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Introduction

Aquifer tests, such as constant-head test (CHT) and constant-flux
test (CFT), are usually performed to estimate aquifer parameters
such as specific storage and hydraulic conductivity. For aquifers
with low transmissivity, CHT is more suitable to apply than
CFT. The wellbore storage at the pumping well has a large effect
on the early drawdown behavior at pumping and observation wells
in CFT (Renard 2005). If a CHT is established in a short period of
time, the effect of wellbore storage is negligible if the aquifer has
low transmissivity and the well radius is small (Chen and
Chang 2003).

Many studies have been devoted to the solutions for CHT.
Kirkham (1959) derived a steady-state solution for ground-water
distribution in a bounded confined aquifer pumped by a partially
penetrating well under CHT. They simplified the complexity of the
geometry by dividing the model into two different regions. Javan-
del and Zaghi (1975) considered the ground water in a confined
aquifer pumped by a fully penetrating well that is radially extended
at the bottom of the aquifer. The procedure used in their study is
similar to that in Kirkham (1959), and the steady-state ground-
water solution was obtained by separation of variables. Jones et al.
(1992) and Jones (1993) discussed the practicality of CHTs on
wells completed in low-conductivity glacial till deposits. Mishra
and Guyonnet (1992) indicated the operational benefit of CHTs
when the total available drawdown is limited by well construction
and aquifer characteristics. They developed a method for analyzing
observation well response under CHT. Issues involving CHT can be

found in the literature (e.g., Uraiet and Raghaven 1980; Chen and
Chang 2003; Yeh and Yang 2006; Singh 2007; Wang and
Yeh 2008).

Considering a CHT performed in a partially penetrating well,
Yang and Yeh (2005) developed a time-domain solution to describe
the drawdown in a confined aquifer with a finite-thickness skin.
The boundary conditions along the partially penetrating well are
represented by a constant-head (first kind) boundary for the screen
and a no-flow (second kind) boundary for the casing. They trans-
formed the first-kind boundary along the screen into a second-kind
boundary with an unknown flux that is time dependent; therefore,
the boundary along the partially penetrating well became uniform.
The solution was then solved by the Laplace and finite Fourier co-
sine transforms. Chang and Yeh (2009) used the methods of dual-
series equations and perturbation method to solve the mixed boun-
dary problem for the CHTat a partially penetrating well. Chang and
Yeh (2010) further developed an analytical solution for a partially
penetrating well with arbitrary location of the well screen under
constant-head tests in confined aquifers. However, the aforemen-
tioned studies are only applicable for confined aquifers.

For unconfined aquifers, Chen and Chang (2003) developed a
well hydraulic theory for CHT performed in a fully penetrating well
and established a parameter estimation method. Chang et al. (2010)
extended the work of Yang and Yeh (2005) to develop a mathemati-
cal model for an unconfined aquifer system while treating the skin
as a finite-thickness zone and derived the associated solution for
CHT at a partially penetrating well. For other environmental appli-
cations, light non-aqueous-phase liquids (LNAPLs) are usually re-
covered by wells held at constant drawdown (Abdul 1992;
Murdoch and Franco 1994), and constant-head pumping is used
to control off-site migration of contaminated ground water (Hiller
and Levy 1994). At LNAPL contaminant sites, the pollutant forms
a pool of LNAPL in the subsurface on top of the water table. In
installing a well in unconfined aquifers, therefore, the screen goes
from the top of the aquifer.

For CFT in unconfined aquifers, Neuman (1972) presented a
new analytical solution for characterizing flow to a fully penetrat-
ing well in an unconfined aquifer. He assumed that the drainage
above the water table occurs instantaneously. Accounting for the
effect of a finite-diameter pumping well, Moench (1997) developed
a solution in Laplace domain for the flow to a partially penetrating
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well in unconfined aquifers. Contrary to Neuman’s assumption,
Moench used the free-surface boundary in Boulton (1955), assum-
ing that the drainage of pores occurs as an exponential function of
time in response to a step change in hydraulic head in the aquifer.
Tartakovsky and Neuman (2007) presented an analytical solution
for drawdown in an unconfined aquifer caused by pumping at a
constant rate from a partially penetrating well. They generalized
the solution of Neuman (1972, 1974) by accounting for unsaturated
flow above the water table and derived the solution from a linear-
ized Richards’ equation in which unsaturated hydraulic conduc-
tivity and water content are expressed as exponential functions
of incremental capillary pressure head relative to its air entry value.

