
IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5, MAY 1995 683

Design of Space-Optimal Regular Arrays
for Algorithms with Linear Schedules

Jong-Chuang Tsay and Pen-Yuang Chang

Abstract-The problem of designing space-optimal 2D regular
arrays for N x N x N cubical mesh algorithms with linear schedule
ai + bj + ck, 1 I a I b 5 c, and N = nc, is studied. Three novel nonlin-
ear processor allocation methods, each of which works by combin-
ing a partitioning technique (gcd-partition) with different nonlinear
processor allocation procedures (traces), are proposed to handle
different cases. In cases where a + b 5 c, which are dealt with by the
first processor allocation method, space-optimal designs can always
be obtained in which the number of processing elements is equal to
$. For other cases where a + b > c and either a = b and b = c, two
other optimal processor allocation methods are proposed. Besides,
the closed form expressions for the optimal number of processing
elements are derived for these cases.

Index Items-Algorithm mapping, data dependency, linear
schedule, matrix multiplication, optimizing compiler, space-
optimal, systolic array.

I. INTRODUCTION

EGULAR arrays, or systolic arrays [l], 123, have been R proposed for over a decade. They are special purpose
parallel devices composed of several processing elements
(PES) whose interconnections have the properties of regularity
and locality. Because of these properties, regular architectures
are very suitable for VLSI implementation.

The procedure for synthesizing regular arrays from systems of
recurrence equations, or nested loops, has two major steps. The
first one is regularization [3], [4], [5], or uniformization [6],
which includes variable full indexing [7] (defining all variables
on the same index dimension only once); broadcast removing [8]
(replacing broadcast vectors with pipeline vectors); reindexing
[9] (re-routing pipeline vectors so that they are oriented in the
same direction); and so on [lo], [l l] , [12]. After regularization,
the original system of recurrencc equations is transformed into
an equivalent system of uniform recurrence equations (SURE)
[131 or a regular iterative algorithm (RIA) [141. A dependence
graph (DG) is a graphical representation of such an algorithm, in
which each node corresponds to an index vector and each link
represents a dependence vector between two nodes. A depend-
ence matrix D is the collection of all dependence vectors in an
algorithm; each column in D is a dependence vector. The second

Manuscript received Feb. 17, 1993; revised Apr. 1, 1994.
The authors are with the Institute of Computer Science and Information

Engineering, College of Engineering, National Chiao Tung University,
Hsinchu, Taiwan 30050, Republic of China; e-mail jctsayOcsunix.csie.nctu.
edu.tw.

IEEECS Log Number C95022.

step is to find the spacetime mapping transformation matrix

T = [yTT] [131, [141, [151, [161 with a valid linear schedule vec-

tor nT and a compatible processor allocation matrix nT for an
SURE. A schedule is valid if the precedence constraints imposed
by an SURE are satisfied and a processor allocation is compati-
ble with its schedule if two different computations are not exe-
cuted on the same PE at the same time.

In the past, most researchers focused their efforts on regulari-
zation, and the first half of spacetime mapping, the time mapping
[13], [14], [15], [17], [18], [19]. In particular, the problem of
how to find an optimal linear schedule for an SURE has attracted
special interest [20]. Only recently has its counterpart problem-
that of how to design space-optimal regular arrays in which the
number of PES is minimal for an SURE executed by a given
linear schedule-been studied in the literature [21], [22], [23],
[24], [25], [26], [27], [28]. Studies of this latter problem fall into
three categories. The first class includes 1211, [22], [23], [241,
[25], in which the following method is adopted: first, from the
given DG and linear schedule, a set ’? of nodes is found such
that all nodes in the set are scheduled to be executed at the same
time and the set size lvl is maximal. We call such a set a maxi-
mum concurrent ser with respect to the given linear schedule.
Second, spacetime mapping is applied to assign the nodes of the
DG to PES. Any PE which has not been assigned to execute a
node in ?/is piled to a PE which executes a node in ?land has
disjoined activation time intervals. This method can indeed be
used to design space-optimal regular arrays. However, it has two
drawbacks. The first is that finding a maximum concurrent set
with respect to a linear schedule n(l) = ai + bj + ck is not an
easy task, i.e., the nodes must be represented in a closed form
expression by the parameters a, b, c, and N , where N is the
problem size parameter. Thus this method designs space-optimal
regular arrays case by case. Second, piling PES results in spiral
links and increases irregularity for the resulting arrays.

The second class of methods for designing space-optimal
arrays [25], [26], [27] deals with this problem by grouping
llTq PES into a single one, where qT is the projection vector
with respect to the space mapping matrix ST(STq = 0). Thus the
resulting array has a 100% pipelining rate. The advantages of
this method are that it is not necessary to find a maximum con-
current set, the resulting array does not have spiral links, and
the method is applicable to all SUREs. However, this method
cannot guarantee that the design is space-optimal, because a
100% pipelining rate in the array does not imply space-
optimality. The regular array for matrix multiplication is a

0018-9340/95$04.00 0 1995 IEEE

684 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5 . MAY 1995

good example; it has FITq = [1 1 11 [0 0 1 I T = 1 but is not
space-optimal.

In the third class [28], an upper bound on the length of the
optimal projection vector is developed and an enumerative
search procedure for finding the optimal projection vector is
provided. However, this approach does not provide space-
optimal designs in a general way, because only linear proces-
sor allocation is considered.

For the problem of designing space-optimal regular arrays,
two interesting questions we want to investigate are: first, how
many PES are needed to design a regular array for a given
N x N x N DG with a linear schedule n(l) = ai + bj + ck. For
simplicity, the problem domain in this paper is restricted to a
cubical mesh. Second, how to design a regular array which is
not only space-optimal but also is locally connected, provides
balanced loads, and allows for simple control. In the follow-
ing, several nonlinear processor allocation procedures will be
proposed to design space-optimal regular arrays for different
cases. The linear schedule n(l) = ai + bj + ck with 1 I a I b
I c is considered. It is easy to see that an algorithm with an
arbitrary linear schedule, say FI’(Z) = a’i + b’j + c’k, where
a‘, b’, and c‘ are all non-zero integers, can be transformed to an
equivalent one with n(Z) = ai + bj + ck and 1 I a I b 5 c by
applying permutation transformations [29]. Therefore, without
loss of generality, we assume that 1 I a 5 b 5 c. In addition,
for simplicity, we also assume that N = nc in the following
descriptions. Furthermore, an algorithm with an arbitrary uni-
form affine schedule [30] n,(l) = ai + bj + ck + u can also be
transformed to an equivalent one with a linear schedule by
timespace mapping or dimension extension [3 I].

