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A Novel CORDIC-Based Array Architecture for 
the Multidimensional Discrete Hartley Transform 

Jiun-In Guo, Chi-Min Liu, and Chein-Wei Jen 

Abstruct- In this paper, a coordinate rotation digital computer 
(CORD1C)-based array architecture is presented for computing the 
multidimensional (M-D) discrete Hartley transform (DHT). Since the 
kernel of the M-D DHT is inseparable, the M-D DHT problems cannot 
be computed through the 1-D DHT's directly. Bracewell e? al. have 
presented an algorithm for the M-D DHT through the 1-D DHT's. 
The existing hardware architectures have heen designed using this 
algorithm. However, the postprocessing required in the algorithm leads 
to high hardware overhead. This paper presents a new algorithm to 
compute M-D DHT through a special 1-D transform which is derived 
through considering both the separable computation and the efficient 
implementation with CORDIC architectures. This algorithm provides a 
direct way to compute the M-D DHT separably through 1-D transforms 
with simpler postprocessing than that in Bracewell's approach. Also, the 
algorithm exploits the symmetry of the triangular functions to reduce 
the computational complexity. Using this algorithm, we design an array 
architecture for the M-D DHT. This architecture features a systolic 
computing style, PE's with a CORDIC structure, low U0 cost, and the 
encapsulated new M-D DHT algorithm. 

I. INTRODUCTION 
The discrete Hartley transform (DHT) [l], [2] is considered to 

be a good alternative to the discrete Fourier transform (DFT) since it 
requires only real number computations, which are much simpler than 
the complex number computations required in the DFT. Therefore, 
the DHT has been widely applied in the field of digital signal 
processing. Though computing the DHT involves only real number 
computations, the M-D DHT is still computation-intensive. Thus, a 
dedicated VLSI implementation for the M-D DHT is necessary to 
provide a high-speed, low-cost means of computing the M-D DHT. 

A. The DifJiculty in Computing the M-D DHT 

nM = 0 , 1 , .  . ' , N - 1) is defined as 
The M-D DHT of the input data { z ( n ~ , n ~ ,  ... , nM),  n1, n z , .  . . , 

Zan,k where p n , k ,  = + and cas(@) = cos(@) + sin(@). A major 
difficulty in computing (1) is that the kernel of the M-D DHT is 
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inseparable, i.e., cas(& + ... + O M )  # cas(81) x ... x cas(8M). 
This inseparability induces heavy computational load in realizing the 
M-D DHT problems. In the following, we discuss the 2-D transform 
as an example. A 2-D N x N separable transform, like the DIT, 
can be decomposed into 2N identical 1-D N-point transforms for 
reducing the computational complexity from O( N 4 )  to O ( 2 N 3 )  
[3]. The inseparability of the 2-D DHT, on the other hand, implies 
that its computational complexity should be O(N4). To reduce this 
complexity, Bracewell et al. [4] introduced a temporary variable 
T ( E l , k z ) ,  defined as 

The 2-D DHT, denoted as H (  k1, kz), can then be calculated from 
T(k1, kz) through 

Note that the kernel in (2) has been separated, and hence the 
T ( k 1 , k z )  can be computed through 2N 1-D N-point DHT's. The 
existing hardware designs for the 2-D DHT in the literature [5]-[8] 
are based on (2) and (3). However, these designs are used to realize 
only the T(k1, kz) in (2), and they do not consider the issue of how to 
efficiently realize (3) to obtain H ( k 1 ,  k~). Note that the complexity of 
the postadditions indicated in (3) is O ( N M )  if a M-D DHT problem 
is considered. This complexity increases dramatically as M increases. 
From the perspective of VLSI implementation, the O ( N 2 )  additions 
and the poor data locality of T(k1,  kz) in (3) impose much overhead 
in hardware cost, computation time, and control circuits. Moreover, 
as higher dimensional DHT problems are considered, this overhead 
will increase exponentially. 

B. The Design Concepts and Main Results of This Paper 

Being different from the conventional approach which computes 
the M-D transforms using the same kind of 1-D transforms, our basic 
concept is that any kind of 1-D transforms can be used to compute 
a M-D transform if there are advantages in doing so. Following this 
concept, we intend to derive a kind of 1-D transform to compute the 
M-D DHT through considering both the separable computation and 
the efficient hardware implementation. 

