
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1995 349

Transactions Briefs

A Novel CORDIC-Based Array Architecture for
the Multidimensional Discrete Hartley Transform

Jiun-In Guo, Chi-Min Liu, and Chein-Wei Jen

Abstruct- In this paper, a coordinate rotation digital computer
(CORD1C)-based array architecture is presented for computing the
multidimensional (M-D) discrete Hartley transform (DHT). Since the
kernel of the M-D DHT is inseparable, the M-D DHT problems cannot
be computed through the 1-D DHT's directly. Bracewell e? al. have
presented an algorithm for the M-D DHT through the 1-D DHT's.
The existing hardware architectures have heen designed using this
algorithm. However, the postprocessing required in the algorithm leads
to high hardware overhead. This paper presents a new algorithm to
compute M-D DHT through a special 1-D transform which is derived
through considering both the separable computation and the efficient
implementation with CORDIC architectures. This algorithm provides a
direct way to compute the M-D DHT separably through 1-D transforms
with simpler postprocessing than that in Bracewell's approach. Also, the
algorithm exploits the symmetry of the triangular functions to reduce
the computational complexity. Using this algorithm, we design an array
architecture for the M-D DHT. This architecture features a systolic
computing style, PE's with a CORDIC structure, low U0 cost, and the
encapsulated new M-D DHT algorithm.

I. INTRODUCTION
The discrete Hartley transform (DHT) [l], [2] is considered to

be a good alternative to the discrete Fourier transform (DFT) since it
requires only real number computations, which are much simpler than
the complex number computations required in the DFT. Therefore,
the DHT has been widely applied in the field of digital signal
processing. Though computing the DHT involves only real number
computations, the M-D DHT is still computation-intensive. Thus, a
dedicated VLSI implementation for the M-D DHT is necessary to
provide a high-speed, low-cost means of computing the M-D DHT.

A. The DifJiculty in Computing the M-D DHT

nM = 0 , 1 , . . ' , N - 1) is defined as
The M-D DHT of the input data { z (n ~ , n ~ , ... , nM), n1, n z , . . . ,

Zan,k where p n , k , = + and cas(@) = cos(@) + sin(@). A major
difficulty in computing (1) is that the kernel of the M-D DHT is

Manuscript received May 11, 1993; revised April 15, 1994. This work was
supported by the NSC, Taiwan, R.O.C. under Grant NSC 82-0404-E009-225.
This paper was recommended by Associate Editor P. Agathoklis.

J.-I. Guo is with the Computer & Communication Research Laboratories,
Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, R.O.C.

C.-M. Liu is with the Department of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

C.-W. Jen is with the Institute of Electronics, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C.

IEEE Log Number 940926 1.

inseparable, i.e., cas(& + ... + O M) # cas(81) x ... x cas(8M).
This inseparability induces heavy computational load in realizing the
M-D DHT problems. In the following, we discuss the 2-D transform
as an example. A 2-D N x N separable transform, like the DIT,
can be decomposed into 2N identical 1-D N-point transforms for
reducing the computational complexity from O(N 4) to O (2 N 3)
[3]. The inseparability of the 2-D DHT, on the other hand, implies
that its computational complexity should be O(N4). To reduce this
complexity, Bracewell et al. [4] introduced a temporary variable
T (E l , k z) , defined as

The 2-D DHT, denoted as H (k1, kz), can then be calculated from
T(k1, kz) through

Note that the kernel in (2) has been separated, and hence the
T (k 1 , k z) can be computed through 2N 1-D N-point DHT's. The
existing hardware designs for the 2-D DHT in the literature [5]-[8]
are based on (2) and (3). However, these designs are used to realize
only the T(k1, kz) in (2), and they do not consider the issue of how to
efficiently realize (3) to obtain H (k 1 , k~). Note that the complexity of
the postadditions indicated in (3) is O (N M) if a M-D DHT problem
is considered. This complexity increases dramatically as M increases.
From the perspective of VLSI implementation, the O (N 2) additions
and the poor data locality of T(k1, kz) in (3) impose much overhead
in hardware cost, computation time, and control circuits. Moreover,
as higher dimensional DHT problems are considered, this overhead
will increase exponentially.