In Section 11, some important definitions are given. In Section
111, the gcd-partition method and the first processor allocation
procedure will be introduced to design space-optimal regular
arrays for the case of a + b 5 c. It is proven that in such a case
$ is the minimum number of PES required or the size of a
maximum concurrent set for the given linear schedule. A space-
optimal regular array for transitive closure and algebraic path
problem will be given to illustrate our method. In Section VI, the
other two optimal processor allocation procedures are developed
to handle the cases of a = b and b = c, respectively, when a + b >
c, and the closed form expressions for the size of a maximum
concurrent set will also be given for both cases. A new space-
optimal regular array for matrix multiplication will also be given.
Finally, our concluding remarks are presented in Section V.

11. PRELIMINARIES

The variables used in this paper are all integral numbers. Each
index vector in the computation domain Y is denoted by I =
[i j kIT, where 1 I i, j , k < N. The linear schedule n(Z) = ai + bj
+ ck with 1 I a I b I c is a normalized one, i.e., gcd(a, b, c) = 1.

DEFINITION 2.1. [locally connected]. A regular array is said to
be locally connected iff any communication link between
two PES has a displacement vector independent of the size
of the problem.

DEFINITION 2.2. [space-optimal]. A regular array is said to be
space-optimal with respect to a given linear schedule for an

SURE lflthe number of PES used (denoted by PEused) is
equal to the size of a maximum concurrent set, or the mini-
mum number of PES required (PEmin), for the given linear
schedule.
Clearly, for a given linear schedule, if PEUsd < PE,,, then

two different computations will be executed on the same PE at
the same time.
DEFINITION 2.3. [time-tag]. A time-tag v = ai + bj + ck (or,

in indexed notation, u f J) is a positive integral number
assigned to each node or index vector [i j kIT in the com-
putation domain ‘I’ of an SURE to represent the execution
time of the index vector with respect to the linear schedule
vector [a b elT.

DEFINITION 2.4. [modulo set]. Given a positive integer r, 0 I r <
c, a modulo set Nr) is a set of nodes of ’I’ such that each node
of N r) has an assigned time-tag v satisfying mod(v, c) = r,
where mod(a, b) denotes the remainder of a divided by b.
A multiset [32] M is a collection of not necessarily distinct

elements. It may be thought of as a set in which each element,
say v, has an associated positive integer, its multiplicity Cv(M),
to represent the number of vs in M. For example, M =
{ 1, 1, 2, 2, 2, 2, 3) is a multiset, where C1(@ = 2,
Cz(M) = 4, and C3(M) = 1. We use the multiset W to denote the
collection of the time-tags of all the index vectors in Y for an
SURE.
DEFINITION 2.5. [partition]. A possible partition P of W is

written as {VI, V2, ... V,,,), where each VI in P is a set of
time-tags and the partition size P I = m.

DEFINITION 2.6. [optimal partition]. An optimal partition is a
partition such that its partition size is minimal with respect
to all possible partitions of W.

EXAMPLE 2.1. This example demonstrates the concept of an
optimal partition: Let W = (1, 2, 2, 3, 3, 3, 4, 4, 5) . A pos-
sible partition PI = (V I , V2, Vj, V4) = { (I , 2, 3 } , (2, 3 } ,
(4 } , (3 , 4, 5)) . However, PI is not optimal, because it is
easy to find an optimal partition P, = (V I , Vz, V j } = ({ I , 2,
3 } , {2, 3, 4} , (3, 4, 5)) such that IP,l < lPIl. Of course,
there m y exist several optimal partitions, but at least one
optimal partition always exists.
The following lemma states a useful property of optimal

partitions.
LEMMA 2.1. A partition P is optimal iff there exists a time-tag

PROOF. For any partition, we have I P I 2 max,, wC,(W).
v E VI for all VI E P.

[If part] If there exists a time-tag v E VI for all VI E P, we have
lp(= c,,(w) = max,,,&,,(W). Then lp(is minimal with respect to
all possible partitions of W, i.e., the partition P is optimal.
[Only if part] It is obvious that if lp(is minimal with respect to
all possible partitions of W, then lp(= max,,&(W) 3 Cv(W);
this implies that there exists a time-tag v E VI for all VI E P. u
The following definitions are important because they are the

basis for finding optimal partitions systematically.
DEFINITION 2.7 [segment, segment domain]. A segment is de-

fined as an f x g matrix

TSAY A N D CHANG: DESIGN OF SPACE-OPTIMAL REGULAR ARRAYS FOR ALGORITHMS WITH LINEAR SCHEDULES 685

where

and y = k (see Fig. 1). The segment domain 0 is constructed
by the set of segments.

k

f-.i

i

Fig. 1. The concept of a segment.

We use the notation u: E G,Y,p to represent that ut is an

element of the segment G&. The value of a pair of comma-
separated integers @, q) gives the coordinates of the location
of the time-tag on the segment. The first number is the vertical
coordinate, and the second number is the horizontal coordi-
nate, measured from the top left corner of the segment. We say
that two time-tags of different segments have the same (p, q)
location if they are located at the same @, q) coordinates in
their respective coordinate systems.

DEFINITION 2.8 [module, cluster]. A module G,,p is a set of

segments and a cluster G is a set of modules.

A time-tag uf, is said to be in module Gsp (denoted by uf,,

E G,,p) if E G& and G& E G,,p. Similarly, a time-tag

uf is said to be in cluster G (denoted by ut E G) if ut j E G,,p

and G,,p E G. Various grouping methods can be used to con-
struct modules. For example, by simply collecting all segments
G& in the k-direction, the module Gsp = { ..., G& } is
constructed. A more complex grouping method is described by
the following concept:

DEFINITION 2.9 [trace]. A trace (GL:.pl, 0) is a module consisting

of the set of segments on a directed path that begins from

where all segments of a trace belong to the segment domain 0.
DEFINKION 2.10 [size]. The size of a segment, module, and cluster,

denoted by lG&I, I, and lGl represent the number of
time-tags, segments, and modules in them, respectively.

