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Design of Space-Optimal Regular Arrays 
for Algorithms with Linear Schedules 

Jong-Chuang Tsay and Pen-Yuang Chang 

Abstract-The problem of designing space-optimal 2D regular 
arrays for N x N x N cubical mesh algorithms with linear schedule 
ai + bj + ck, 1 I a I b 5 c, and N = nc, is studied. Three novel nonlin- 
ear processor allocation methods, each of which works by combin- 
ing a partitioning technique (gcd-partition) with different nonlinear 
processor allocation procedures (traces), are proposed to handle 
different cases. In cases where a + b 5 c, which are dealt with by the 
first processor allocation method, space-optimal designs can always 
be obtained in which the number of processing elements is equal to 
$ . For other cases where a + b > c and either a = b and b = c, two 
other optimal processor allocation methods are proposed. Besides, 
the closed form expressions for the optimal number of processing 
elements are derived for these cases. 

Index Items-Algorithm mapping, data dependency, linear 
schedule, matrix multiplication, optimizing compiler, space- 
optimal, systolic array. 

I.  INTRODUCTION 

EGULAR arrays, or systolic arrays [l], 123, have been R proposed for over a decade. They are special purpose 
parallel devices composed of several processing elements 
(PES) whose interconnections have the properties of regularity 
and locality. Because of these properties, regular architectures 
are very suitable for VLSI implementation. 

The procedure for synthesizing regular arrays from systems of 
recurrence equations, or nested loops, has two major steps. The 
first one is regularization [3], [4], [5], or uniformization [6], 
which includes variable full indexing [7] (defining all variables 
on the same index dimension only once); broadcast removing [8] 
(replacing broadcast vectors with pipeline vectors); reindexing 
[9] (re-routing pipeline vectors so that they are oriented in the 
same direction); and so on [lo], [ l l ] ,  [12]. After regularization, 
the original system of recurrencc equations is transformed into 
an equivalent system of uniform recurrence equations (SURE) 
[ 131 or a regular iterative algorithm (RIA) [ 141. A dependence 
graph (DG) is a graphical representation of such an algorithm, in 
which each node corresponds to an index vector and each link 
represents a dependence vector between two nodes. A depend- 
ence matrix D is the collection of all dependence vectors in an 
algorithm; each column in D is a dependence vector. The second 
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step is to find the spacetime mapping transformation matrix 

T = [ yTT] [ 131, [ 141, [ 151, [ 161 with a valid linear schedule vec- 

tor nT and a compatible processor allocation matrix nT for an 
SURE. A schedule is valid if the precedence constraints imposed 
by an SURE are satisfied and a processor allocation is compati- 
ble with its schedule if two different computations are not exe- 
cuted on the same PE at the same time. 

In the past, most researchers focused their efforts on regulari- 
zation, and the first half of spacetime mapping, the time mapping 
[13], [14], [15], [17], [18], [19]. In particular, the problem of 
how to find an optimal linear schedule for an SURE has attracted 
special interest [20]. Only recently has its counterpart problem- 
that of how to design space-optimal regular arrays in which the 
number of PES is minimal for an SURE executed by a given 
linear schedule-been studied in the literature [21], [22], [23], 
[24], [25], [26], [27], [28]. Studies of this latter problem fall into 
three categories. The first class includes 1211, [22], [23], [241, 
[25], in which the following method is adopted: first, from the 
given DG and linear schedule, a set ’? of nodes is found such 
that all nodes in the set are scheduled to be executed at the same 
time and the set size lvl is maximal. We call such a set a maxi- 
mum concurrent ser with respect to the given linear schedule. 
Second, spacetime mapping is applied to assign the nodes of the 
DG to PES. Any PE which has not been assigned to execute a 
node in ?/is piled to a PE which executes a node in ?land has 
disjoined activation time intervals. This method can indeed be 
used to design space-optimal regular arrays. However, it has two 
drawbacks. The first is that finding a maximum concurrent set 
with respect to a linear schedule n(l) = ai + bj + ck is not an 
easy task, i.e., the nodes must be represented in a closed form 
expression by the parameters a, b, c, and N ,  where N is the 
problem size parameter. Thus this method designs space-optimal 
regular arrays case by case. Second, piling PES results in spiral 
links and increases irregularity for the resulting arrays. 

The second class of methods for designing space-optimal 
arrays [25], [26], [27] deals with this problem by grouping 
llTq PES into a single one, where qT is the projection vector 
with respect to the space mapping matrix ST(STq = 0). Thus the 
resulting array has a 100% pipelining rate. The advantages of 
this method are that it is not necessary to find a maximum con- 
current set, the resulting array does not have spiral links, and 
the method is applicable to all SUREs. However, this method 
cannot guarantee that the design is space-optimal, because a 
100% pipelining rate in the array does not imply space- 
optimality. The regular array for matrix multiplication is a 
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good example; it has FITq = [ 1 1 11 [0 0 1 I T  = 1 but is not 
space-optimal. 

In the third class [28], an upper bound on the length of the 
optimal projection vector is developed and an enumerative 
search procedure for finding the optimal projection vector is 
provided. However, this approach does not provide space- 
optimal designs in a general way, because only linear proces- 
sor allocation is considered. 