The implementation of triangular functions and multiplications 
is a key consideration in the design of VLSI architectures for the 
DHT. The coordinate rotation digital computer (CORDIC) structure 
is considered to be a good choice for these operations [SI, [lo]. 
Fig. 1 shows the basic CORDIC processor operating in the circular 
coordinate system, which realizes the following operations 

(4) 
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-b x' = CORDYl[x, y, v] = x cos(v) + y sin(y) 

- 0  

Fig. 1. The CORDIC processor operating in the circular coordinate system 
(a denotes the rotation angle). 

The terms (2, y)  and (z', y') denote the coordinates before and 
after rotation, respectively. $ denotes the rotation angle. Note that 
in Fig. 1 2' and y' are expressed as combinations of the terms 
z, y, cos($), and sin($). The special property of CORDIC is that 
the same hardware cab support different output functions by simply 
changing the assignments of the input data. For example, it supports 
the functions o f f .  [cos($) +sin($)] and f . [cos(qb) -sin($)] if we 
assign (2, y )  = (f, f) and supports the functions of f . cos($) and 
f . sin($) if we assign (2, y) = (0, f). This property allows large 
flexibility in deriving the 1-D transform. Using this property, we 
derive a kind of 1-D transform to compute the M-D DHT separably. 
This algorithm only needs an addition as the postprocessing which 
is simpler than that in the Bracewell's approach. Besides, we exploit 
the symmetry of the triangular functions to reduce the complexity of 
the derived 1-D transform. 

Based on this algorithm, we design an array architecture for the 
M-D DHT. This architecture consists of M linear systolic arrays 
and (M-1) transpose RAM'S. Each array consists of process- 
ing elements (PE's), which are composed of CORDIC processors, 
ROM's, and adders. The throughput of the architecture is two 
samples per cycle. The cycle time is the consumed time for data 
multiplexing, a CORDIC rotation, and one addition. In this design, 
the input/output (UO) cost, including the number of VO channels and 
the YO bandwidth, is independent of the transform length N. To sum 
up, the proposed architecture features a systolic computing style, PE's 
with the CORDIC structure, low VO cost, and the encapsulated new 
M-D DHT algorithm. 

C. Related Research 

In the literature, various DHT algorithms for VLSI implementation 
have been considered [5]-[8]. In the following, we analyze these 
designs from four different points of view: algorithm, architecture, 
implementation, and application. 

Encapsulated algorithm: The algorithms used in designs [SI-[8] 
can be categorized into two groups, the fast Hartley transform 
(FHT) algorithms [SI, [6] and the DHT algorithms [7], [8]. The 
FHT algorithms [SI, [6] primarily focus on reducing the number 
of multiplications. They require about O(N . l o g N )  or O ( N )  
multiplications to compute an N-point DHT, but suffer from complex 
data routing. The DHT algorithms [7], [8] provide simple and local 
communication but require O( N 2  ) multiplications. Checking the 
analysis for the architectures of the DFT and fast Fourier transform 
(FFT) [ l  11, we find that the high communication and control cost of 
fast algorithms would make the architectures realizing the FlT have 
approximately the same hardware cost as those realizing the DFT. A 
good review of such analysis [!2] has been published. In addition, 
considering the commercial chips for the DCT [13], we find that 
most of the designs are based on the discrete cosine transform (DCT) 
algorithms instead of the fast cosine transform (FCT) algorithms. 
Following these analyses, we adopt the DHT algorithms instead of 
the FHT algorithms to design the VLSI architectures in this paper. 

Architecture topology: Among various VLSI architectures, sys- 
tolic arrays [I41 are a type of architecture that provides both high 
processing speeds and convenient VLSI implementation. The designs 

in [SI-[8] are based on systolic arrays. Their architecture topology 
consists of linear arrays and 2-D arrays. Basically, a 2-D systolic 
array has an I/O cost depending on the transform length N. For linear 
arrays, we can restrict the YO channels on the array boundaries so 
that the YO cost can be kept independent of the transform length. 
The arrays designed in this paper are linear arrays. We utilize the 
Tug control scheme [15] to arrange all the VO channels located at the 
two extreme ends of the arrays so as to minimize the YO cost. 