DEFINITION 2.11 [modulo-s segment]. A segment G,Y,p is said

modulo-s iff for every time-tag v E G,Y,p there does not exist

another time-tag V I E G& such that mod(v, s) = mod(v1, s),
where s > 0.

DEFINITION 2.12 [isomorphic segments]. Two f x g segments
G&, G&, are said to be isomorphic iy for any two time-

tags v E G,Y,p, v1 E GL;,pl, if they have the same (p, q) loca-

tion, then (v, l G,Y,p I) = mod(vl, l G&, l).

DEFINITION 2.13 lfree segment]. A segment is said to befree iff it
has not yet been allocated to a module, and the notation
free(@) represents the set of free segments in the segment do-
main 0.

DEFINITION 2.14 [minimal index vector, minimal segment]. An
index vector I = [i j kIT is said to be minimal with respect to
a domain $there does not exist another 11 = [il j l kllT in
this domain such that (kl < k) v ((kl = k) A (jl < j)) v ((kl =
k) A (j l = j) A (il < i)). A segment G& is said to be minimal
with respect to a set of segments r, denoted by G& =

min{r} , iff there is a time-tag in G& E r assigned to the
minimal index vector I = [i j kIT.

DEFINRION 2.15 [elementary module]. A module G,,p is said to

be elementary irfor any two time-tags V I , v2 E G,,p, V I f V I .

With this definition, it is obvious that an elementary module
is a set of time-tags. The concept of an elementary module is
very important. In our processor allocation procedures, each
module is allocated to one PE. An elementary module ensures
that no two different computations are scheduled to be exe-
cuted on the same PE at the same time, i.e., the processor allo-
cation procedure is compatible with the given schedule.
DEFINITION 2.16 [elementary cluster]. A cluster G is said to be

elementary iff every module G,,p E G is elementaly.

said to be optimal iff IGI is minimal.

size lPl of an optimal partition for W.

DEFINITION 2.17. [optimal cluster]. An elementary cluster G is

LEMMA 2.2. The size lGl of an optimal cluster is equal to the

PROOF. Under the assumption that every module G,,b E G is

elementary, we have lGl 2. max,,&(G). Thus G is an opti-
mal cluster when IGI = max,,GCV(G). From Lemma 2.1 and
the observation that the multiset W is equal to the multiset
G, we have lGl = IPI. - 1

Designing a space-optimal regular array is equivalent to

686 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5 , MAY 1995

finding an optimal cluster. In the following sections, several
procedures for finding an optimal cluster will be introduced.
The central concept is to partition every ij-plane of the DG
into several segments, to group these segments into several
elementary modules, and to keep the number of modules in a
cluster to a minimum.

111. PROCESSOR ALLOCATION FOR a + b I c

A. Procedure

In this section, a new processor allocation procedure for al-
gorithms with linear schedules is proposed. This procedure
guarantees that the derived regular array is space-optimal for
an SURE with a linear schedule n(Z) = ai + bj + ck when a + b
I c. For other situations, although a space-optimal regular ar-
ray cannot always be obtained, our procedure still decreases
the number PES used from N2 (if a 2 x 3 linear processor allo-
cation matrix is used) to $.
PROCEDURE 3.1. Given a 3 0 SURE with a linear schedule

n(I) = ai + bj + ck and a + b I c, a space-optimal regular
array can always be obtained by partitioning every ij-plane
of the DG of the SURE into

x g segments GL,p, where g
g = &(a, c) , 1 I a I ?, gN 1 I p I- N , and 1 I y 5 N ,

g
or

g x c segments G:,p, where g
g = g c d (b , c) , l I a r I - - , l I P 5 ~ , a n d l I N ylN.

g

Then each module (PE) is constructed by collecting the set
0

This method of partitioning is called gcd-partitioning. Us-
ing this method, a module is constructed by tracing the set of
segments in the k-direction. This method of constructing
modules is designated Tracel and can be defined as G,,p =

Tracel(Gk,p, 0) = < Gh,p, G:,p, ..., G& >. Using the same
gcd-partition but different traces to construct modules results
in different processor allocation procedures.

EXAMPLE 3.1 [transitive closure and algebraic path problem].
From the DG of transitive closure derived by S.Y. Kung
et al. [9] (DG-3 in their paper), the dependence matrix can
be written as

of segments in the k-direction.

D = 0 1 - 1 0 - 1 , [I :: -11 :I
and the corresponding optimal linear schedule is n(1) = i +
j + 3k. Thus by applying Procedure 3.1, time-tags on ever):
ij-plane can be gcd-partitioned into several 3 x 1 segments,

I 3 N + 2 I 3 N + 3 I I 4 N + 1 I

4 N + 2 4 N + 3
4 N + 3 4 N + 4 5 N

N + 10
12 13 N + 1 1
13 14 N + 12

N + 5 N + 6 2 N + 4
N + 6 N + 7 . . 2 N + 5
N + l N + 8 2 N + 6

k = 1

N + 2 N + 3 2 N + 1
N + 3 N + 4 . . 2 N + 2
N + 4 N + 5 2 N + 3

k = 2

Fig. 2(a). The DG of transitive closure and algebraic path problem is gcd-
partitioned into several 3 x 1 segments.

Fig. 2(b). Constructing modules by Tracel.

11: q i

&2.it. . . .
Fig. 2(c). The space-optimal regulaf'axky for transitive closure and algebraic
path problem.

Fig. 2(b). A space-optimal regular array with only
can be obtained as shown in Fig. 2(c).

PES

as shown in Fig. 2(a). A module (PE} is constructed by
collecting segments in the k-direction (Trace,), as shown in

The DG for the algebraic path problem derived by Lewis and
Kung [33, Fig. 31 can be reindexed as ([i j klT t

1

687 TSAY AND CHANG: DESIGN OF SPACE-OPTIMAL REGULAR ARRAYS FOR ALGORITHMS WITH LINEAR SCHEDULES

[i - k + 1
for transitive closure, and the same result can be obtained. E

j - k + 1 kIT) to construct a DG similar to that

B. Validity

In this section, we want to prove that Procedure 3.1 can de-
rive a locally connected, space-optimal regular array for any
SURE with a linear schedule n(Z) = ai + bj + ck and a + b 5 c.

LEMMA 3.1. The regular array derived by Procedure 3.1 is
locally connected.