For the problem of designing space-optimal regular arrays, 
two interesting questions we want to investigate are: first, how 
many PES are needed to design a regular array for a given 
N x N x N DG with a linear schedule n(l) = ai + bj + ck. For 
simplicity, the problem domain in this paper is restricted to a 
cubical mesh. Second, how to design a regular array which is 
not only space-optimal but also is locally connected, provides 
balanced loads, and allows for simple control. In the follow- 
ing, several nonlinear processor allocation procedures will be 
proposed to design space-optimal regular arrays for different 
cases. The linear schedule n(l) = ai + bj + ck with 1 I a I b 
I c is considered. It is easy to see that an algorithm with an 
arbitrary linear schedule, say FI’(Z) = a’i + b’j + c’k, where 
a‘, b’, and c‘ are all non-zero integers, can be transformed to an 
equivalent one with n(Z) = ai + bj + ck and 1 I a I b 5 c by 
applying permutation transformations [29]. Therefore, without 
loss of generality, we assume that 1 I a 5 b 5 c. In addition, 
for simplicity, we also assume that N = nc in the following 
descriptions. Furthermore, an algorithm with an arbitrary uni- 
form affine schedule [30] n,(l) = ai + bj + ck + u can also be 
transformed to an equivalent one with a linear schedule by 
timespace mapping or dimension extension [3 I]. 

In Section 11, some important definitions are given. In Section 
111, the gcd-partition method and the first processor allocation 
procedure will be introduced to design space-optimal regular 
arrays for the case of a + b 5 c. It is proven that in such a case 
$ is the minimum number of PES required or the size of a 
maximum concurrent set for the given linear schedule. A space- 
optimal regular array for transitive closure and algebraic path 
problem will be given to illustrate our method. In Section VI, the 
other two optimal processor allocation procedures are developed 
to handle the cases of a = b and b = c, respectively, when a + b > 
c, and the closed form expressions for the size of a maximum 
concurrent set will also be given for both cases. A new space- 
optimal regular array for matrix multiplication will also be given. 
Finally, our concluding remarks are presented in Section V. 

11. PRELIMINARIES 

The variables used in this paper are all integral numbers. Each 
index vector in the computation domain Y is denoted by I = 
[ i  j kIT, where 1 I i, j ,  k < N. The linear schedule n(Z) = ai + bj 
+ ck with 1 I a I b I c is a normalized one, i.e., gcd(a, b, c) = 1. 

DEFINITION 2.1. [locally connected]. A regular array is said to 
be locally connected iff any communication link between 
two PES has a displacement vector independent of the size 
of the problem. 

DEFINITION 2.2. [space-optimal]. A regular array is said to be 
space-optimal with respect to a given linear schedule for an 

SURE lflthe number of PES used (denoted by PEused) is 
equal to the size of a maximum concurrent set, or the mini- 
mum number of PES required (PEmin), for the given linear 
schedule. 
Clearly, for a given linear schedule, if PEUsd < PE,,, then 

two different computations will be executed on the same PE at 
the same time. 
DEFINITION 2.3. [time-tag]. A time-tag v = ai + bj + ck (or, 

in indexed notation, u f J )  is a positive integral number 
assigned to each node or index vector [ i  j kIT in the com- 
putation domain ‘I’ of an SURE to represent the execution 
time of the index vector with respect to the linear schedule 
vector [a b elT. 

DEFINITION 2.4. [modulo set]. Given a positive integer r, 0 I r < 
c, a modulo set Nr) is a set of nodes of ’I’ such that each node 
of N r )  has an assigned time-tag v satisfying mod(v, c) = r, 
where mod(a, b) denotes the remainder of a divided by b. 
A multiset [32] M is a collection of not necessarily distinct 

elements. It may be thought of as a set in which each element, 
say v, has an associated positive integer, its multiplicity Cv(M), 
to represent the number of vs in M. For example, M = 
{ 1, 1, 2, 2, 2, 2, 3 )  is a multiset, where C1(@ = 2, 
Cz(M) = 4, and C3(M) = 1. We use the multiset W to denote the 
collection of the time-tags of all the index vectors in Y for an 
SURE. 
DEFINITION 2.5. [partition]. A possible partition P of W is 

written as {VI, V2, ... V,,,), where each VI in P is a set of 
time-tags and the partition size P I  = m. 

DEFINITION 2.6. [optimal partition]. An optimal partition is a 
partition such that its partition size is minimal with respect 
to all possible partitions of W. 

EXAMPLE 2.1. This example demonstrates the concept of an 
optimal partition: Let W = (1, 2, 2, 3, 3, 3, 4, 4, 5 ) .  A pos- 
sible partition PI = ( V I ,  V2, Vj, V4)  = { ( I ,  2, 3 } ,  (2, 3 } ,  
( 4 } ,  (3 ,  4, 5 ) ) .  However, PI is not optimal, because it is 
easy to find an optimal partition P, = ( V I ,  Vz, V j }  = ( { I ,  2, 
3 } ,  {2, 3, 4} ,  (3, 4, 5 ) )  such that IP,l < lPIl. Of course, 
there m y  exist several optimal partitions, but at least one 
optimal partition always exists. 
The following lemma states a useful property of optimal 

partitions. 
LEMMA 2.1. A partition P is optimal iff there exists a time-tag 

PROOF. For any partition, we have I P I 2 max,, wC,( W). 
v E VI  for all VI E P. 

