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A Fast Motion Estimation Algorithm
Based on the Block Sum Pyramid

Chang-Hsing Lee and Ling-Hwei Chen

Abstract—In this correspondence, a fast approach to motion estimation
is presented. The algorithm uses the block sum pyramid to eliminate un-
necessary search positions. It first constructs the sum pyramid structure
of a block. Successive elimination is then performed hierarchically from
the top level to the bottom level of the pyramid. Many search positions can
be skipped from being considered as the best motion vector and, thus, the
search complexity can be reduced. The algorithm can achieve the same
estimation accuracy as the full search block matching algorithm with
much less computation time.

Index Terms—Block matching, motion estimation, pyramid.

I. INTRODUCTION

In image sequence coding, the correlation between consecutive
frames can be reduced by the motion estimation/motion compensation
technique [1]. Motion estimation plays an important role in reducing
the bit rates for transmission or storage of video signals. The
block matching algorithm (BMA) [2], which estimates the amount
of motion on a block-by-block basis, is the most popular motion
estimation method. In BMA, for each template block in the present
frame, the best matching block within the search area in the previous
frame will be determined by evaluating some matching criterion.
The displacement vector of the best matching block relative to
the template block is taken as the motion vector of the template
block. In general, the search area is limited in the window of size
(2W +1)� (2W +1) centering around the position of the template
block. The mean absolute difference (MAD) is the most popular
matching criterion because it requires no multiplication operations
and is defined as

MAD (u; v) =

N

i=1

N

j=1

jft(i; j)� ft�1(i+ u; j + v)j;

�W � u; v � W (1)

where(u; v) is the displacement vector of the candidate block relative
to the template block,ft(�; �) is the gray value of a pixel in the
present frame andft�1(�; �) is the gray value of a pixel in the
previous frame. The displacement vector(u; v) of a candidate block
associated with minimal MAD(u; v) is selected as the motion vector.
The full-search algorithm (FSA) evaluates the MAD for all of the
(2W + 1)2 search positions. Therefore, the computation of FSA is
very intensive. Several fast-search algorithms, such as the three-step
search (TSS) [3] and its improvements [4]–[6], two-dimensional (2-
D) logarithmic search [7], one-at-a-time search [8], [9], orthogonal
search [10], cross search [11], hierarchical search [12]–[14], genetic
search [15], and one-dimensional (1-D) full search [16], etc., have
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been proposed. These algorithms reduce the search complexity by
limiting the number of search positions based on the assumption that
the matching error monotonically increases as the search position
moves away from the location of the optimal motion vector. The
assumption is not always true in reality and they may converge to a
local minimum on the error surface instead of the global minimum
as in the FSA.

Recently, Li and Salari [17] proposed a fast motion estimation
method called the successive elimination algorithm (SEA), which
can achieve the same estimation accuracy as the FSA while requiring
less computation time. In SEA, the displacement vector of the
corresponding block in the previous frame is used as the initial
motion vector for the present template block [18]. The SEA uses
the sum norm of a block as a feature to eliminate unnecessary search
positions. The sum norm of a blockB of sizeN �N is defined as

SB =

N

i=1

N

j=1

jB(i; j)j (2)

whereB(i; j) is the gray level of the(i; j)th pixel of block B.
Let ST be the sum norm of the template blockT , SX be the sum
norm of a candidate matching blockX, and MADmin be the current
minimal MAD during the search process. Let MAD(T; X) be the
MAD betweenT andX and is defined as

MAD(T; X) =

N

i=1

N

j=1

jT (i; j)�X(i; j)j

whereT (i; j) andX(i; j) represent the gray values of the(i; j)th
pixels of T and X. The authors had shown that the following
inequality is true:

MAD(T; X) � jST � SX j: (3)

Based on the above inequality, the SEA discards each candidate
matching blockX with jST � SX j � MADmin, which can save
a lot of search time.

In this correspondence, a fast approach to motion estimation
called theblock sum pyramid algorithm(BSPA) is introduced. The
BSPA can achieve the same estimation accuracy as FSA and SEA
while needing much less computation requirement than these two
algorithms.

II. THE BLOCK SUM PYRAMID ALGORITHM (BSPA)

A. Principles of the Algorithm

As mentioned previously, the SEA uses the sum norm of a block
as a feature to eliminate unnecessary block matches. Here, a more
efficient search algorithm, the BSPA, will be proposed by exploiting
the sum pyramid structure of a block to eliminate those impossible
matching blocks. An image pyramid is a hierarchical data structure
originally developed for image coding [19]. In the following, we will
introduce the sum pyramid data structure first.