PROOF. Because each PE corresponds to a module constructed
by collecting the segments in the k-direction, the locally

il

THEOREM 3.1. Procedure 3. I is compatible with its schedule

PROOF. A processor allocation procedure is said to be com-
patible with the given schedule iff no two different compu-
tations are executed on the same PE at the same time, and
that is the central feature of an elementary module. Thus in
this proof, first, two properties of segments traced by the
gcd-partition in Procedure 3.1 are derived; one is that every
segment is modulo-c and the other is that any two segments
in a module are isomorphic. With these properties, it can be
proved that each module is elementary.

[modulo-c]

gcd(a, c) = g : According to Procedure 3.1, every ij-plane
should be partitioned into several segments. The size of
each segment G& is f~ g , where (with h E L)

connected links can always be obtained.

n(Z) = ai + bj + ck.

GL,p

1 v + b ... v + (g - l) b

v + a + b ... v + a +(g- l)b

l v + (h - l)a v + (h - 1)a + b ... v + (h - l)a +(g - 1)bJ

If c = 1 then there is only one time-tag in every segment;
it is modulo-1. For c > 1 and any two time-tags vl , v2 E

G&, the difference between the time-tags is v2 - v1 = ia
+jb, where 1 - h I i I h - 1 , 1 - g 5 j I g - 1.
By contradiction, assume that G,Y,p is not a modulo-c

segment, Le., there exist two time-tags vl, v2 E G i , p , and
v2 = v1 + mc such that v2 = v1 + ia + j b = v1 + mc.

(1)
Let a = ga’; then we have iga’ + j b = mgh. + j b =
(mh -ia’)g m’g.

a ia + j b = mc

(2)
*”=- j b

S
Because m‘ must be an integer, only two cases are possible:

If m‘ = 0 then j = 0. Equation (1) can then be re-
duced to ia = mc = q x Icm(a, c), where q is an inte-
ger and Icm(a, c) denotes the least common multi-
plier of a and c. From this equation, we have lial 2

Icm(a, e). Because 1 - 5 i < C - 1 or lial 5 2 -

a = Icm(a, c) - a < Icm(a, c), a contradiction occurs.
If m’ # 0 then j # 0. We know gcd(a, b, c) = 1, be-
cause the linear schedule n(Z) = ai + bj + ck is a
normalized one. If gcd(a, c) = g = 1, then by 1 - g I
j 5 g - 1, we have j = 0. This is a case which we
have explored already. On the other hand, if
gcd(a, c) = g f I , then gcd(b, g) = 1. From g > ljl, the
right-hand side of (2), $, cannot be an integer. Thus
a contradiction occurs, because the left-hand side of
(2), m‘, is an integer.

In both cases there are contradictions. This implies that
G& is a modulo-c segment.

gcd(b, c) = g: The argument is similar to that for
gcd(a, c) = g.

It has now been shown that every segment derived by Pro-
cedure 3.1 (gcd-partition) is modulo-e.

[isomorphic]. Let v1 and v2 be two time-tags which have the
same (’p, q) location about two different segments, say GLtp

and G,‘:p, respectively, in a module. Let the index vector for

v1 be [il j l kllT and that for v2 be [il j , k2IT. Then v1 = ail
+ bjl + ckl and v2 = ail + bjl + ck2.

+ ~2 - V I = c(k2 - kl). (3)
(4)

Because the size of every segment obtained by Procedure
3.1 is c, we have mod(vl, lG&,’pI) = mod(v2, IGL:pI). This
shows that every segment in a module derived by Procedure
3.1 is isomorphic to all others.
Since every segment is modulo-c and is isomorphic to all
others in the module, it can now be proved that each module
is elementary.

[elementary]. Let v1 and v2 (viand v;> be two time-tags with
the same (’p, q) location about two different segments, say
GLlp and GLYp, respectively, in a module. Let the index

vector for v1 be [il j l kllT and that for v2 be [il j l k2IT.

Then v1 = ail + bjl + ckl and v2 = ail + bj, + ck2. Similarly,
let the index vector for v; be [i; j ; k1lT and that for v i be [i;
j ; k2IT. Then v; = ai; + bj; + ckl and v i = ai; + bj; + ck2.
0 <vl, v2>: If two index vectors belong to different seg-

ments in a module but have the same (p, q) location with
respect to their segments, then their time-tags should be
different, because (3) is not equal to zero.

0 <v2, vi>: If two index vectors belong to the same seg-
ment, then their time-tags are not the same. Since GL,’p is

modulo-c, we have (v2, c) # mod(& c), + v2 f vi.
0 <vl, vi>: If two index vectors belong to different seg-

ments and have different (p, q) locations, then their time-
tags are not the same. The reason is as follows: Because
GLfp is modulo-c, we have mod(v2, c) # mod(v;, c) , and

from (4), mod(vl, e) = mod(v2, c), * mod(v,, c) f
mod(& c), 3 V I # vi.

- mod(vl, c) = mod(v2, c).

688 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5 , MAY 1995

No other case.

Because any two index vectors in a module have different
time-tags, the module is elementary. Hence every module

0

THEOREM 3.2. The regular array derived by Procedure 3.1 is

constructed by Procedure 3.1 is elementary.

space-optimal.

PROOF. To prove that Procedure 3.1 can derive a space-
optimal regular array is equivalent to proving that the clus-
ter G derived by Procedure 3.1 is optimal. Lemmas 2.1 and
2.2 tell us that a cluster G is optimal iff every module G,,p

E G is elementary and there exists a time-tag v E Ga,p for

all G,,p E G. The former has been shown in Theorem 3.1.

Now we want to prove that there is at least one time-tag v E

G,,p for all G,,p E G if Procedure 3.1 is applied.

Let v2 be the largest time-tag on the (k = 1)-plane with a
remainder r when divided by e, i.e.,

v2 = m2c+r EGL &y
g ’ c ’

where

g = gcd(b, c) (or G h where g=gcd(a,c) . r.:.
Because every segment derived by Procedure 3.1 is
modulo-c, one can find a time-tag V I = mlc + r E GL, p, 1 I
a <:, 1 I p < F. The difference between V I and v2 is v2 -

V I = (m2 - ml)c. 3 m2 - ml = - = m‘. In addition, the dif-
ference between any two time-tags on the (k = 1)-plane is
equal to or less than (a + b)(N - l), because the maximum
and minimum time-tags on this plane are aN + bN + c (the
node [N N 1IT) and a + b + c (the node [l 1 1IT), respec-
tively. Thus

v 2 - v, ~ ((1 + b) (N - 1)

C C

From a + b I c, we have

PROOF. The theorem follows directly from Lemma 3.1, Theo-
U rem 3.1, and Theorem 3.2.