[If part] If there exists a time-tag v E VI for all VI E P, we have 
lp( = c,,(w) = max,,,&,,(W). Then lp( is minimal with respect to 
all possible partitions of W, i.e., the partition P is optimal. 
[Only if part] It is obvious that if lp( is minimal with respect to 
all possible partitions of W, then lp( = max,,&(W) 3 Cv(W); 
this implies that there exists a time-tag v E VI for all VI E P. u 
The following definitions are important because they are the 

basis for finding optimal partitions systematically. 
DEFINITION 2.7 [segment, segment domain]. A segment is de- 

fined as an f x g matrix 
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where 

and y =  k (see Fig. 1). The segment domain 0 is constructed 
by the set of segments. 

k 

f-.i 

i 

Fig. 1. The concept of a segment. 

We use the notation u: E G,Y,p to represent that ut is an 

element of the segment G&. The value of a pair of comma- 
separated integers @, q)  gives the coordinates of the location 
of the time-tag on the segment. The first number is the vertical 
coordinate, and the second number is the horizontal coordi- 
nate, measured from the top left corner of the segment. We say 
that two time-tags of different segments have the same (p, q)  
location if they are located at the same @, q)  coordinates in 
their respective coordinate systems. 

DEFINITION 2.8 [module, cluster]. A module G,,p is a set of 

segments and a cluster G is a set of modules. 

A time-tag uf, is said to be in module Gsp (denoted by uf,,  

E G,,p) if E G& and G& E G,,p. Similarly, a time-tag 

uf is said to be in cluster G (denoted by ut E G) if ut j  E G,,p 

and G,,p E G. Various grouping methods can be used to con- 
struct modules. For example, by simply collecting all segments 
G& in the k-direction, the module Gsp = { ..., G& } is 
constructed. A more complex grouping method is described by 
the following concept: 

DEFINITION 2.9 [trace]. A trace (GL:.pl, 0) is a module consisting 

of the set of segments on a directed path that begins from 

where all segments of a trace belong to the segment domain 0. 
DEFINKION 2.10 [size]. The size of a segment, module, and cluster, 

denoted by lG&I, I, and lGl represent the number of 
time-tags, segments, and modules in them, respectively. 

DEFINITION 2.11 [modulo-s segment]. A segment G,Y,p is said 

modulo-s iff for every time-tag v E G,Y,p there does not exist 

another time-tag V I  E G& such that mod(v, s) = mod(v1, s), 
where s > 0. 

DEFINITION 2.12 [isomorphic segments]. Two f x g segments 
G&, G&, are said to be isomorphic iy for  any two time- 

tags v E G,Y,p, v1 E GL;,pl, if they have the same (p, q) loca- 

tion, then (v, l G,Y,p I) = mod(vl, l G&, l). 

DEFINITION 2.13 lfree segment]. A segment is said to befree iff it 
has not yet been allocated to a module, and the notation 
free(@) represents the set of free segments in the segment do- 
main 0. 

DEFINITION 2.14 [minimal index vector, minimal segment]. An 
index vector I = [i j kIT is said to be minimal with respect to 
a domain $there does not exist another 11 = [il j l  kllT in 
this domain such that (kl < k) v ((kl = k) A (jl < j ) )  v ((kl = 
k) A (j l  = j )  A (il < i)). A segment G& is said to be minimal 
with respect to a set of segments r, denoted by G& = 

min{r} ,  iff there is a time-tag in G& E r assigned to the 
minimal index vector I = [i j kIT. 

DEFINRION 2.15 [elementary module]. A module G,,p is said to 

be elementary irfor any two time-tags V I ,  v2 E G,,p, V I  f V I .  

With this definition, it is obvious that an elementary module 
is a set of time-tags. The concept of an elementary module is 
very important. In our processor allocation procedures, each 
module is allocated to one PE. An elementary module ensures 
that no two different computations are scheduled to be exe- 
cuted on the same PE at the same time, i.e., the processor allo- 
cation procedure is compatible with the given schedule. 
DEFINITION 2.16 [elementary cluster]. A cluster G is said to be 

elementary iff every module G,,p E G is elementaly. 

said to be optimal iff IGI is minimal. 

size lPl of an optimal partition for W. 

DEFINITION 2.17. [optimal cluster]. An elementary cluster G is 

LEMMA 2.2. The size lGl of an optimal cluster is equal to the 

PROOF. Under the assumption that every module G,,b E G is 

elementary, we have lGl 2. max,,&(G). Thus G is an opti- 
mal cluster when IGI = max,,GCV(G). From Lemma 2.1 and 
the observation that the multiset W is equal to the multiset 
G, we have lGl = IPI. - 1  

Designing a space-optimal regular array is equivalent to 
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finding an optimal cluster. In the following sections, several 
procedures for finding an optimal cluster will be introduced. 
The central concept is to partition every ij-plane of the DG 
into several segments, to group these segments into several 
elementary modules, and to keep the number of modules in a 
cluster to a minimum. 

111. PROCESSOR ALLOCATION FOR a + b I c 

A. Procedure 

In this section, a new processor allocation procedure for al- 
gorithms with linear schedules is proposed. This procedure 
guarantees that the derived regular array is space-optimal for 
an SURE with a linear schedule n(Z) = ai + bj + ck when a + b 
I c. For other situations, although a space-optimal regular ar- 
ray cannot always be obtained, our procedure still decreases 
the number PES used from N2 (if a 2 x 3 linear processor allo- 
cation matrix is used) to $. 
PROCEDURE 3.1. Given a 3 0  SURE with a linear schedule 

n(I) = ai + bj + ck and a + b I c, a space-optimal regular 
array can always be obtained by partitioning every ij-plane 
of the DG of the SURE into 

x g segments GL,p, where g 
g = &(a, c) ,  1 I a I ?, gN 1 I p I- N , and 1 I y 5 N ,  

g 
or 

g x c  segments G:,p, where g 
g = g c d ( b , c ) , l I a r I - - , l I P 5 ~ , a n d l I  N ylN. 

g 

Then each module (PE) is constructed by collecting the set 
0 

This method of partitioning is called gcd-partitioning. Us- 
ing this method, a module is constructed by tracing the set of 
segments in the k-direction. This method of constructing 
modules is designated Tracel and can be defined as G,,p = 

Tracel(Gk,p, 0) = < Gh,p, G:,p, ..., G& >. Using the same 
gcd-partition but different traces to construct modules results 
in different processor allocation procedures. 