Implementation: Basically, the operations required in computing 
the DHT are triangular functions, multiplications, and additions. The 
triangular functions can be precomputed in a host computer and sent 
to the arrays for computation. However, such an approach would add 
overhead to the YO cost [5]. Altematively, the Givens Rotor [7] and 
CORDIC processor [6], [8] are two functional elements that have 
been used to realize the operations of the DHT. They both employ 
the shift-and-add computation as the basic computing style. Since the 
property of the CORDIC is beneficial in deriving the new M-D DHT 
algorithm, we use the CORDIC processor as the main computing 
element in the systolic arrays designed in this paper. 

Application: Basically, the designs [5]-[7] are for 1-D DHT and 
the design [SI is for both the 1-D and 2-D DHT. Based on the 
Bracewell's approach, one can compute the 2-D DHT using the 
designs [SI-[7] accompanied with the transpose memory and complex 
postaddition circuits. Altematively, one can use the design [8] to 
compute a 2-D DHT, which realizes the temporary variable T(k1, k z )  
through a 2-D array and needs complex postaddition circuits to 
realize H ( k 1 ,  kz). The proposed design realizes a M-D DHT problem 
through A4 linear arrays and transpose memory accompanied with 
only two adders for postadditions. Using transpose memory and extra 
control circuits in the proposed design induces some overhead as 
compared with the design [SI. However, as higher dimensional DHT 
problems are considered, the hardware cost required in the [8] will 
increase tremendously. 

The rest of this paper is organized as follows. The derivation of the 
new M-D DHT algorithm is presented in Section 11. The hardware 
realization of the new algorithm is presented in Section 111. A brief 
conclusion is given in Section IV. Detailed derivations of the new 
algorithm are given in Appendix A and Appendix B. 

\ 

11. ALGORITHM DERIVATION 

By separating the arguments of the cosine and sine functions and 
using the ability of CORDIC to support different output functions, 
the M-D DHT defined in (1) can be reformulated as 

H(k1, k2,. . . , k M )  = CM(k1,  kz, . . . , k M )  + S M ( k 1 ,  kz, . . . , k M )  

(5 )  

where C~(lil,kz,...,k~) and S ~ ( k l , k ~ , . . . , k ~ )  can be com- 
puted through the iterative formula 

N-1 

Ct(kt) = CORDYZ[S,- l (n , ) ,C,- l (n , ) ,yn*k~] 
n,=O 

N- 1 

St(k,) = CORDYl[S,-i(n,),C,-i(n,),y,,k,]; (6) 
n , = O  

from i = l , . . .  , M ,  where 

Co(n1, nz, . . . , n M )  = z (n1 ,nz ,  . . ., n M )  

SO (?I 1, ?I2, . . ' , n M  ) = 0. 

Here, we use A ( k , )  and B(n, )  to, respectively, denote A ( k i , . . .  , 
k,, n,+1,. . . , n ~ )  and B(k.1,. . . , k z - l ,  n,, . . . , n ~ )  for simpli- 
fying the mathematical expressions. And CORDYl[z ,  y, $1 and 
CORDY2[z, y, $1 denote the two outputs of the basic CORDIC 
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processor with inputs 5,  y, and rotation angle 4, as shown in Fig. 1. 
The detailed derivation from (1) to (5)-(6) is shown in Appendix A. 
The C,(k,) and St(kz) are the results of one iteration. One iteration 
computation in (6) is a kind of 1-D transform. This transform 
can be easily realized with the CORDIC processors by assigning 
(5 ,  y, 4) = ( S , - I ( ~ ~ ) ~  Cz- i (n l ) r  pn,k,) .  So, similar to other 
separable transforms, we can compute the M-D DHT through the 
decomposed 1-D transforms iteratively. Moreover, the new algorithm 
only needs a postaddition which is much simpler in hardware than 
the postprocessing indicated in (3). 