Motivated by the aforementioned research, this paper aims to
develop a mathematical model for constant-head pumping from
a partially penetrating well in an unconfined aquifer. Without as-
suming constant-head boundary along the screen as an unknown
flux boundary, the system is separated into two different regions,
and the solutions are directly obtained by separation of variables
and Laplace transform. This new solution can be used to determine
the aquifer parameters or to investigate the effects of vertical flow
caused by the partially penetrating well and free-surface boundary
on the drawdown distribution in unconfined aquifers.

Mathematical Model

Laplace-Domain Solutions

The conceptual model for constant-head pumping in an unconfined
aquifer system with a partially penetrating well is illustrated in
Fig. 1. The well screen starts from z ¼ zl with a finite well radius
rw, and the bottom of the screen is sealed. The domain is divided
into two different regions. Region 1 is defined by 0 ≤ r ≤ rw and
0 ≤ z ≤ zl whereas Region 2 is bounded within rw ≤ r < ∞ and
0 ≤ z ≤ η, where η = saturated thickness. The aquifer is assumed
to be homogeneous, with infinite extent in the radial direction, and
the seepage face in Region 2 is neglected. Under this assumption,
the governing equations in terms of drawdown in Regions 1 and 2
can, respectively, be written as

Kr

�∂2s1
∂r2 þ 1

r
∂s1
∂r

�
þ Kz

∂2s1
∂z2 ¼ Ss

∂s1
∂t ;

0 ≤ r ≤ rw; 0 ≤ z ≤ zl ð1Þ

and

Kr

�∂2s2
∂r2 þ 1

r
∂s2
∂r

�
þ Kz

∂2s2
∂z2 ¼ Ss

∂s2
∂t ;

rw ≤ r < ∞; 0 ≤ z ≤ η ð2Þ

The subscripts 1 and 2 denote Regions 1 and 2, respectively. The
drawdown at distance r from the center of the well and distance z
from the bottom of the aquifer at time t is denoted as sðr; z; tÞ,
which is equal to h0 � h, where h0 and h = initial and hydraulic
head, respectively. The aquifer has the horizontal hydraulic conduc-
tivity Kr, vertical hydraulic conductivity Kz, specific storage Ss, and
specific yield Sy. Assuming that the drawdown is small compared
with the saturated aquifer thickness η, the boundary at the free sur-
face (z ¼ η) can be approximated as z ¼ b, where b = initial satu-
rated thickness. Therefore, the governing equation for Region 2 can
be further expressed as

Kr

�∂2s2
∂r2 þ 1

r
∂s2
∂r

�
þ Kz

∂2s2
∂z2 ¼ Ss

∂s2
∂t ;

rw ≤ r < ∞; 0 ≤ z ≤ b ð3Þ

The initial condition for saturated thickness ηðr; tÞ is equal to
b; therefore, the drawdowns are assumed to be zero initially in
Regions 1 and 2, that is,

s1ðr; z; 0Þ ¼ s2ðr; z; 0Þ ¼ 0 ð4Þ
The no-flow boundary condition at the bottom of the aquifer for

both regions is

∂s1ðr; z; tÞ
∂z

����
z¼0

¼ ∂s2ðr; z; tÞ
∂z

����
z¼0

¼ 0 ð5Þ

The boundary at the top of the Region 1 can also be expressed as

∂s1ðr; z; tÞ
∂z

����
z¼zl

¼ 0; 0 < r < rw ð6Þ

The nonlinear boundary describing the free surface in Region 2
for the unconfined aquifer can be linearized to the form (Neuman
1972)

Kz
∂s2ðr; z; tÞ

∂z
����
z¼b

¼ �Sy
∂s2ðr; z; tÞ

∂t
����
z¼b

ð7Þ

In addition, the boundary at r ¼ 0 attributable to symmetry
along the center of the well is written as

∂s1ðr; z; tÞ
∂r

����
r¼0

¼ 0; 0 < z < z1 ð8Þ

When r approaches infinity, the boundary condition for Region 2
is

s2ð∞; z; tÞ ¼ 0 ð9Þ
The boundary condition specified along the well is

s2ðrw; z; tÞ ¼ sw; z1 < z < b; t > 0 ð10Þ
where sw = constant drawdown in the well at any time.