EXAMPLE 3.1 [transitive closure and algebraic path problem]. 
From the DG of transitive closure derived by S.Y. Kung 
et al. [9] (DG-3 in their paper), the dependence matrix can 
be written as 

of segments in the k-direction. 

D =  0 1 - 1  0 - 1  , [I  :: -11 :I 
and the corresponding optimal linear schedule is n(1) = i + 
j + 3k. Thus by applying Procedure 3.1, time-tags on ever): 
ij-plane can be gcd-partitioned into several 3 x 1 segments, 

I 3 N + 2  I 3 N + 3  I I 4 N + 1  I 

4 N + 2  4 N + 3  
4 N + 3  4 N + 4  5 N  

N + 10 
12 13 N + 1 1  
13 14 N + 12 

N + 5  N + 6  2 N + 4  
N + 6  N + 7  . .  2 N + 5  
N + l  N + 8  2 N + 6  

k = 1  

N + 2  N + 3  2 N + 1  
N + 3  N + 4  . .  2 N + 2  
N + 4  N + 5  2 N + 3  

k = 2  

Fig. 2(a). The DG of transitive closure and algebraic path problem is gcd- 
partitioned into several 3 x 1 segments. 

Fig. 2(b). Constructing modules by Tracel. 

11: q i 

&2.it. . . .  
Fig. 2(c). The space-optimal regulaf'axky for transitive closure and algebraic 
path problem. 

Fig. 2(b). A space-optimal regular array with only 
can be obtained as shown in Fig. 2(c). 

PES 

as shown in Fig. 2(a). A module (PE} is constructed by 
collecting segments in the k-direction (Trace,), as shown in 

The DG for the algebraic path problem derived by Lewis and 
Kung [33, Fig. 31 can be reindexed as ( [ i  j klT t 

1 
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[i - k + 1 
for transitive closure, and the same result can be obtained. E 

j - k + 1 kIT) to construct a DG similar to that 

B. Validity 

In this section, we want to prove that Procedure 3.1 can de- 
rive a locally connected, space-optimal regular array for any 
SURE with a linear schedule n(Z) = ai + bj + ck and a + b 5 c. 

LEMMA 3.1. The regular array derived by Procedure 3.1 is 
locally connected. 

PROOF. Because each PE corresponds to a module constructed 
by collecting the segments in the k-direction, the locally 

il 

THEOREM 3.1. Procedure 3. I is compatible with its schedule 

PROOF. A processor allocation procedure is said to be com- 
patible with the given schedule iff no two different compu- 
tations are executed on the same PE at the same time, and 
that is the central feature of an elementary module. Thus in 
this proof, first, two properties of segments traced by the 
gcd-partition in Procedure 3.1 are derived; one is that every 
segment is modulo-c and the other is that any two segments 
in a module are isomorphic. With these properties, it can be 
proved that each module is elementary. 

[modulo-c] 

gcd(a, c)  = g :  According to Procedure 3.1, every ij-plane 
should be partitioned into several segments. The size of 
each segment G& is f~ g ,  where (with h E L) 

connected links can always be obtained. 

n(Z) = ai + bj + ck. 

GL,p 

1 v + b  ... v + ( g - l ) b  

v + a + b  ... v + a  +(g- l )b  

l v  + ( h -  l )a  v + ( h -  1)a + b ... v + ( h -  l )a  +(g - 1)bJ 

If c = 1 then there is only one time-tag in every segment; 
it is modulo-1. For c > 1 and any two time-tags vl ,  v2 E 

G&, the difference between the time-tags is v2 - v1 = ia 
+jb, where 1 - h I i I h -  1 , 1  - g  5 j I g  - 1. 
By contradiction, assume that G,Y,p is not a modulo-c 

segment, Le., there exist two time-tags vl, v2 E G i , p ,  and 
v2 = v1 + mc such that v2 = v1 + ia + j b  = v1 + mc. 

(1) 
Let a = ga’; then we have iga’ + j b  = mgh. + j b  = 
(mh -ia’)g m’g. 

a ia + j b  = mc 

(2) 
*”=- j b  

S 
Because m‘ must be an integer, only two cases are possible: 

If m‘ = 0 then j = 0. Equation (1) can then be re- 
duced to ia = mc = q x Icm(a, c),  where q is an inte- 
ger and Icm(a, c)  denotes the least common multi- 
plier of a and c. From this equation, we have lial 2 

Icm(a, e).  Because 1 - 5 i < C - 1 or lial 5 2 - 

a = Icm(a, c )  - a < Icm(a, c),  a contradiction occurs. 
If m’ # 0 then j # 0. We know gcd(a, b, c )  = 1, be- 
cause the linear schedule n(Z) = ai + bj + ck is a 
normalized one. If gcd(a, c )  = g = 1, then by 1 - g I 
j 5 g - 1, we have j = 0. This is a case which we 
have explored already. On the other hand, if 
gcd(a, c )  = g f I ,  then gcd(b, g )  = 1. From g > ljl, the 
right-hand side of (2), $, cannot be an integer. Thus 
a contradiction occurs, because the left-hand side of 
(2), m‘, is an integer. 