From Procedure 3.1, because the number of time-tags in
every segment is c and every module contains N segments, the
number of time-tags in each and every module is Ne. Mean-
while, because there are N3 time-tags in the computation do-
main, the size of the cluster or the number of PES used is $.

On the other hand, Theorem 3.2 manifests the fact that the
regular array is space-optimal, Le., the number of PES used
(modules) by Procedure 3.1 is equal to the minimum number
of PES required. Thus $ is just the lower bound of the num-
ber of PES required so that no two different computations are
executed on the same PE at the same time. Therefore we have
the following theorem.

THEOREM 3.4. The minimum number of PES required is $
for any SURE with a linear schedule n(I) = ai + bj + ck
and a + b I e.
Procedure 3.1 is a simple but useful method of processor

allocation for deriving a space-optimal regular array. The
array derived is locally connected and regular and provides
simple control and a balanced load. However, Procedure 3.1
guarantees that the optimal space is obtained only when the
linear schedule n(l) = ai + bj + ck follows the constraint of a
+ b 5 c. The case where a + b > c will be discussed in the
next section.

VI. PROCESSOR ALLOCATION FOR a + b > c

Now let us discuss the more difficult case, a + b > e. In this
case, (5) is not always true and a time-tag v may not always be
found in every module derived by Procedure 3.1. Thus a
space-optimal regular array cannot always be obtained, Le., the
difference between PEurpd and PEmi,, is a function of N
(problem size parameter). Yet, Procedure 3.1 can still be used
to decrease PEused from N2 to $ when a + b > c. For example,
given a linear schedule n(l) = 2i + 3j + 4k and N = 20, the 2 x

(a + b)(N - 1) (a + b)(N - 1)
- = N - 1

c u + b

2 segment can be obtained by the gcd-partition of Procedure
3.1; then by Tracel, N segments can be grouped in the (5)

Then 1 5 m’ 5 N - 1, Therefore, if we have the time-tag k-direction to construct a ~c3duk (PE). Thus we have P E m d =
$ = 100, which is greater than the size of a maximum con-
current set, 96, for the given linear schedule. Nevertheless,
when a + b > c, a space-optimal regular array can be designed
for the special cases where a = b and b = c by adopting differ-
ent processor allocation procedures (traces). The problem of

v2 = m 2 c + r e ~ ; @
f i ’ ‘

in the module

G:, 8 ’ SK c

then there exists the same time-tag v2 E G,,p on some i j -

plane, because V I = mlc + r E Gh,p, (ml + 1)c + r E

G : , ~ , 3 (ml + 2)c + r E G : , ~ , ..., 3 (ml + m’>c + r = m2c

+ r = v2 E Ga,p . For the extreme case, if m’ = N - 1 then v2 m’+l

will appear on the (k = N)-plane. r i

THEOREM 3.3. Procedure 3.1 can always design a locally
connected, space-optimal regular array for any SURE with
a linear schedule n(I) = ai + bj + ck and a + b I c.

matrix multiplication is a good example for both cases, be-
cause the optimal linear schedule for that problem is n(r) = i +
j + k [21].

A. Procedure for b = c

PROCEDURE 4.1. Given a 3 0 SURE with a linear schedule
n(l) = ai + bj + ck, where a + b > c and b = c, a space-
optimal regular array can always be obtained by gcd-
partitioning every ij-plane of the DG of the SURE into sev-
eral c x 1 segments. Each module (PE) is constructed by

TSAY AND CHANG: DESIGN OF SPACE-OPTIMAL REGULAR ARRAYS FOR ALGORITHMS WITH LINEAR SCHEDULES 689

using Trace2 as follows to collect the set of segments of the
module (Fig. 3):

Trace, (G:.p, free(@)) = < G&, G&+l ,..., Ga,p+,-l, Y

Y Y Y
Ga+l,p 3 Ga+l,p+l). . ' 1 Ga+l,p+a-I 7

where nl is the maximum row index of segments on the y-plane
in the current free(@) and n2 is the maximum column index of
segments on the y-plane in the current free(@) when a = nl.
The processor allocation procedure is greedy, such that nl , n2
can be determined by this greedy procedure:

Step I : Let m = 1.
Step 2: Find a free segment which is minimal, G&, =

min V;ee (O)}.
Step 3: Construct the module C , = Tracez (GL,p, fiee(O)).
Step 4: Iffree(@) # 0 then m = m + 1 goto Step 2 else stop.

k = r

I I GE .n2 I
k = N

Fig. 3. Tracez.

THEOREM 4.1. The processor allocation Procedure 4.1 is
compatible with its schedule n(l) = ai + bj + ck, a + b > c,
and b = c.

PROOF.

[modulo-c]. Segments derived by gcd-partitioning must be
modulo-c.

[isomorphic]. Let V I = ail + bjl + ckl and v2 = ai2 + bj2 + ckz be
two time-tags whose index vectors are on the same (p, q) loca-
tions about their segments G;;,~, , G&, , respectively. From the
fact that every segment is a c x 1 matrix, we have v2 = a(il+ i'c)

+ bj, + ck2. From b = c, we have v2 - V I = ai'c + c(iz - j l) + c(k2
- kl) = (ai' + j 2 - j l + k2 - kl)c. Thus, mod(y, I G ~ ; , ~ ~ I) =
m~d(v~, lGL:,~, I), where I = I = c.
Now we can say that every segment derived by Procedure
4.1 is isomorphic to all others.

[elementary]. Because every segment is isomorphic to all
others, if two time-tags v1 and v2 are not on the same (p, q)
location, then v1 # v2. We now want to prove that no two
time-tags in a module with the same (p, q) location are
equal. From the module constructed by Tracez, as shown in
Fig. 3, let v = mc + r E G&.

Letv, = m , c + r E ~ , ' , ~ + , . t h e n v , = (m + l) c + r .

Let v2 = mtc + r E G&+.-, then v 2 = (m + Q - 1)c + r .