At the interface between Regions 1 and 2, the continuities of the
drawdown and flow rate must be satisfied:

s1ðrw; z; tÞ ¼ s2ðrw; z; tÞ; 0 < z < zl; t > 0 ð11Þ
Fig. 1. Schematic of constant-head test in unconfined aquifer with par-
tially penetrating well
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and

∂s1ðr; z; tÞ
∂r

����
r¼rw

¼ ∂s2ðr; z; tÞ
∂r

����
r¼rw

; 0 < z < zl; t > 0

ð12Þ

To express the solutions in dimensionless form, the following
dimensionless variables are defined: s�1 ¼ s1=sw; s�2 ¼ s2=sw;
σ ¼ Sy=Ssb; κ ¼ Kz=Kr; ρ ¼ r=rw; ρw ¼ rw=b; αw ¼ κρ2w;
α ¼ αwρ2; τ ¼ Krt=Ssr2w; ζ ¼ z=b; and ζ l ¼ zl=b, where s�1 and
s�2 = dimensionless drawdowns for Regions 1 and 2, respectively;
σ = ratio of specific yield Sy to the storativity Ssb; κ represents

the dimensionless conductivity ratio; ρ denotes the dimensionless
radial distance; ρw = dimensionless radius of the pumping well;
α = dimensionless conductivity ratio times the square of the ratio
of radial distance r from pumping well to aquifer thickness b; τ
refers to the dimensionless time during the test; and ζ and ζ l = di-
mensionless vertical distance and the dimensionless distance from
the bottom of aquifer to the bottom of the screen, respectively.

Taking the Laplace transform to the dimensionless governing
equations of Eqs. (17) and (18) subject to the dimensionless boun-
dary conditions of Eqs. (20)–(27), the Laplace-domain solutions for
the dimensionless drawdowns in Regions 1 and 2 are, respectively,
as follows:

Fig. 2. Dimensionless drawdown distributions at (a) τ ¼ 1, (b) τ ¼ 102, (c) τ ¼ 104, and (d) τ ¼ 106
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~s�1ðρ; ζ; pÞ ¼
X∞
m¼0

A0
1mðpÞ

I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p
ρÞ

I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ cosðΩ1mζÞ; t > 0

ð13Þ
and

~s�2ðρ; ζ; pÞ ¼
X∞
n¼0

A0
2nðpÞ

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p
ρÞ

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ cosðΩ2nζÞ; t > 0

ð14Þ
Applying the continuity conditions to Eqs. (13) and (14), the

coefficients A0
1m and A0

2n are respectively obtained as

A0
1mðpÞ ¼ �iom

�
Ω1m

cosðζ lΩ1mÞ sinðζ lΩ1mÞ þ ζ lΩ1m

�

·
X∞
n¼0

A0
2nðpÞk0nΛmn ð15Þ

and

A0
2nðpÞ ¼

�
2Ω2n

sinð2Ω2nÞ þ 2Ω2n

�
·
X∞
m¼0

A0
1mðpÞΛmn

þ 4
p

�
sinðΩ2nÞ � sinðΩ2nζ lÞ
sinð2Ω2nÞ þ 2Ω2n

�
ð16Þ

where p = Laplace variable; and A0
1m, A

0
2n, Ω1m, Ω2n,Λmn, I0ð·Þ,

I1ð·Þ, K0ð·Þ, K1ð·Þ, and k0 are defined in the notation list. The de-
tailed derivations of Eqs. (13) and (14) are given in the appendix.

Fully Penetrating Wells in Unconfined and Confined
Aquifers

By setting ζ l ¼ 0 in Eqs. (15) and (16), the drawdown solution of
Eq. (13) in Region 1 is equal to zero, and the Laplace-domain sol-
ution in Eq. (14) for dimensionless drawdown in Region 2 with
fully penetrating wells in unconfined aquifers is exactly the same
as the solution given in Chen and Chang [2003, Eq. (7)] when the
skin factor Sk equals zero after some algebraic manipulations.
Furthermore, by setting ζ l ¼ 0 and σ ¼ 0, the Laplace-domain sol-
ution of Eq. (14) in Region 2 can be reduced to the solution in
Hantush (1964) for drawdown with a fully penetrating well in con-
fined aquifers.

Results and Discussion

The numerical inversion method given by Stehfest (1970) is
adopted for calculating the dimensionless drawdown solutions in
Eqs. (13) and (14) for Regions 1 and 2, respectively, in real-time
domain. Because there may be nonconvergence issues when evalu-
ating the infinite summations in Eqs. (13) and (14), the Shanks
method is applied to accelerate convergence for these infinite sum-
mations. This method has been successfully applied to compute the
solutions arising in the ground-water area (e.g., Yang and Yeh
2002; Peng et al. 2002).