Besides, exploiting the symmetry of the triangular functions can 
further reduce the complexity of (6). It is shown in Appendix B that 
(6) can be written as 

_ -  t 1  
~ z ( k z )  = ~0~~~2[~:-l(n,),~:-l(n,),pn,k,l 

n,=O 

_ -  t 1  
C,(k, + 2) = ( - 1 p  . CORDY2[S:-,(n*), 

C-l(nz),  ~ n , k , I  

n , = O  

(7) 

N 

N 
c:-l(n*) = Ct-l(nt) + (-1P * Cz-l(nz + 2) 
S L ( n z )  = S,-1(7L,) + (-1p . S,-l(n, + 2) 

and 

Co(n1,nz,.. .  , n M )  = z(n1,nzr .. . , n M )  
So(n1,nz,. . . , n M )  = 0. 

In the above equation, it is assumed that N = 2p and the integer 
p 2 2. Note that (7) possesses properties similar to those of (6), but 
requires lighter computational load than (6) owing to two features. 
First, the numbers of CORDIC rotations required to compute C,(k,) 
and S, (kl) are reduced to one half of those required in (6). That is, the 
upper limit of the index n, is reduced from N in (6) to : in (7). This 
phenomenon results in the reduction of the computation time by a 
factor of 2. Second, the computations of C, (k,) and C, (k, + :) share 
the same intermediate results obtained from the CORDIC processors, 
except that the results may have different signs. That is, we can use 
a CORDIC processor to compute two output results at a time, which 
reduces the number of the CORDIC processors by a factor of 2. The 
same phenomenon is also found in computing S,(kt) and S,(k,+ :). 
This saving in the number of the CORDIC processors will be even 
more apparent if pipelined CORDIC structures [ 161 are utilized. 

111. HARDWARE IMPLEMENTATION 

To illustrate the array architecture for the M-D DHT, in this section 
we consider an example of a 3-D 8 x 8 x 8 DHT. 

Dependence graph: Fig. 2 shows the dependence graph (DG) to 
compute C, (k; ) and Si (k; ) in (7). The DG clearly illustrates the data 

M 0 1 2 3 

1 

+ + + +  
cl' I 2  Sl' sr 

xl '  <- x l  ; x2'<-x2; x3' <- x3; x4' <- x4; 

v,,J; 

v,J 

If Tag1 4. 
CI'  <- CI + CORDY2[x3,xl, 

SI <- SI t CORDY 1[x3,~1, 
c2' <- c2 t ( - l r *  CORDY~x3,xl, v,J; 
$2' <- s2 t ('1 CORDY 1 [x3rlI  &I; 

else 
CI' <- CI t CORDY2[x4.x2, 
~ 2 '  <- ~2 t (-1 CORDY2[X4,x2, v,]; 
SI' <- s l  + CORDY 1 [ ~ 4 , ~ 2 ,  
~ 2 '  <- ~2 + (-1 p CORDY 1 [ ~ 4 , ~ 2 ,  v,,,J; 

v,.,J; 

end 
(h) 

Fig. 2. (a) The dependence graph for computing Ct(k$'2!, y d  

C O R D Y l [ x ,  y, 21 and CORDY:![x, y, z ]  denote the outputs 
of the CORDIC processor with inputs x ,  y, and 2. C,(k,) and 
Ss(ks), respectively, denote C,(kl,. . .  , k t , n t + l , . . . , n ~ )  and 
S1(ki,...,k,,n,+i,...,n~) . C,-i(n,) and S,-i(nz),  respectively, 
denote C,-1 (kl,. . . , kt- l ,  n, ,  . . . , n ~ )  and S,-1 (kl,. . . , k,-1, n , ,  

S,(k,). (h) The function of the nodes (an,k, = 8 '  

' . ' , n M ) ) .  

operations, the data dependency, and the control signals involved in 
this algorithm. In the DG, the nodes represent the operations to be 
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Si-1(3) Si-10 Cil(3) Ci-1(7) 
Si1 (2) Si-1 (6) Ckl(2) Cil(6) 
Si-l(1) Si-l(5) Cil(1) Cil(5) 
Sl (0 )  Si-l(4) CCl(0) Ci-1(4) 

XI x2 x3 x4 cl c2 sl 92 Tag2 Tagl 

XI' x2x3'x4'cl' Q'sl' eTag2'Tagl' 

Tagl' <- Tagl; Tag2' <-Tag; 
xl' <- xl ; x2' <- x2; x3' <- x3; x4' <- x4; 

If Tag24 then 

else 

end 

dl' <- Xl; (12' <- x2; d3' <- X3; d4' <- X4; 

dl' <- dl; (12' <- &; d3'<d3; d4' <d4; 