Let v3 = m,c + r E G:+,,~ then v3 = (m + Q)C + r.
Letv, = m , c + r E ~ ~ , , ~ t h e n v , = (m + m : a) c + r ,

where mi> 0.
All other formulae can be derived similarly. The quotients
of dividing the time-tags vl s by c with remainder r are
shown in Fig. 4, from which we can see that all time-tags
with the same (p, q) location are not equal, because they
have different quotients. Hence every module derived by
Tracez of Procedure 4.1 is elementary, Le., the processor
allocation Procedure 4.1 is compatible with its schedule

0

THEOREM 4.2. The minimum number of PES required for the
n(l) = ai + bj + ck.

schedule n(l> = ai + bj + ck, a + b > c, and b = c is

PROOF. Fig. 5 is the (k = I)-plane of a DG. The slanted lines
represent a time hyperplane with the normal vector [a c elT
projected on the (k = 1)-plane. They pass through the nodes
(represented by black nodes in Fig. 5) belonging to the
modulo set 4(r). From left to right, we have the following
observations:

there are a lines each of which passes through only one node;
there are a lines each of which passes through two nodes;

there are a lines each of which passes through $ -1 nodes;

there are N - a (4-1) lines each of which passes

there are a lines each of which passes through $ -1 nodes;

there are a lines each of which passes through only one node.

Because all the nodes on a time hyperplane are executed at
the same time, they are assigned the same time-tag. These
nodes with the same time-tag must be allocated to different
PES. Therefore, in order to find PEmin, we need to find the
hyperplane, say ~ which contains the maximum number of
nodes. We project the nodes of g i n the k-direction onto the
(k = 1)-plane. These nodes should be projected onto the

through nodes;

690

m
m+a

m+m;a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5, MAY 1995

m + 1 . . . m+lz- l
m+a+1 . . . m+2a-1

m+m;a+1 ... m + (m ; + l) a - 1 m+(m;+l)a . . . m + (m ; + l) a + m ;

/

//
//

7- . . .

I

m + (mi + 1). + m; + mj
k = N

Fig. 4. The quotients obtained by dividing the time-tags in all segments of a module by c for the case of b = c.

necessary to select N slanted lines for which the total num-
ber of black nodes passed through is maximal. From the
above observations, the selection is as follows: If 4 is an

' odd number then there are

(N - a($ - 1)) lines each of which has 4 nodes,
2a lines each of which has 4 - 1 nodes,
2a lines each of which has $ - 2 nodes,

2a lines each of which has $ - Le] nodes.

Thus the total number of nodes of %is

(N - a($ - 1))$+ 2a(($ - 1) + ($ - 2) + e . . + ($ - 161))
= $ - aL$][el.

Similarly, if $ is an even number then there are

(N - a($ -1)) lines each of which has $ nodes,
2a lines each of which has 4 -1-nodes,

2a lines each of which has $ -2 nodes,

2a lines each of which has $ - $ +1 nodes,

a lines each of which has 4 - 2 nodes.

Thus the total number of nodes of His

0

THEOREM 4.3. Procedure 4.1 can always design a locally
connected, space-optimal regular array for any SURE with
a linear schedule n(l) = ai + bj + ck, a + b > c , and b = c .

PROOF: From Procedure 4.1, we know that nodes on every plane,
fkom the (k = 1)-plane to the (k = N - (a 4 - 1))-plane, can be
allocated to 4 PES. However, nodes on the (k = N - a (4 - 1) +
l)-pIane can be allocated only to (4 - 1) PES, because thls
plane has only a($ - 1) columns of index vectors which are
hee; the others have already been allocated. Similarly, the
nodes on the next 2a - 1 k-planes can be allocated to (4 - 1)
PES, and then there are 2a k-planes which can be allocated to
(4 - 2) PES, and so on, until all N k-planes are allocated. If 4
is an odd number then the number of PES used is:

PEused

= (N - a($ - 1))$+2a(($ - 1) + ($ - 2) +...+ (4 -I$]))

Similarly, if $ is an even number, then the number of PES
used is:

TSAY AND CHANG: DESIGN OF SPACE-OPTIMAL REGULAR ARRAYS FOR ALGORITHMS WITH LINEAR SCHEDULES

k = y + l

k = N

Fig. 6. Trace?.

B. Procedure for a = b

PROCEDURE 4.2. Given a 3 0 SURE with a linear schedule
n(Z) = ai + bj + ck, where a + b > c and a = b, a space-
optimal regular array can always be obtained by partition-
ing every ij-plane of the DG of the SURE into several c x 1
segments. Each module is constructed by using TraceS as
follows to collect the set of segments of the module (Fig. 6):

y+u-I y+u-l y+a-1 y+u-l G , Y ~ - ' 3 G,Y:;f' 1 . . 9 GnI ,p , p + c 9 Gnl , p + 2 c 3 ' ' 3 Gn, .n2

G:l:n: 9 G;Tn":' 9 ' . . * G&, > 3

where nl is the maximum row index of segments on the y-
plane in free(@) and n2 is the maximum column index of
segments on the y-plane in free(@) when a = nl and is
equal to p + me. The processor allocation procedure is

greedy such that n l , n2 can be
procedure:

Step 1: Let m = 1.

691

determined by this greedy

Step 2: Find a free segment which is minimal, G& =

Step 3: Construct the module G , = Trace3 (G&, free(@)).
Step 4: Iffree(@) # 0 then m = m + 1 goto Step 2 else stop.

minCfree (O)] .

THEOREM 4.4. The processor allocation Procedure 4.2 is
compatible with its schedule n(r> = ai + bj + ck, a + b > e,
and a = b.

0

THEOREM 4.5: The minimum number of PES required for the

PROOF: The proof is similar to that for Theorem 4.2.

schedule n(l)= ai + bj + ck, a + b > e, and a = b is

PE,,, = - [+p1.,
{+-pi , if +, pi

where

k {
0, , otherwise

PROOF. Fig. 7 is the (k = 1)-plane of a DG. The slanted lines
represent a time hyperplane with the normal vector [a a cIT
projected onto the (k = 1)-plane. These slanted lines pass
through black nodes which belong to modulo set #r) . As-
sume that H is the time hyperplane which contains the
maximum number of nodes. These nodes when projected
onto the (k = 1)-plane should be on the positions of black
nodes. The number of slanted lines which cover these pro-
jected nodes is [:] because the time-tags' difference be-
tween two adjacent slanted lines is ac and the time tags' dif-
ference between two adjacent k-planes is e. However, it can
be observed from Fig. 7 that the total number of slanted
lines is Therefore, the total number of nodes on Hcan
be calculated by selecting [q slanted lines for which the
total number of black nodes passed through is maximal. Let

If 1 is an even number, then we have

PE,, = $ - c ((2 1 + 2 +...++)) = $- - c[31[?1;

otherwise, we have

PE,, = $ - C(2(1+ 2 +...+ y) +?)
= q - c[61[+l,

U

THEOREM 4.6. Procedure 4.2 can always design a locally
connected, space-optimal regular array for any SURE with
a linear schedule n(o= ai + bj + ck, a + b > c and a = b.