Assume that each block is of sizeN � N with N = 2
n. Then,

for each blockX, a pyramid ofX (see Fig. 1) can be defined as a
sequence of blocksfX0; � � � ; Xm�1; Xm; Xm+1; � � � ; Xng with
Xm�1 having size2m�1 � 2

m�1 and being a reduced-resolution
version ofXm. Note thatX0 has only one pixel. A pyramid data
structure can be formed by successively operating over 2� 2
neighboring pixels on the higher levels. That is, the value of a pixel
Xm�1

(i; j) on levelm� 1 can be obtained from the values of the
corresponding 2� 2 neighboring pixelsXm

(2i�1; 2j�1),Xm
(2i�

1; 2j), Xm
(2i; 2j�1), andXm

(2i; 2j) on levelm. In other words,
Xm�1

(i; j) can be obtained byXm�1
(i; j) = fff [Xm

(2i� 1; 2j �

Fig. 1. A pyramid data structure.

1), Xm
(2i � 1; 2j), Xm

(2i; 2j � 1), Xm
(2i; 2j)], where fff is

an operating function. In the sum pyramid structure, the operating
function fff is a summation function, i.e., the value of each pixel
is obtained by summing the values of its corresponding 2� 2
neighboring pixels on the next level. For example

X
m�1

(i; j) =X
m
(2i� 1; 2j � 1) +X

m
(2i� 1; 2j)

+X
m
(2i; 2j � 1) +X

m
(2i; 2j): (4)

For two blocksX andY , let MADm
(X; Y ) be MAD(Xm; Y m

),
i.e.,

MADm
(X; Y ) =

2

j=1

2

h=1

jX
m
(j; h)� Y

m
(j; h)j

whereXm
(j; h) andY m

(j; h) represent the values of the(j; h)th
pixels on Xm and Y m, respectively. Thus, on the top level,
MAD0

(X; Y ) = jSX � SY j. From the above definition, we have
the following theorem.

Theorem 1:

MAD(X; Y ) �MADn�1
(X; Y ) � MADn�2

(X; Y )

� � � � � MAD0
(X; Y ): (5)

Proof: Since

MADm+1
(X; Y )

=

2

a=1

2

b=1

jX
m+1

(a; b)� Y
m+1

(a; b)j

=

2

j=1

2

h=1

fjX
m+1

(2j � 1; 2h� 1)

� Y
m+1

(2j � 1; 2h� 1)j

+ jX
m+1

(2j � 1; 2h)� Y
m+1

(2j � 1; 2h)j

+ jX
m+1

(2j; 2h� 1)� Y
m+1

(2j; 2h� 1)j

+ jX
m+1

(2j; 2h)� Y
m+1

(2j; 2h)jg:

From (3) and the definition of the sum pyramid, for anym, 0 �



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 11, NOVEMBER 1997 1589

Fig. 2. Comparison of addition/absolute operations for the salesman image sequence.

TABLE I
PERFORMANCE EVALUATION OF VARIOUS BLOCK-MATCHING ALGORITHMS

m < n, we can get

MADm+1(X; Y ) �

2

j=1

2

h=1

jX
m(j; h)� Y

m(j; h)j

=MADm(X; Y ):

Since MAD(X; Y ) = MADn(X; Y ), we can easily obtain

MAD(X; Y ) �MADn�1(X; Y ) � MADn�2(X; Y )

� � � � � MAD0(X; Y ):

With the above theorem in hand, we will begin describing the
BSPA. The BSPA first constructs the sum pyramid of every block
that corresponds to a search position in the previous frame. To
search for the best matching block of a template blockT , the sum
pyramid of T is established. Then, the MAD betweenT and the
block with displacement vector (0, 0) is evaluated, and this value
is considered as the current minimum MAD, MADmin. For any
other search blockX, the algorithm first checks the MAD on the
top level, MAD0(T; X). If MAD 0(T; X) is greater than MADmin,
this block can be eliminated from being considered as the best
matching block. Otherwise, the MAD on the first level is checked.
If MAD 1(T; X) is greater than MADmin, for the same reason as
above, this block can be eliminated. If it is not, the second level
is tested. The process is repeated until this block is eliminated
or the bottom level is reached. If the bottom level is reached,
then MAD(T; X) is calculated and checked. If MAD(T; X) <

MADmin, the current minimum distortion MADmin is replaced with
MAD(T; X).

The proposed algorithm is a “coarse to fine” technique, which
can eliminate many search blocks without evaluating their MAD’s.
Since evaluating the MAD between two blocks needs more time
than evaluating the MAD on the top levels of the sum pyramid,
the elimination of many blocks before their MAD’s are evaluated
can save a great deal of time.

B. Calculation of the Sum Pyramid

In BSPA, the block sum pyramid of each candidate block in the
search area must be known. Assume that the size of the image frame
is W �H. For each level of the pyramid, calculation of the sum of
2 � 2 neighboring pixels requires3(W � 1)(H � 1) additions.
However, using the idea for fast calculation of the sum norm
developed in [17], the complexity can be reduced to be(2W�1)(H�
1) additions for each level. If the block size is 16� 16, i.e.,N = 16,
the overhead for constructing the sum pyramid is4(2W�1)(H�1).
Since there are(W=N)(H=N) template blocks in an image frame,
the computation overhead for each template block is

4(2W � 1)(H � 1)=[(W=N)(H=N)]

= N
2(8� 4=W � 8=H + 4=WH) � 8N2

:

Since each block matching requiresN2 operations, the overhead is
approximately equivalent to eight search positions.