In both cases there are contradictions. This implies that 
G& is a modulo-c segment. 

gcd(b, c)  = g: The argument is similar to that for 
gcd(a, c )  = g.  

It has now been shown that every segment derived by Pro- 
cedure 3.1 (gcd-partition) is modulo-e. 

[isomorphic]. Let v1 and v2 be two time-tags which have the 
same (’p, q)  location about two different segments, say GLtp 

and G,‘:p, respectively, in a module. Let the index vector for 

v1 be [il j l  kllT and that for v2 be [il j ,  k2IT. Then v1 = ail 
+ bjl + ckl and v2 = ail + bjl + ck2. 

+ ~2 - V I  = c(k2 - kl). (3) 
(4) 

Because the size of every segment obtained by Procedure 
3.1 is c,  we have mod(vl, lG&,’pI) = mod(v2, IGL:pI). This 
shows that every segment in a module derived by Procedure 
3.1 is isomorphic to all others. 
Since every segment is modulo-c and is isomorphic to all 
others in the module, it can now be proved that each module 
is elementary. 

[elementary]. Let v1 and v2 (viand v;> be two time-tags with 
the same (’p, q) location about two different segments, say 
GLlp and GLYp, respectively, in a module. Let the index 

vector for v1 be [il j l  kllT and that for v2 be [il j l  k2IT. 

Then v1 = ail + bjl + ckl and v2 = ail + bj, + ck2. Similarly, 
let the index vector for v; be [i; j ;  k1lT and that for v i  be [i; 
j ;  k2IT. Then v; = ai; + bj; + ckl and v i  = ai; + bj; + ck2. 
0 <vl, v2>: If two index vectors belong to different seg- 

ments in a module but have the same (p, q)  location with 
respect to their segments, then their time-tags should be 
different, because (3) is not equal to zero. 

0 <v2, vi>: If two index vectors belong to the same seg- 
ment, then their time-tags are not the same. Since GL,’p is 

modulo-c, we have (v2, c )  # mod(& c),  + v2 f vi. 
0 <vl, vi>: If two index vectors belong to different seg- 

ments and have different (p, q)  locations, then their time- 
tags are not the same. The reason is as follows: Because 
GLfp is modulo-c, we have mod(v2, c )  # mod(v;, c) ,  and 

from (4), mod(vl, e )  = mod(v2, c),  * mod(v,, c )  f 
mod(& c),  3 V I  # vi. 

- mod(vl, c)  = mod(v2, c).  
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No other case. 

Because any two index vectors in a module have different 
time-tags, the module is elementary. Hence every module 

0 

THEOREM 3.2. The regular array derived by Procedure 3.1 is 

constructed by Procedure 3.1 is elementary. 

space-optimal. 

PROOF. To prove that Procedure 3.1 can derive a space- 
optimal regular array is equivalent to proving that the clus- 
ter G derived by Procedure 3.1 is optimal. Lemmas 2.1 and 
2.2 tell us that a cluster G is optimal iff every module G,,p 

E G is elementary and there exists a time-tag v E Ga,p for 

all G,,p E G. The former has been shown in Theorem 3.1. 

Now we want to prove that there is at least one time-tag v E 

G,,p for all G,,p E G if Procedure 3.1 is applied. 

Let v2 be the largest time-tag on the (k  = 1)-plane with a 
remainder r when divided by e,  i.e., 

v2 = m2c+r  EGL &y 
g ’ c  ’ 

where 

g = gcd(b, c) (or G h  where g=gcd(a,c) . r.:. 
Because every segment derived by Procedure 3.1 is 
modulo-c, one can find a time-tag V I  = mlc + r E GL, p, 1 I 
a <:, 1 I p < F. The difference between V I  and v2 is v2 - 

V I =  (m2 - ml)c. 3 m2 - ml = - = m‘. In addition, the dif- 
ference between any two time-tags on the (k  = 1)-plane is 
equal to or less than (a  + b)(N - l), because the maximum 
and minimum time-tags on this plane are aN + bN + c (the 
node [N N 1IT) and a + b + c (the node [ l  1 1IT), respec- 
tively. Thus 

v 2  - v, ~ ( ( 1  + b) (N  - 1) 

C C 

From a + b I c,  we have 

PROOF. The theorem follows directly from Lemma 3.1, Theo- 
U rem 3.1, and Theorem 3.2. 

From Procedure 3.1, because the number of time-tags in 
every segment is c and every module contains N segments, the 
number of time-tags in each and every module is Ne. Mean- 
while, because there are N3 time-tags in the computation do- 
main, the size of the cluster or the number of PES used is $. 

On the other hand, Theorem 3.2 manifests the fact that the 
regular array is space-optimal, Le., the number of PES used 
(modules) by Procedure 3.1 is equal to the minimum number 
of PES required. Thus $ is just the lower bound of the num- 
ber of PES required so that no two different computations are 
executed on the same PE at the same time. Therefore we have 
the following theorem. 

THEOREM 3.4. The minimum number of PES required is $ 
for any SURE with a linear schedule n(I) = ai + bj + ck 
and a + b I e. 
Procedure 3.1 is a simple but useful method of processor 

allocation for deriving a space-optimal regular array. The 
array derived is locally connected and regular and provides 
simple control and a balanced load. However, Procedure 3.1 
guarantees that the optimal space is obtained only when the 
linear schedule n(l) = ai + bj + ck follows the constraint of a 
+ b 5 c. The case where a + b > c will be discussed in the 
next section. 