Fig. 2(a) demonstrates the dimensionless drawdown distribu-
tions for the dimensionless distance ρ ¼ 1, 1.1, and 1.5 at the di-
mensionless time τ ¼ 1, Fig. 2(b) for ρ ¼ 1, 2, and 5 at τ ¼ 102,
Fig. 2(c) for ρ ¼ 1, 2, and 7 at τ ¼ 104, and Fig. 2(d) for ρ ¼ 1, 5,
and 7 at τ ¼ 106. The aquifer parameters used in these figures are
as follows: κ ¼ 1, σ ¼ 10�3, and ζ l ¼ 0:5. These figures show that
the dimensionless drawdown at ρ ¼ 1 matches the boundary con-
dition of the wellbore at different time periods. The dimensionless
drawdown decreases with increasing ρ at τ ¼ 1, 102, 104, and 106.

In addition, it is apparent that vertical flows occur at the water table
because of the free-surface boundary, as shown in Figs. 2(b)–2(d).

Fig. 3 is plotted to examine the effect σ (i.e., Sy=Ssb) of Region 2
on the dimensionless drawdown during CHT. This figure shows the
response of dimensionless drawdown in a 100-m-thick aquifer at
ρ ¼ 50, κ ¼ 1, ζ ¼ 0:75, and ζ l ¼ 0:5 for σ ranging from 0 to
3 × 103. The dimensionless drawdown decreases with increasing
σ. The typical three-stage drawdown patterns can be observed.
The water releases from the elastic behavior of the aquifer forma-
tion at an early time, i.e., the first stage. During the second stage at
moderate times, the gravity drainage almost stabilizes the water ta-
ble. Finally, the effect of vertical flow vanishes at late times, and the
flow behaves like the first stage again. Fig. 3 shows that the larger σ
is, the longer the delayed yield stage will be, perhaps because a
larger σ supply more water from the drainage. If σ ¼ 0, the top
boundary represented by Eq. (7) becomes the no-flow condition,
and the aquifer can therefore be considered as confined.

Fig. 4 illustrates that the distributions of the dimensionless
drawdown at the well screen extends from ζ ¼ ζ l to ζ ¼ 1 in
Region 2 when τ ¼ 106. This figure shows that the dimensionless
drawdown increases with the length of well screen. In addition,
large slopes of the drawdown distribution curves occur near the
free-surface boundary and the edge of the screen. Therefore, ver-
tical ground-water flows are obviously large at these two areas.

The response of dimensionless drawdown versus dimensionless
time at different observed locations is plotted in Fig. 5 for ρ ¼ 10
and 100 with κ ¼ 1 and ζ l ¼ 0:25. The σ is zero for a confined
aquifer, and there is no vertical flow [Fig. 5(a)]. On the other hand,
the vertical flow is apparent at moderate times for different radial
distances [Fig. 5(b)] when σ ¼ 103. Figs. 6(a) and 6(b) illustrates
the spatial flow pattern for σ ¼ 0 and 103 at τ ¼ 104 with the same
parameter values as those in Fig. 5. Apparently, the vertical flow
occurs only near the bottom edge of the well screen when the aqui-
fer is confined. However, for unconfined aquifers, the flow at free
surface is almost vertical, and obvious vertical flows occur near
both the top and bottom edges of the well. It demonstrates that
the vertical flow in the unconfined system is induced not only
by the effect of partial penetration but also the effect of free-surface
boundary.

Fig. 3. Effect of σ on dimensionless drawdown during CHT
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Fig. 7 demonstrates the effect of the conductivity ratio
κð¼ Kz=KrÞ on the dimensionless drawdown during CHT. The ver-
tical axis represents the dimensionless drawdown, and the horizon-
tal axis represents the dimensionless time. The κ ranges from 10�2

to 1 with Kr ¼ 10�4 m=min, σ ¼ 103, and ζ l ¼ 0:5. The dimen-
sionless drawdown decreases with increasing κ, indicating that the
vertical flow from delayed gravity drainage becomes large for
greater κ. Fig. 8 illustrates the effect of the well radius on draw-
down distribution in a 10-m-thick aquifer. The considered ρw well

