
class state2_l_l : public state2 { 
public: 
state2_l_l() : state2 (C~state2_l_l''); 
void actBegContInd(conection0bject*); 

//overriding service primitive 
void actBegStrtInd(conection0bject*); 
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void capabDataInd(conection0bject*); 

void actDcadReq(conection0bject*); 

The defiitions of the service primitives depend on the protocol specifi- 
cation. The definition of one service primitive is shown as follows. 

//primitive S-CON-REQ 

void stateO_l::conReq(cormectionObject* cObj) { 

//cObj stands for the related connectionObject, that is 

//the delegator of this message 

cout << ''\nL5: Session Connect request '' << endl; 

//start the timing constraint associated to this event 

c0bj--~getCurEvent ()--*getTime0bject ()-*reset\ 

(c0bj-~getCurEvent (), i); 

//deal with something related to this service primitive 

c0bj-~setCurrentState(&state81); // change state 

c0bj-~getLS()~put(c0bj-~getIDU()); // put data into lowerSender 

cout << 'tin state0_l to stateS_l'' << endl; 

} 

Step 5: The event types bound to an associated event object can be 
specified in the overriding Rece ive r :  :eventNapping ( )  method. The 
event types are the session commands and responses, such as command 
session start (CSS), response session start positive (RSSP), command ses- 
sion end (CSE), response session end positive (RSEP), response docu- 
ment re-synchronize positive (RDRP), and so on. The following definition 
is the method lowerReceiver: :eventMapping (). The upprReceiver- 

: : eventMapping ( ) can be defined analogously by replacing the Indication 
with Request and Confirm with Response. 

eventMgr* lowerReceiver : :eventMappng(unsigned char type) { 

eventMgr *event ; 

switch(type) { 

case CSS : 
event = &conIndication; break; 

case RSSP : 

event = &conConfirm; break; 

case CSE: 
event = g~discIndication; break; 
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}; 

case RSEP: 

event = &discConfirm; break; 

case RDRP: 

event = ~actIntConfirm; break; 

default: 

event = NULL; 

}; 
return event; 

6. C O N C L U S I O N  

This paper  presents an object-oriented concurrent  model to facilitate 
the  development  of communica t ion  protocols. The model consists of ac- 
~iw~ objects,  which accomplish services provided by a protocol,  and passive 
objects,  which represent da ta  units and state t ransi t ion diagrams. Dou- 
ble dispatching and delegation are applied to increase the extensibility of 
the protocol  software. We have constructed a reusable l ibrary including a 
number  of general classes, the entities abst racted in our OOC model. Our  
exl:erience shows tha t  this model is well suited to developing communica-  
t ion protocols since 1) its OO modeling allows communica t ion  protocols to 
be modeled natura l ly  and intuitively; 2) its OO library provides good ex- 
tensibili ty and flexibility for resue; and 3) it facilitates implicit concurrency 
of communica t ion  protocols• Planned enhancements  to the l ibrary include 
developing several specific classes for the needs of each specific layer and 
expanding  the l ibrary to suppor t  verification and validation of communi-  
cat ion protocols.  
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