PROOF. By Procedure 4.2, the DG of the SURE can be divided
into c regions, e.g., the shaded segments in Fig. 7 and those
extended in the k-direction form one of these regions. Every

692 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5; MAY 1995

C C C

C

Fig. 7. The (k = 1)-plane of a DG with schedule ui + bj + ck, u + b > c, and u = b

PROOF. By Procedure 4.2, the DG of the SURE can be divided
into c regions, e.g., the shaded segments in Fig. 7 and those
extended in the k-direction form one of these regions. Every
region is formed entirely of isomorphic segments, can be
allocated independently, and will have the same number of
PES. Let us consider any one region. If :is an even num-
ber, :is the number of PES for all.the nodes in the region
between the (k = 1)-plane and the (k = a)-plane, 2($-1) is
the number of PES for all the nodes in the region between
the (k = a + 1)-plane to those of the (k = 3a)-plane, and so
on. Thus the number of PES used by each region is

where

On the other hand, if I 5 I is an odd number, then the num-
ber of PES used by each region is

Because there are c regions in the DG, the number of PES 0
used by Trace3 is PEused = $ - c[41[?1.

EXAMPLE 4.1. [matrix multiplication] The dependence ma-
trix D for matrix multiplication [21] can be written as .-E ; 8].
and its DG is shown in Fig. 8(a) (N = 6). Its corresponding
optimal linear schedule is n(r) = i + j + k. Thus by applying
Procedure 4.1 (or Procedure 4.2), the time-tags of all index
vectors on every ij-plane can be gcd-partitioned into several
1 x 1 segments. The module is then constructed by Trace2
of Procedure 4.1 (or Trace3 of Procedure 4.2), as shown in
Fig. 8(b). By mapping each module onto one PE, a space-
optimal regular array can be constructed, as shown in Fig.
8(c). If we adopt the linear space mapping, then N = 36
PES is necessary. But Procedure 4.1 (or Procedure 4.2) can
reduce the PEused to

TSAY AND CHANG: DESIGN OF SPACE-OPTIMAL REGULAR ARRAYS FOR ALGORITHMS WITH LINEAR SCHEDULES 693

k = l

Fig. 8(a). The DG for matrix multiplic

k = 2

k = 6
:ation (N = 6).

k = 5

k = 6
Fig. 8(b). The processor allocation for matrix multiplication by Procedure 4.1
(or Procedure 4.2).

advance a maximum concurrent set for a given linear schedule
in order to design space-optimal regular mays. The proposed
processor allocation procedures ensure that no two nodes
scheduled at the same time are mapped onto the same PE
(Theorem 3.1) and that all PES are active simultaneously at
some one time instance (Theorem 3.2). Second, for a given
linear schedule n(I) = ai + bj + ck, 1 I a I b I c, for an
SURE, two cases were studied: a + b I c and a + b > c. In the
former case, a space-optimal design can always be obtained by
Procedure 3.1; the number of PES used is $. The resulting
array has the advantages of local connection, load balance,

v

Fig. 8(c). The space-optimd regular array for matrix multiplication.

simple control, and space optimality. For the latter case,
$becomes the upper bound of PEmin. We also discussed two
special cases of a + b > c, a = b and b = c. By Procedures 4.1
(b = c) and 4.2 (a = b), space-optimal regular arrays can also
be obtained for these cases. The closed form expressions for
PEmin are also given for the cases of b = c and a = b in Theo-
rems 4.2 and 4.5, respectively. Although only three dimen-
sional algorithms with linear schedules are discussed here, the
method proposed in this paper can easily be extended to higher
dimensional algorithms. More research on the topic of space-
optimal design should be pursued; one important project
would be to solve the problem of space-optimality for linear
schedule n(Z) = ai + bj + ck with a + b > c and its closed form
expressions for PE,in.

ACKNOWLEDGMENTS

We would like to thank the referees for their constructive
and helpful comments. This research was supported by the
National Science Council of the Republic of China under con-
tract NSC-83-0408-E-009-044.

REFERENCES

[l]

[2]

[3]

H.T. Kung and C.E. Leisenon, “Systolic arrays for VLSI,” Proc. 1978
Soc. for Industrial and Applied Math., pp. 256-282, 1979.
J.A.B. Fortes and B.W. Wah, “Systolic mays1From concept to im-
plementation,” Computer, pp. 12-17, July 1987.
J.C. Tsay and P.Y. Chang, “Some new designs of 2D array for matrix
multiplication and transitive closure,” IEEE Trans. Parallel and Dis-

694 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5. MAY 1995

ACKNOWLEDGMENTS [23] A. Benaini and Y. Robert, “Spacetime-minimal systolic arrays for
gaussian elimination and the algebraic path problem,’’ Parallel Com-
puting, vol. 15, pp. 21 1-225, 1990.
P. Clauss, c . Mongenet, and G.R. Pemn, “Synthesis of size-optimal
toroidal arrays for the algebraic path problem: A new contribution,”
Parallel Computing, vol. 18, pp. 185-194, 1992.
P. Clauss, C. Mongenet, and G. Pemn, “Calculus of space-optimal

We would like to thank the referees for their constructive
and helpful comments. This research was supported by the
National Science Council of the Republic of China under con-

[24]

[25] : NSC-83-0408-E-009-044.