radii are 0.1, 0.01, and 0.001 m with σ ¼ 103, ζ ¼ 0:75, ζ l ¼ 0:5,
and κ ¼ 1. Drawdown is calculated at the dimensionless distances
of 3.16, 10, or 31.6 from the pumping well for α ¼ 10�1, 1, and
101, respectively. The drawdown decreases with increasing dis-
tance from the pumping well for different ρw, as demonstrated
in Fig. 2. The drawdown increases with ρw for different values
of α, indicating that the well radius has significant effect on the
drawdown distribution. The effect of α on drawdown in the aquifer
at ζ ¼ 0 when the well is fully (ζ l ¼ 0) and partially penetrating
(ζ l ¼ 0:8) is plotted in Fig. 9 for σ ¼ 103 and κ ¼ 1. The draw-
down difference between the cases of full penetration and partial
penetration decreases with increasing α. It is reasonable that
α1=2 is directly proportional to the radial distance from the pumping
well when the aquifer is isotropic, and the partial penetration effect
vanishes when the radial distance becomes large. Because
r ¼ α1=2b=

ffiffiffi
κ

p
, this proves that the radial distance influenced by

the partial penetration in an unconfined aquifer under CHT is pro-
portional to the aquifer thickness, as do the results from Hantush
(1964) for a confined aquifer under CFT.

The error of estimated dimensionless drawdown along the
screen calculated from Eqs. (13) and (14) for different number
of terms of the infinite series and Shanks method is demonstrated
in Fig. 10. As illustrated in this figure, the error decreases with in-
creasing number of terms used in calculating the infinite series in
the solution, and the largest error occurs at the edges of the screen.
The largest errors are �0:179 when n ¼ m ¼ 100; 9:72 × 10�2

when n ¼ m ¼ 200; �4:22 × 10�2 when n ¼ m ¼ 500; 2:02 ×
10�2 when n ¼ m ¼ 1;000; and 5:64 × 10�4 when applying
Shanks method. On the other hand, the smallest errors are �9:61 ×
10�3 when n ¼ m ¼ 100; 4:61 × 10�3 when n ¼ m ¼ 200;
�1:91 × 10�4 when n ¼ m ¼ 500; 9:35 × 10�4 when n ¼ m ¼
1;000; and �6:18 × 10�10 when applying Shanks method. These
results indicate that the Shanks method can be applied to effectively
accelerate convergence for the infinite summations in dimension-
less drawdown in Eqs. (13) and (14).

Fig. 5. Relationship for dimensionless drawdown versus dimensionless time with ζ ¼ 0:5, 0.75, and 1.0 at ρ ¼ 10 or 100 for (a) σ ¼ 0 and
(b) σ ¼ 103

Fig. 4. Dimensionless drawdown distributions at well screen extended
from ζ ¼ ζ l to ζ ¼ 1 in Region 2
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Concluding Remarks

A semianalytical solution of the drawdown distribution is devel-
oped for CHT performed in an unconfined aquifer with a partially
penetrating well. The Laplace transforms and the method of sep-
aration of variables are used to derive the transient drawdown in the
Laplace domain for CHT. The Stehfest method is used to invert the

solutions in time domain, and the Shanks method is applied to ac-
celerate convergence in evaluating the infinite summations in the
solution.

Large slopes of the drawdown distribution curves can be ob-
served near the free-surface boundary and the edge of the screen,
which indicates that the vertical ground-water flows occur at these
two areas. The dimensionless drawdown decreases with increasing
σ but increases with the length of well screen. For different ρw, the
drawdown decreases with the increase of radial distance from
the pumping well, and it may produce a large error in drawdown
if the radius of the pumping well is assumed infinitesimal.

Fig. 6. Spatial flow pattern in unconfined aquifer with partially penetrating well for κ ¼ 1, ζ l ¼ 0:25 at τ ¼ 104 when (a) σ ¼ 0 and (b) σ ¼ 103

Fig. 7. Effect of conductivity ratio (κ) of Region 2 on dimensionless
drawdown during CHT

Fig. 8. Drawdown distribution for well with three different values of
dimensionless well radii (ρw ¼ 0:1, 0.01, and 0.001) with σ ¼ 103,
ζ ¼ 0:75, ζ l ¼ 0:5, and κ ¼ 1
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The present solution can serve as an invaluable tool to explore
the effects of hydraulic parameters on flow behavior in unconfined
aquifers. In addition, it can reduce the solution for a fully penetrat-
ing well in confined or unconfined aquifers under CHT.