VI. PROCESSOR ALLOCATION FOR a + b > c 

Now let us discuss the more difficult case, a + b > e.  In this 
case, (5) is not always true and a time-tag v may not always be 
found in every module derived by Procedure 3.1. Thus a 
space-optimal regular array cannot always be obtained, Le., the 
difference between PEurpd and PEmi,, is a function of N 
(problem size parameter). Yet, Procedure 3.1 can still be used 
to decrease PEused from N2 to $ when a + b > c. For example, 
given a linear schedule n(l) = 2i + 3j + 4k and N = 20, the 2 x 

( a +  b)(N - 1) ( a  + b)(N - 1) 
- = N - 1  

c u + b  

2 segment can be obtained by the gcd-partition of Procedure 
3.1; then by Tracel, N segments can be grouped in the ( 5 )  

Then 1 5 m’ 5 N - 1, Therefore, if we have the time-tag k-direction to construct a ~c3duk  (PE). Thus we have P E m d  = 
$ = 100, which is greater than the size of a maximum con- 
current set, 96, for the given linear schedule. Nevertheless, 
when a + b > c,  a space-optimal regular array can be designed 
for the special cases where a = b and b = c by adopting differ- 
ent processor allocation procedures (traces). The problem of 

v2 = m 2 c + r e ~ ; @  
f i ’  ‘ 

in the module 

G:, 8 ’  SK c 

then there exists the same time-tag v2 E G,,p on some i j -  

plane, because V I  = mlc + r E Gh,p, (ml + 1)c + r E 

G : , ~ ,  3 (ml + 2)c + r E G : , ~ ,  ..., 3 (ml + m’>c + r = m2c 

+ r = v2 E Ga,p . For the extreme case, if m’ = N - 1 then v2 m’+l 

will appear on the (k = N)-plane. r i  

THEOREM 3.3. Procedure 3.1 can always design a locally 
connected, space-optimal regular array for any SURE with 
a linear schedule n(I) = ai + bj + ck and a + b I c. 

matrix multiplication is a good example for both cases, be- 
cause the optimal linear schedule for that problem is n(r) = i + 
j + k [21]. 

A. Procedure for b = c 

PROCEDURE 4.1. Given a 3 0  SURE with a linear schedule 
n(l) = ai + bj + ck, where a + b > c and b = c, a space- 
optimal regular array can always be obtained by gcd- 
partitioning every ij-plane of the DG of the SURE into sev- 
eral c x 1 segments. Each module (PE) is constructed by 
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using Trace2 as follows to collect the set of segments of the 
module (Fig. 3): 

Trace, (G:.p, free(@)) = < G&, G&+l ,..., Ga,p+,-l, Y 

Y Y Y 
Ga+l,p 3 Ga+l,p+l). . ' 1  Ga+l,p+a-I 7 

where nl is the maximum row index of segments on the y-plane 
in the current free(@) and n2 is the maximum column index of 
segments on the y-plane in the current free(@) when a = nl. 
The processor allocation procedure is greedy, such that nl ,  n2 
can be determined by this greedy procedure: 

Step I :  Let m = 1. 
Step 2: Find a free segment which is minimal, G&, = 

min V;ee (O)}. 
Step 3: Construct the module C ,  = Tracez ( GL,p, fiee(O)). 
Step 4: Iffree(@) # 0 then m = m + 1 goto Step 2 else stop. 

k = r  

I I GE .n2 I 
k = N  

Fig. 3. Tracez. 

THEOREM 4.1. The processor allocation Procedure 4.1 is 
compatible with its schedule n(l) = ai + bj + ck, a + b > c, 
and b = c. 

PROOF. 

[modulo-c]. Segments derived by gcd-partitioning must be 
modulo-c. 

[isomorphic]. Let V I  = ail + bjl + ckl and v2 = ai2 + bj2 + ckz be 
two time-tags whose index vectors are on the same (p, q) loca- 
tions about their segments G;;,~, , G&, , respectively. From the 
fact that every segment is a c x 1 matrix, we have v2 = a(il+ i'c) 

+ bj, + ck2. From b = c, we have v2 - V I  = ai'c + c(iz - j l )  + c(k2 
- kl) = (ai' + j 2  - j l  + k2 - kl)c. Thus, mod(y, I G ~ ; , ~ ~  I) = 
m~d(v~, lGL:,~,  I), where I = I = c. 
Now we can say that every segment derived by Procedure 
4.1 is isomorphic to all others. 

[elementary]. Because every segment is isomorphic to all 
others, if two time-tags v1 and v2 are not on the same (p, q) 
location, then v1 # v2. We now want to prove that no two 
time-tags in a module with the same (p, q) location are 
equal. From the module constructed by Tracez, as shown in 
Fig. 3,  let v = mc + r E G&. 

Letv,  = m , c + r  E ~ , ' , ~ + , . t h e n v ,  = ( m + l ) c + r .  

Let v2 = mtc + r E G&+.-, then v 2  = ( m  + Q - 1)c + r .  