III. EXPERIMENTAL RESULTS

We have investigated the performance of the proposed algorithm
by comparing it with the FSA, TSS, and SEA on a Sun SparcStation
20. The first 30 frames in four image sequences (salesman, Missa,
Claire, and swing) are used in the simulation. Each image frame is
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Fig. 3. Comparison of addition/absolute operations for the Missa image sequence.

Fig. 4. Comparison of the number of blocks with prediction error greater than a thresholdTm for each 16� 16 block (Tm is 512 for MAE).

of size 352� 288. The block size for motion estimation is 16� 16.
The search area is of size 15� 15. The displaced frame difference
(DFD) [4] is used to measure the performance of the algorithms, and
is defined as

1

352� 288

352

i=1

288

j=1

jft(i; j)� ft�1[i� u(i; j); j � v(i; j)]j

where [u(i; j); v(i; j)] is the motion vector obtained at each point
(i; j).

Table I shows the comparison results for the image sequences in
terms of DFD and PSNR. From this table, we can see that BSPA,
SEA, and FSA have the same estimation error, which is lower than
that of the TSS algorithm.

Figs. 2 and 3 compare addition and absolute operations for the
image sequences salesman and Missa, respectively. As can be seen
from Fig. 2, BSPA outperforms SEA and TSS algorithms. In Fig. 3,
the required operation of BSPA is almost the same as that of SEA,
but is more than that of the TSS algorithm. From these two figures,
we can see that for image sequences with more complex backgrounds
(e.g., salesman), the reduction is much more than that for an image
sequence with a simple background (e.g., Missa).

In video coding, the prediction error between each block and its
best matching block will be coded and transmitted if the prediction
error is greater than a certain thresholdTm. Therefore, the more the
number of blocks with prediction error greater thanTm, the more
bits and time complexity is needed. Fig. 4 shows the number of
blocks with prediction error greater thanTm for the BSPA and TSS
algorithms. From this figure, we can see that the number of blocks

with prediction error greater thanTm for the TSS algorithm is more
than that of the BSPA.

IV. CONCLUSIONS

A new approach to motion estimation, BSPA, has been presented
in the correspondence. The algorithm uses the block sum pyramid
to eliminate unnecessary search positions. The BSPA can find the
global optimal solution and outperforms the SEA. The reduction
of computational requirements depends on the characteristic of the
image sequences. For an image sequence with a more complex
background, the reduction is much more than that for an image
sequence with a simple background.
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Motion Segmentation by Multistage Affine Classification

Georgi D. Borshukov, Gozde Bozdagi,
Yucel Altunbasak, and A. Murat Tekalp

Abstract—We present a multistage affine motion segmentation method
that combines the benefits of the dominant motion and block-based affine
modeling approaches. In particular, we propose two key modifications
to a recent motion segmentation algorithm developed by Wang and
Adelson. 1) The adaptive k-means clustering step is replaced by a merging
step, whereby the affine parameters of a block which has the smallest
representation error, rather than the respective cluster center, is used
to represent each layer; and 2) we implement it in multiple stages,
where pixels belonging to a single motion model are labeled at each
stage. Performance improvement due to the proposed modifications is
demonstrated on real video frames.

I. INTRODUCTION

Motion segmentation refers to grouping together pixels that un-
dergo a common motion. Various methods for motion segmentation
can be classified as those belonging to affine clustering approach [1],
dominant motion approach [2], and simultaneous motion estimation
and segmentation approach [3].

Recently, Wang and Adelson [1] proposed an affine-clustering-
based motion segmentation method for layered representation of
video. First, a dense flow field is estimated. This flow field is,
then, divided into nonoverlapping rectangular blocks, and affine
motion parameters are estimated for each block. Next, the affine
parameters are subjected to a reliability test, based on how well
the affine motion vectors within each block fit the estimated dense
flow field. Those affine parameters (hypothesis) that pass the test
are clustered into a small number of classes using an adaptive k-
means algorithm. Finally, each flow vector is assigned to one of
the resulting classes, represented by their cluster centers, using a
minimum residual classifier. Motion vectors where the minimum
residual is above a prespecified threshold are handled separately.
Our experimentation with this method has led to the following
observations.

1) The adaptivek-means clustering in essence computes an “av-
erage” affine model (hypothesis) for each layer. We show that
better results can be obtained by replacing the clustering step
with a “merge” step, which in effect picks the model having
the smallest residual for each layer.

2) Labeling the class memberships of all motion vectors in a single
stage generally produces unsatisfactory results. That is, it may
result in either segmentation of a single motion into multiple
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