Appendix

The dimensionless governing equations of Eqs. (1) and (3) can be
expressed as

∂2s�1
∂ρ2 þ 1

ρ
∂s�1
∂ρ þ αw

∂2s�1
∂ζ2 ¼ ∂s�1

∂τ ; 0 ≤ ρ ≤ 1; 0 ≤ ζ ≤ ζ l

ð17Þ
and

∂2s�2
∂ρ2 þ 1

ρ
∂s�2
∂ρ þ αw

∂2s�2
∂ζ2 ¼ ∂s�2

∂τ ; 1 ≤ ρ < ∞; 0 ≤ ζ ≤ 1

ð18Þ

The dimensionless initial conditions for Regions 1 and 2 are

s�1ðρ; ζ; 0Þ ¼ s�2ðρ; ζ; 0Þ ¼ 0 ð19Þ

and the boundary conditions at the bottom and top of the aquifer for
Regions 1 and 2 in terms of dimensionless form can be written as

∂s�1ðρ; ζ; τÞ
∂ζ

����
ζ¼0

¼ ∂s�2ðρ; ζ; τÞ
∂ζ

����
ζ¼0

¼ 0 ð20Þ

∂s�1ðρ; ζ; τÞ
∂ζ

����
ζ¼ζ l

¼ 0; 0 < ρ < 1 ð21Þ

and

∂s�2ðρ; ζ; τÞ
∂ζ

����
ζ¼1

¼ � σ
αw

∂s�2ðρ; ζ; τÞ
∂τ

����
ζ¼1

; 1 ≤ ρ < ∞ ð22Þ

The dimensionless boundary conditions at ρ ¼ 0 and infinity are
respectively written as

∂s�1ð0; ζ; τÞ
∂ρ ¼ 0; 0 < ζ < ζ l ð23Þ

s�2ð∞; ζ; τÞ ¼ 0 ð24Þ

The dimensionless boundary condition along the screen is
expressed as

s�2ð1; ζ; τÞ ¼ 1; ζ l < ζ < 1; τ > 0 ð25Þ

In dimensionless form, continuity conditions become

s�1ð1; ζ; τÞ ¼ s�2ð1; ζ; τÞ; 0 < ζ < ζ l; τ > 0 ð26Þ

and

∂s�1ðρ; ζ; τÞ
∂ρ

����
ρ¼1

¼ ∂s�2ðρ; ζ; τÞ
∂ρ

����
ρ¼1

; 0 < ζ < ζ l; τ > 0

ð27Þ

The solution for the dimensionless drawdown solutions can be
obtained by taking Laplace transforms of governing equations
Eqs. (17) and (18) using the initial condition (19), and the results
are

Fig. 9. Effect of α on drawdown in 100-m-thick aquifer when σ ¼ 103, κ ¼ 1 at ζ ¼ 0 for α ¼ 100, 10�1, and 10�2

Fig. 10. Error of estimated dimensionless drawdown along screen cal-
culated from Eqs. (13) and (14) for different number of terms of infinite
series and Shanks method

1060 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / SEPTEMBER 2011

J. Hydraul. Eng. 2011.137:1054-1063.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 o

n 
04

/2
4/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



∂2~s�1
∂ρ2 þ 1

ρ
∂~s�1
∂ρ þ αw

∂2~s�1
∂ζ2 ¼ p~s�1; 0 ≤ ρ ≤ 1; 0 ≤ ζ ≤ ζ l

ð28Þ
and

∂2~s�2
∂ρ2 þ 1

ρ
∂~s�2
∂ρ þ αw

∂2~s�2
∂ζ2 ¼ p~s�2; 1 ≤ ρ < ∞; 0 ≤ ζ ≤ 1

ð29Þ
The transformed boundary conditions at the bottom and top of

the aquifer for Regions 1 and 2 can be written as

∂~s�1ðρ; ζ; pÞ
∂ζ

����
ζ¼0

¼ ∂~s�2ðρ; ζ; pÞ
∂ζ

����
ζ¼0

¼ 0 ð30Þ

∂~s�1ðρ; ζ; pÞ
∂ζ

����
ζ¼ζ l

¼ 0; 0 < ρ < 1 ð31Þ

and

∂~s�2ðρ; ζ; pÞ
∂ζ

����
ζ¼1

¼ � σ
αw

· p · ~s�2ðρ; ζ ¼ 1; pÞ ð32Þ

Likewise, the transformed boundary conditions at ρ ¼ 0 and ∞
are

∂~s�1ð0; ζ; pÞ
∂ρ ¼ 0; 0 < ζ < ζ l ð33Þ

and

~s�2ð∞; ζ; pÞ ¼ 0 ð34Þ
After taking the Laplace transform, the boundary condition