If Tag14 then 
cl' <- cl + CORDY2[d3,dlI 
c2' <- ~2 + (-l)n' CORDY2(d3,dlI 

Q'<- s2+ (-l)n'* CORDYl[d3,dl, 

~ 1 '  <- cl + COR.DY2[d4,&, v,,i 1; 
c2' <- c2 + (-l)n'* CORDY2[d4,&, 

vni Id 1; 
vni ld 1; 

vniH 1; 
sl '<-sl  + CORDYl[d3,dl, Ynib 1; 

else 

vni Id 1; ... ._ 
Ci(0) Ci(4) Sl(0) Sl(4) ~ l ' < - ~ l  + COR.DYl[d4& Ynik I; 
CI(1) Ci(5) Si(1) Si(5) 92' <- s2 + (-I)n'* CORDYl[d4&, vniy 1; 
Ci(2) U(6) Si(2) Si(6) end 
Ci(3) Ci(7) Sip) Si(7) 

(a) (b) 
2an k 8 ). Fig. 3. (a) The array architecture for computing c,(kl) and S,(kt). (b) The function of the PE's ( \knzkz  = 

executed, including the CORDIC rotations and additions as described 
in Fig. 2(b). The directed arcs indicate a data dependency between 
two neighboring nodes; that is, the computed result from one node 
should be sent along an arc to be operated on the other node. Based 
on the DG-based array synthesis procedure [15], [17], we can obtain a 
linear array by suitably projecting the DG. If the DG shown in Fig. 2 
is projected vertically, a PE should perform all the operations in the 
nodes along a certain column of the DG. Since there are addition 
paths dong the cohnn ,  e.g., cl '  = c l  + CORDY2[x3, XI ,  &, ,k , ] ,  

the PE's would have accumulation loops. On the other hand, if the 
DG is projected horizontally, there will be data transmission loops 
in the PE's. Since the consumed time for the data transmission loops 
is shorter than that for the accumulation loops, using the two-level 
pipelining technique [18], [19] can further reduce the cycle time of 
the array from the addition time to the data transmission time. This 
fact facilitates the speed improvement of the designed array. 

Array architecture for the 1-D transform: Fig. 3 illustrates 
the linear array obtained from projecting the DG shown in Fig. 2 
horizontally. In this array, the input data are first preprocessed 
and piped in from the topmost PE and then transmitted to the 
neighboring PE's rhythmically. Tug1 and Tug2 are 1-b control signals 
to decide which data operands the P E S  select. Since the rota- 
tion angles used in the array are known in advance, the rotation 
directions { E c J ,  i , j  = 0,1,. . . , - l} instead of the rotation 
angles { y t 3 ,  i , j  = 0,1,. . . , $ - 1) are precalculated and stored 

in ROM's to reduce the hardware and U 0  cost. The output results 
are accumulated and drained out from the bottommost PE. Unlike 
the design in [8], we use the Tug control scheme [15] to locate all 
the U 0  channels at the boundary PE's, which makes the U 0  cost 
of the array independent of the transform length N. Note that there 
is a scaling operator in the end of the linear array to perform the 
scaling operations required in the CORDIC processors. This operator 
can be easily realized by using memory look-up tables or a CORDIC 
processor operated in linear rotation mode [16]. 

Exploiting the symmetry of the triangular functions, the linear 
array requires only PE's, where each PE consists of a CORDIC 
processor, a ROM with N words, several data multiplexing circuits, 
and four adders, as illustrated in Fig. 4. Additional two adders and 
substractors are required in the array for data preprocessing. The 
throughput of the array is two samples per cycle. The average 
computation time to compute a 1-D N-point transform is $ Tcycle. 
The term Tcycle, which denotes the cycle time of the array, includes 
the consumed time for the data multiplexing, a CORDIC rotation, 
and one addition. The speed of the array can be further enhanced for 
high-speed DHT applications by utilizing the techniques presented 
in [20]-[22], such as the pipelined CORDIC, the forward angle 
recording CORDIC algorithm, and the CORDIC algorithms with 
redundant arithmetic and reduced iterations. 