Let v3 = m,c + r E G:+,,~ then v3 = ( m  + Q)C + r. 
Letv, = m , c + r E ~ ~ , , ~ t h e n v ,  = ( m + m :  a ) c + r ,  

where mi> 0. 
All other formulae can be derived similarly. The quotients 
of dividing the time-tags vl s by c with remainder r are 
shown in Fig. 4, from which we can see that all time-tags 
with the same (p, q) location are not equal, because they 
have different quotients. Hence every module derived by 
Tracez of Procedure 4.1 is elementary, Le., the processor 
allocation Procedure 4.1 is compatible with its schedule 

0 

THEOREM 4.2. The minimum number of PES required for the 
n(l) = ai + bj + ck. 

schedule n(l> = ai + bj + ck, a + b > c,  and b = c is 

PROOF. Fig. 5 is the (k = I)-plane of a DG. The slanted lines 
represent a time hyperplane with the normal vector [a c elT 
projected on the (k = 1)-plane. They pass through the nodes 
(represented by black nodes in Fig. 5) belonging to the 
modulo set 4(r). From left to right, we have the following 
observations: 

there are a lines each of which passes through only one node; 
there are a lines each of which passes through two nodes; 

there are a lines each of which passes through $ -1 nodes; 

there are N - a (4-1) lines each of which passes 

there are a lines each of which passes through $ -1 nodes; 

there are a lines each of which passes through only one node. 

Because all the nodes on a time hyperplane are executed at 
the same time, they are assigned the same time-tag. These 
nodes with the same time-tag must be allocated to different 
PES. Therefore, in order to find PEmin, we need to find the 
hyperplane, say ~ which contains the maximum number of 
nodes. We project the nodes of g i n  the k-direction onto the 
(k = 1)-plane. These nodes should be projected onto the 

through nodes; 
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m 
m+a 

m+m;a 
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m +  1 . . .  m+lz- l  
m+a+1 . . .  m+2a-1 

m+m;a+1 ... m + ( m ; + l ) a - 1  m+(m;+l )a  . . .  m + ( m ; + l ) a + m ;  

/ 

// 
// 

7- . . .  

I 

m + (mi + 1). + m; + mj 
k = N  

Fig. 4. The quotients obtained by dividing the time-tags in all segments of a module by c for the case of b = c. 

necessary to select N slanted lines for which the total num- 
ber of black nodes passed through is maximal. From the 
above observations, the selection is as follows: If 4 is an 

' odd number then there are 

(N - a($ - 1)) lines each of which has 4 nodes, 
2a lines each of which has 4 - 1 nodes, 
2a lines each of which has $ - 2 nodes, 

2a lines each of which has $ - Le] nodes. 

Thus the total number of nodes of %is 

(N - a($ - 1))$+ 2a( ($ - 1) + ($ - 2) + e . . +  ($ - 161) ) 
= $ - aL$][el.  

Similarly, if $ is an even number then there are 

(N - a($ -1)) lines each of which has $ nodes, 
2a lines each of which has 4 -1-nodes, 

2a lines each of which has $ -2 nodes, 

2a lines each of which has $ - $ +1 nodes, 

a lines each of which has 4 - 2 nodes. 

Thus the total number of nodes of His 

0 

THEOREM 4.3. Procedure 4.1 can always design a locally 
connected, space-optimal regular array for  any SURE with 
a linear schedule n(l) = ai + bj + ck, a + b > c ,  and b = c .  

PROOF: From Procedure 4.1, we know that nodes on every plane, 
fkom the (k = 1)-plane to the (k = N - ( a 4  - 1))-plane, can be 
allocated to 4 PES. However, nodes on the (k = N - a (4 - 1) + 
l)-pIane can be allocated only to (4 - 1) PES, because thls 
plane has only a($ - 1) columns of index vectors which are 
hee; the others have already been allocated. Similarly, the 
nodes on the next 2a - 1 k-planes can be allocated to (4 - 1) 
PES, and then there are 2a k-planes which can be allocated to 
(4 - 2) PES, and so on, until all N k-planes are allocated. If 4 
is an odd number then the number of PES used is: 

PEused 

= (N - a($ - 1))$+2a(($ - 1) + ($ - 2) +...+ (4 -I$])) 

Similarly, if $ is an even number, then the number of PES 
used is: 
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k = y + l  

k = N  

Fig. 6.  Trace?. 

B. Procedure for a = b 

PROCEDURE 4.2. Given a 3 0  SURE with a linear schedule 
n(Z) = ai + bj + ck, where a + b > c and a = b, a space- 
optimal regular array can always be obtained by partition- 
ing every ij-plane of the DG of the SURE into several c x 1 
segments. Each module is constructed by using TraceS as 
follows to collect the set of segments of the module (Fig. 6): 

y+u-I y+u-l y+a-1 y+u-l G , Y ~ - '  3 G,Y:;f' 1 .  . 9 GnI ,p , p + c  9 Gnl , p + 2 c  3 ' ' 3 Gn, .n2 

G:l:n: 9 G;Tn":' 9 '  . . *  G&, > 3 

where nl is the maximum row index of segments on the y- 
plane in free(@) and n2 is the maximum column index of 
segments on the y-plane in free(@) when a = nl  and is 
equal to p + me. The processor allocation procedure is 

greedy such that n l ,  n2 can be 
procedure: 

Step 1: Let m = 1. 
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determined by this greedy 

Step 2: Find a free segment which is minimal, G& = 

Step 3: Construct the module G ,  = Trace3 (G&, free(@)). 
Step 4: Iffree(@) # 0 then m = m + 1 goto Step 2 else stop. 

minCfree (O)] .  

THEOREM 4.4. The processor allocation Procedure 4.2 is 
compatible with its schedule n(r> = ai + bj + ck, a + b > e, 
and a = b. 