along the well screen is

~s�2ð1; ζ; pÞ ¼
1
p
; ζ l < ζ < 1; τ > 0 ð35Þ

and continuity conditions become

~s�2ð1; ζ; pÞ ¼ ~s�1ð1; ζ; pÞ; 0 < ζ < ζ l ð36Þ
and

∂~s�1ðρ; ζ; pÞ
∂ρ

����
ρ¼1

¼ ∂~s�2ðρ; ζ; pÞ
∂ρ

����
ρ¼1

; 0 < ζ < ζ l ð37Þ

Assume that ~s�1 and ~s
�
2 are the product of two distinct functions,

i.e., ~s�1ðρ; ζ; pÞ ¼ F1ðρ; pÞG1ðζ; pÞ and ~s�2ðρ; ζ; pÞ ¼ F2ðρ; pÞ
G2ðζ; pÞ, respectively. Eqs. (12) and (13) can be respectively
transformed as

G1
∂2F1

∂ρ2 þ G1
1
ρ
∂F1

∂ρ þ αwF1
∂2G1

∂ζ2 ¼ pF1G1 ð38Þ

and

G2
∂2F2

∂ρ2 þ G2
1
ρ
∂F2

∂ρ þ αwF2
∂2G2

∂ζ2 ¼ pF2G2 ð39Þ

Dividing Eqs. (38) and (39) by F1G1 and F2G2, respectively,
Eqs. (38) and (39) can then be separated into the following two
systems of ordinary differential equations after some arrangements:

∂2G1

∂ζ2 þ ω1m

αw
G1 ¼ 0 ð40Þ

∂2F1

∂ρ2 þ 1
ρ
∂F1

∂ρ � ½pþ ω1m�F1 ¼ 0 ð41Þ

and ∂2G2

∂ζ2 þ ω2n

αw
G2 ¼ 0 ð42Þ

∂2F2

∂ρ2 þ 1
ρ
∂F2

∂ρ � ½pþ ω2n�F2 ¼ 0 ð43Þ

where ω1m and ω1n = separation constants.
The solutions of Eqs. (40) and (42) subject to the boundary in

Eq. (30) are, respectively, as follows:

G1ðζ; pÞ ¼ a1mðpÞ cosðΩ1mζÞ ð44Þ
and

G2ðζ; pÞ ¼ a2nðpÞ cosðΩ2nζÞ ð45Þ
where Ω1m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1m=αw

p
; Ω2n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2n=αw

p
; and a1mðpÞ and a2nðpÞ

= constants with respect to ζ. In addition, substituting Eq. (44) into
Eq. (31) yields the following equation:

sinðΩ1mζ lÞ ¼ 0 ð46Þ
The eigenvalues Ω1m in Eq. (44) can then determined by solving

Eq. (46) and results in

Ω1m ¼ mπ
ζ l

; m ¼ 0; 1; 2;… ð47Þ

Similarly, substituting Eq. (45) into Eq. (32) gives the following
equation:

Ω2n sinðΩ2nÞ ¼
σ
αw

p cosðΩ2nÞ; n ¼ 0; 1; 2;… ð48Þ

Eq. (48) can be solved to obtain the eigenvalues Ω2n in Eq. (45).
The solutions of Eqs. (41) and (43) are, respectively, as follows:

F1ðρ; pÞ ¼ c1mðpÞI0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p
ρÞ ð49Þ

and

F2ðρ; pÞ ¼ d2nðpÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p
ρÞ ð50Þ

where c1mðpÞ and d2nðpÞ = constants. Note that d1mðpÞ and c2nðpÞ
equal zero when using the boundary conditions of Eqs. (33) and
(34), respectively.

The product of Eqs. (44) and (49) gives the general solution of
Eq. (36) as

~s�1mðρ; ζ; pÞ ¼ A1mðpÞI0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p
ρÞ cosðΩ1mζÞ

m ¼ 0; 1; 2;…
ð51Þ

where A1mðpÞ = product of a1mðpÞ and c1mðpÞ. On the other hand,
the product of Eqs. (35) and (50) forms the general solution of
Eq. (39) as

~s�2nðρ; ζ; pÞ ¼ A2nðpÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p
ρÞ cosðΩ2nζÞ n ¼ 0; 1; 2;…