Array architecture for the 3-D DHT: By cascading three arrays 
shown in Fig. 3 and two transpose RAM'S together, we construct 
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ADD 

ADD LEc +I- 9 
ni 

s2' 

s l '  

c l '  

c2' 

Fig. 4. The structure of the PES in the designed array ( & , k ,  denotes the rotation direction corresponding to the rotation angle Q k n , k , ) .  

the array architecture for the 3-D DHT as shown in Fig. 5 .  Note 
that the proposed architecture only requires two adders to perform 
the addition operations indicated in (5). These two adders are much 
simpler in hardware than the postaddition stage required to perform 
the operations indicated in (3). Since this architecture outputs two 
samples per cycle, it requires cycles to compute a 3-D N x N x N 
DHT problem. If the hardware area is the main concern, we can use 
the array shown in Fig. 3 iteratively to compute all the decomposed 
1-D transforms. This kind of architecture outputs two samples every 
three cycles. So, it requires $ cycles to compute a 3-D N x N x N 
DHT problem. 

The proposed array architecture is designed based on the algorithm 
expressed by (7), which exploits the symmetry of the triangular 
functions for reducing the computational complexity. It gains the 
saving in the hardware cost and computation time, but needs a little 
overhead, such as data multiplexing circuits, simple control, some 
adders, and extra time consumption. If this overhead costs more 
hardware price than the saving of the proposed architecture gains 
according to a certain technology, the algorithm expressed by (6), 
which does not exploit the symmetry of the triangular functions, can 
be used to design the array architecture for the M-D DHT. 

IV. CONCLUSION 
In this paper, a new M-D DHT algorithm using CORDIC has been 

presented with simpler postprocessing as compared to the Bracewell's 
approach. A kind of 1-D transform different from 1-D DHT has 
been derived to compute the M-D DHT separably. To reduce the 
complexity of the 1-D transforms, we have exploited the symmetry 
of the triangular functions. Using this algorithm, we have designed 
an array architecture for the 3-D iV x N x N DHT. This architecture 
consists of three linear systolic arrays and two transpose RAM'S. 
Each array consists of $ PE's, which are composed of CORDIC 
processors, ROM's, and adders. The throughput of the architecture 
is two samples per cycle, and the cycle time is the consumed time 
for data multiplexing, a CORDIC rotation, and one addition. In this 

design the YO cost, including the number of YO channels and the YO 
bandwidth, is independent of the transform length IC'. In summary, 
the proposed design features a systolic computing style, PE's with 
a CORDIC structure, low YO cost, and the encapsulated new M-D 
DHT algorithm. 

APPENDIX A 

This appendix illustrates the derivation from (1) to (5)-(6). First, 
we can rewrite (1) as 

where 

With a view to simplify the mathematical expressions, we use A( k ,  ) 
and B(n, )  to, respectively, denote A ( k l , . . . ,  k,,nt+l,...,nM) and 
B(ki,....k,-i,n,,...,n~) . By splitting the arguments of the 
cosine and sine functions in C M ( k M )  and S M ( k M ) ,  we obtain 
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Fig. 5. The array architecture for the 3-D 8 x 8 x 8 DHT (Qnsk,  denotes w). 
and rotation angle $J, as shown in Fig. 1. ( x , y , $ J )  is assigned 
to be (SM-l(nM),CM-l(nM)rvnMkM). Repeating the same 
procedures, we can compute (9) iteratively through 

and 
N-1 

S M ( k M )  = [ S M - l ( n M )  .C0S(Y,,kM) 
nM=O 

N-1 

+ C M - ~ ( ~ M ) .  s i n ( p n M t M ) ]  ( 1 1 )  C*(k) CORDY2[S,-i(n,),C,-i(n,),(3,,k,] 
where n,=O 

APPENDLX B 
This appendix illustrates the derivation from (6) to (7). In the 

following, it is assumed that N = 2p  and the integer p 2 2. First, 
considering the C, ( kt ) in (6) and using the symmetry of the cosine 
function, we obtain 

N-1 

Ct(kz) = [c t - i (nZ) .  cos(vn,k,)  - ~ - 1 ( n ~ ) .  sin(yn,k,)l 
",=O 

_ -  t 1  
= [ ~ : - i ( n s ) .  C O S ( Y ~ , ~ , )  - si-l(nt). Sin(vn,k,)l 

n,=O 

(14) 
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