0 

THEOREM 4.5: The minimum number of PES required for the 

PROOF: The proof is similar to that for Theorem 4.2. 

schedule n(l)= ai + bj + ck, a + b > e, and a = b is 

PE,,, = - [+p1., 
{+-pi , if +, pi 

where 

k {  
0, , otherwise 

PROOF. Fig. 7 is the (k = 1)-plane of a DG. The slanted lines 
represent a time hyperplane with the normal vector [a a cIT 
projected onto the ( k  = 1)-plane. These slanted lines pass 
through black nodes which belong to modulo set #r) .  As- 
sume that H is the time hyperplane which contains the 
maximum number of nodes. These nodes when projected 
onto the (k = 1)-plane should be on the positions of black 
nodes. The number of slanted lines which cover these pro- 
jected nodes is [:] because the time-tags' difference be- 
tween two adjacent slanted lines is ac and the time tags' dif- 
ference between two adjacent k-planes is e. However, it can 
be observed from Fig. 7 that the total number of slanted 
lines is Therefore, the total number of nodes on Hcan 
be calculated by selecting [q slanted lines for which the 
total number of black nodes passed through is maximal. Let 

If 1 is an even number, then we have 

PE,, = $ - c ( (  2 1 + 2 +...++)) = $- - c[31[?1; 

otherwise, we have 

PE,, = $ - C( 2(1+ 2 +...+ y) +?) 
= q - c[61[+l, 

U 

THEOREM 4.6. Procedure 4.2 can always design a locally 
connected, space-optimal regular array for any SURE with 
a linear schedule n(o= ai + bj + ck, a + b > c and a = b. 

PROOF. By Procedure 4.2, the DG of the SURE can be divided 
into c regions, e.g., the shaded segments in Fig. 7 and those 
extended in the k-direction form one of these regions. Every 
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C C C 

C 

Fig. 7. The ( k  = 1)-plane of a DG with schedule ui + bj + ck, u + b > c, and u = b 

PROOF. By Procedure 4.2, the DG of the SURE can be divided 
into c regions, e.g., the shaded segments in Fig. 7 and those 
extended in the k-direction form one of these regions. Every 
region is formed entirely of isomorphic segments, can be 
allocated independently, and will have the same number of 
PES. Let us consider any one region. If :is an even num- 
ber, :is the number of PES for all.the nodes in the region 
between the (k  = 1)-plane and the (k = a)-plane, 2($-1) is 
the number of PES for all the nodes in the region between 
the ( k  = a + 1)-plane to those of the (k = 3a)-plane, and so 
on. Thus the number of PES used by each region is 

where 

On the other hand, if I 5 I is an odd number, then the num- 
ber of PES used by each region is 

Because there are c regions in the DG, the number of PES 0 
used by Trace3 is PEused = $ - c[41[?1. 

EXAMPLE 4.1. [matrix multiplication] The dependence ma- 
trix D for matrix multiplication [21] can be written as .-E ; 8]. 
and its DG is shown in Fig. 8(a) ( N  = 6). Its corresponding 
optimal linear schedule is n(r) = i + j + k. Thus by applying 
Procedure 4.1 (or Procedure 4.2), the time-tags of all index 
vectors on every ij-plane can be gcd-partitioned into several 
1 x 1 segments. The module is then constructed by Trace2 
of Procedure 4.1 (or Trace3 of Procedure 4.2), as shown in 
Fig. 8(b). By mapping each module onto one PE, a space- 
optimal regular array can be constructed, as shown in Fig. 
8(c). If we adopt the linear space mapping, then N = 36 
PES is necessary. But Procedure 4.1 (or Procedure 4.2) can 
reduce the PEused to 
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k = l  

Fig. 8(a). The DG for matrix multiplic 

k = 2  

k = 6  
:ation (N = 6). 

k = 5  

k = 6  
Fig. 8(b). The processor allocation for matrix multiplication by Procedure 4.1 
(or Procedure 4.2). 

advance a maximum concurrent set for a given linear schedule 
in order to design space-optimal regular mays. The proposed 
processor allocation procedures ensure that no two nodes 
scheduled at the same time are mapped onto the same PE 
(Theorem 3.1) and that all PES are active simultaneously at 
some one time instance (Theorem 3.2). Second, for a given 
linear schedule n(I) = ai + bj + ck, 1 I a I b I c, for an 
SURE, two cases were studied: a + b I c and a + b > c. In the 
former case, a space-optimal design can always be obtained by 
Procedure 3.1; the number of PES used is $. The resulting 
array has the advantages of local connection, load balance, 

v 

Fig. 8(c). The space-optimd regular array for matrix multiplication. 

simple control, and space optimality. For the latter case, 
$becomes the upper bound of PEmin. We also discussed two 
special cases of a + b > c, a = b and b = c. By Procedures 4.1 
(b  = c)  and 4.2 (a = b), space-optimal regular arrays can also 
be obtained for these cases. The closed form expressions for 
PEmin are also given for the cases of b = c and a = b in Theo- 
rems 4.2 and 4.5, respectively. Although only three dimen- 
sional algorithms with linear schedules are discussed here, the 
method proposed in this paper can easily be extended to higher 
dimensional algorithms. More research on the topic of space- 
optimal design should be pursued; one important project 
would be to solve the problem of space-optimality for linear 
schedule n(Z) = ai + bj + ck with a + b > c and its closed form 
expressions for PE,in. 
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