ð52Þ
where A2nðpÞ = product of a2nðpÞ and d2nðpÞ. Accordingly, the lin-
ear combination of all solutions of m yields the complete solution
for ~s�1ðρ; ζ; pÞ

~s�1ðρ; ζ; pÞ ¼
X∞
m¼0

A1mðpÞI0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p
ρÞ cosðΩ1mζÞ ð53Þ
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Similarly, the complete solution for ~s�2ðρ; ζ; pÞ can be obtained
as

~s�2ðρ; ζ; pÞ ¼
X∞
n¼0

A2nðpÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p
ρÞ cosðΩ2nζÞ ð54Þ

The coefficients A1mðpÞ and A2nðpÞ are unknowns at this stage
and can be solved from the following equation obtained by substi-
tuting Eqs. (53) and (54) into Eqs. (35) and (36), respectively, as

X∞
n¼0

A2nðpÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ cosðΩ2nζÞ ¼
1
p
; ζ l < ζ < 1 ð55Þ

and
X∞
m¼0

A1mðpÞI0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ cosðΩ1mζÞ

¼
X∞
n¼0

A2nðpÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ cosðΩ2nζÞ; 0 < ζ < ζ l ð56Þ

Eqs. (55) and (56) are organized and expressed as

X∞
n¼0

A2nðpÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ cosðΩ2nζÞ

¼
X∞
m¼0

A1mðpÞI0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ cosðΩ1mζÞ; 0 < ζ < ζ l

¼ 1
p
; ζ l < ζ < 1 ð57Þ

To obtain concise solutions, A0
2nðpÞ ¼ A2nðpÞK0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ and
A0
1mðpÞ ¼ A1mðpÞI0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ are further defined, and Eq. (57)
can be rewritten as

X∞
n¼0

A0
2nðpÞ cosðΩ2nζÞ ¼ f ðζÞ; 0 < ζ < 1 ð58Þ

where

f ðζÞ ¼
X∞
m¼0

A0
1mðpÞ cosðΩ1mζÞ; 0 < ζ < ζ l

¼ 1
p
; ζ1 < ζ < 1 ð59Þ

The term on the left-hand side (LHS) of Eq. (58) is a half-range
Fourier cosine series of the function on the right-hand side (RHS)
for the region 0 < ζ < 1. The coefficient A0

2nðpÞ can then be ob-
tained from the properties of the Fourier series as

A0
2nðpÞ ¼

R
1
0 cosðΩ2nζÞf ðζÞdζR

1
0 cos2ðΩ2nζÞdζ

ð60Þ

Carrying out the integration in Eq. (60) and simplifying the re-
sult yields the coefficient A0

2nðpÞ as expressed in Eq. (16).
Similarly, substituting Eqs. (53) and (54) into Eq. (37), one can

obtain

X∞
m¼0

A0
1mðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p I1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ
I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ cosðΩ1mζÞ

¼ �
X∞
n¼0

A0
2nðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p K1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ
K0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ cosðΩ2nζÞ;

0 < ζ < ζ l

ð61Þ

From Eq. (61), the coefficient A0
1mðpÞ can be determined

as Eq. (15).
Accordingly, based on the coefficients A0

1mðpÞ and A0
2nðpÞ, the

complete solution for ~s�1 and ~s�2 can be obtained as Eqs. (13) and
(14), respectively.

Notation

The following symbols are used in this paper:
A0
1m = A1mðpÞI0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ;
A0
2n = A2nðpÞK0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ;
s�1 = s1=sw;
s�2 = s2=sw;

I0ð·Þ = modified Bessel function of first kind of order 0;
I1ð·Þ = modified Bessel function of first kind of order 1;
i0m = I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ=½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p
· I1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω1m

p Þ�
K0ð·Þ = modified Bessel function of second kind of order 0;
K1ð·Þ = modified Bessel function of second kind of order 1;
k0n = ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pþ ω2n
p

· K1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ�=K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ω2n

p Þ;
β = b=rw;
ζ = z=b;
ζ l = zl=b;
κ = Kz=Kr;

Λmn = fsin½ðΩ1m þ Ω2nÞζ l�=ðΩ1m þ Ω2nÞgþ
fsin½ðΩ1m � Ω2nÞζ l�=ðΩ1m � Ω2nÞg;

ρ = r=rw;
τ = Krt=Ssr2w;

Ω1m = β
ffiffiffiffiffiffiffiffiffiffiffiffi
ω1m=k

p
; and

Ω2n = β
ffiffiffiffiffiffiffiffiffiffiffiffi
ω2n=k

p
.
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