REFERENCES

H.T. Kung and C.E. Leiserson, “Systolic arrays for VLSI,” Proc. I978
Soc. for Industrial and Applied Math., pp. 256-282, 1979.
J.A.B. Fortes and B.W. Wah, “Systolic arrays)From concept to im-
plementation,” Computer, pp. 12-17, July 1987.
J.C. Tsay and P.Y. Chang, “Some new designs of 2D array for matrix
multiplication and transitive closure,” IEEE Trans. Parallel and Dis-
tributed Systems. Submitted for publication.
P.Y. Chang and J.C. Tsay, “A family of efficient regular arrays for
algebraic path problem,” IEEE Trans. Computers, vol. 43, no. 7, pp.
169-777, July 1994.
J.C. Tsay and P.Y. Chang, “Design of efficient regular arrays for ma-
trix multiplication by two step regularization,” IEEE Trans. Parallel
and Distributed Systems, vol. 6, no. 2, pp. 215-222, Feb. 1995.
V. Van Dongen and P. Quinton, “Uniformization of linear recurrence
equations: A step towards the automatic synthesis of systolic arrays,”
Proc. Int’l Cor$ Systolic Arrays, pp. 473-482, 1988.
S.Y. Kung, VLSI Array Processor, Prentice Hall, Englewood Cliffs,
N.J., 1988.
Y.W. Wong and J.M. Delosme, “Broadcast removal in systolic algo-
rithms,” Proc. Int’l Con$ Systolic Arrays, pp. 403412 , 1988.
S.Y. Kung, S.C. Lo, and P.S. Lewis, “Optimal systolic design for the
transitive closure and the shortest path problems,” IEEE Trans. Com-
puters‘vol. 36, pp. 603414 , May 1987.
C. Choffrut and K. Culik II, “Folding of the plane and the design of sys-
tolic arrays,” Irzfomtion Processing Leners, vol. 17, pp. 149-153, 1983.
J.M. Delosme and I.C.F. Ipsen, “Efficient systolic arrays for the solu-
tion of toeplitz systems: An illustration of a methodology for the con-
struction of systolic architectures in VLSI,” Proc. Int’l Workshop on
Systolic Arrays, pp. 3 7 4 5 , 1986.
J.H. Moreno and T. Lang, “Graph-based partitioning of matrix algo-
rithms for systolic arrays: application to transitive closure,” Pruc. Int’l
Conf. Parallel Processing, pp. 28-31, 1988.
P. Quinton, “Automatic synthesis of systolic arrays from uniform
recurrent equations,” Proc. Int’l Symp. Computer Architecture, pp.

S.K. Rao, “Regular iterative algorithms and their implementations on
processor arrays,” PhD thesis, Stanford Univ., 1985.
D.I. Moldovan and J.A.B. Fortes, “Partitioning and mapping algo-
rithms into fixed size systolic arrays,” IEEE Trans. Computers, vol.
35, pp. 1-12, Jan. 1986.
W.L. Miranker and A. Winkler, “Spacetime representations of compu-
tational structures,” Computing, vol. 32, pp. 92-1 14, 1984.
P.Z. Lee and Z.M. Kedem, “Synthesizing linear array algorithms from
nested for loop algorithms,” IEEE Trans. Computers, vol. 37,
pp, 1,578-1,598, Dec. 1988.
V.P. Roychowdhury and T. Kailath, “Subspace scheduling and paral-
lel implementation of non-systolic regular iterative algorithms,” J . of
VLSISignal Processing, vol. I , pp. 127-142, 1989.
V. Van Dongen, “Quasi-regular arrays: Definition and design method-
ology,” Proc. Int’l Cor$ on Systolic Arrays, pp. 126-135, 1989.
W. Shang and J.A.B. Fortes, “Time optimal linear schedules for algo-
rithms with uniform dependencies,” IEEE Trans. Computers, vol. 40,
pp. 723-742, June 1991.
P. Cappello, “A processor-time-minimal systolic array for cubical mesh
algorithms,” IEEE Trans. Parallel and Distributed Systems, vol. 3,
pp. 4-13, Jan. 1992.
C.J. Scheiman and R.P. Cappello, “A processor-time-minimal systolic
array for transitive closure,” IEEE Trans. Parallel and Distributed
Svstems. vol. 3. DO. 257-269. Mav 1992.

208-214, 1984.

mappings of systolic algorithms on processor arrays,” J. VLSI Signal
Processing, vol. 4, pp. 27-36, 1992.
J. Bu and E.F. Deprettere, “Processor clustering for the design of opti-
mal fixed-size systolic arrays,” Proc. Int’l Con$ on Application Spe-
cific Arruy Processors, pp. 402413 , Sept. 1991.

[26]

[27] A Date, T Risset, and Y Robert, “Synthesizing systolic arrays some
recent developments,” Proc Int’l Conf on Application Specific Array
Processors, pp 372-386, Sept 1991
Y. Wong and J M Delosme, “Space-optimal linear processor alloca-
hon for systolic arrays synthesis,” Proc Sixth Int’l Parallel Processing
Symp , pp 275-282, Mar 1992
Y C Hou and J.C Tsay, “Equivalent transformations on systolic de-
sign represented by generating functions,” J Information Science and
Eng , vol 5, pp 229-250, 1989
S K Rao and T Kailath, “Regular iterahve algonthms and their im-
plementation on processor arrays,’’ Proc IEEE, vol 76, pp 259-269,
Mar 1988
P Y Chang and J C Tsay, “Timespace mapping for regular arrays,”
Parallel Algorithms and Applicationr Submitted for publication
E M Reingold, J Nieverglt, and N Deo, Comb~natorial Algorithms
Theory and Practice, Prentice Hall, Englewood Cliffs, N J , 1977
P S. Lewis and S Y Kung, “An optimal systolic array for the algebraic
path problem,” IEEE Trans Computerr, vol 40, pp lW105, Jan 1991

1281

[29]

[30]

[31]

[32]

[33]

Jong-Chuang Tsay received the MS and PhD
degrees in computer science from the National
Chiao-Tung University in the Republic of China in
1968 and 1975, respectively He has been on the
faculty of the Department of Computer Engineenng
at the National Chiao-Tung University since 1968
and is currently a professor in the Department of
Computer Science and Information Engineenng
His research interests include systolic arrays, paral-
lel computation, and computer-aided typesetting.

Pen-Yang Chang received the MS degree in com-
puter science from the National Chiao-Tung Uni-
versity in the Republic of China in 1986 He has
been an assistant researcher in the Telecommunca-
hon Laboratones of the Ministry of Communication
in the R 0 C since 1987 and is a PhD candidate at
the Institute of Computer Science and Information
Engineenng at the National Chiao-Tung University
His research interests include systolic arrays and
multimedia information systems

1