B. The Design Concepts and Main Results of This Paper

Being different from the conventional approach which computes
the M-D transforms using the same kind of 1-D transforms, our basic
concept is that any kind of 1-D transforms can be used to compute
a M-D transform if there are advantages in doing so. Following this
concept, we intend to derive a kind of 1-D transform to compute the
M-D DHT through considering both the separable computation and
the efficient hardware implementation.

The implementation of triangular functions and multiplications
is a key consideration in the design of VLSI architectures for the
DHT. The coordinate rotation digital computer (CORDIC) structure
is considered to be a good choice for these operations [SI, [lo].
Fig. 1 shows the basic CORDIC processor operating in the circular
coordinate system, which realizes the following operations

(4)

1057-7130/95$04.00 0 1995 IEEE

-

350 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO, 5, MAY 1995

-b x' = CORDYl[x, y, v] = x cos(v) + y sin(y)

- 0

Fig. 1. The CORDIC processor operating in the circular coordinate system
(a denotes the rotation angle).

The terms (2, y) and (z', y') denote the coordinates before and
after rotation, respectively. $ denotes the rotation angle. Note that
in Fig. 1 2' and y' are expressed as combinations of the terms
z, y, cos($), and sin($). The special property of CORDIC is that
the same hardware cab support different output functions by simply
changing the assignments of the input data. For example, it supports
the functions o f f . [cos($) +sin($)] and f . [cos(qb) -sin($)] if we
assign (2, y) = (f, f) and supports the functions of f . cos($) and
f . sin($) if we assign (2, y) = (0, f). This property allows large
flexibility in deriving the 1-D transform. Using this property, we
derive a kind of 1-D transform to compute the M-D DHT separably.
This algorithm only needs an addition as the postprocessing which
is simpler than that in the Bracewell's approach. Besides, we exploit
the symmetry of the triangular functions to reduce the complexity of
the derived 1-D transform.

Based on this algorithm, we design an array architecture for the
M-D DHT. This architecture consists of M linear systolic arrays
and (M-1) transpose RAM'S. Each array consists of process-
ing elements (PE's), which are composed of CORDIC processors,
ROM's, and adders. The throughput of the architecture is two
samples per cycle. The cycle time is the consumed time for data
multiplexing, a CORDIC rotation, and one addition. In this design,
the input/output (UO) cost, including the number of VO channels and
the YO bandwidth, is independent of the transform length N. To sum
up, the proposed architecture features a systolic computing style, PE's
with the CORDIC structure, low VO cost, and the encapsulated new
M-D DHT algorithm.

C. Related Research

In the literature, various DHT algorithms for VLSI implementation
have been considered [5]-[8]. In the following, we analyze these
designs from four different points of view: algorithm, architecture,
implementation, and application.

Encapsulated algorithm: The algorithms used in designs [SI-[8]
can be categorized into two groups, the fast Hartley transform
(FHT) algorithms [SI, [6] and the DHT algorithms [7], [8]. The
FHT algorithms [SI, [6] primarily focus on reducing the number
of multiplications. They require about O(N . l o g N) or O (N)
multiplications to compute an N-point DHT, but suffer from complex
data routing. The DHT algorithms [7], [8] provide simple and local
communication but require O(N 2) multiplications. Checking the
analysis for the architectures of the DFT and fast Fourier transform
(FFT) [l 11, we find that the high communication and control cost of
fast algorithms would make the architectures realizing the FlT have
approximately the same hardware cost as those realizing the DFT. A
good review of such analysis [!2] has been published. In addition,
considering the commercial chips for the DCT [13], we find that
most of the designs are based on the discrete cosine transform (DCT)
algorithms instead of the fast cosine transform (FCT) algorithms.
Following these analyses, we adopt the DHT algorithms instead of
the FHT algorithms to design the VLSI architectures in this paper.

Architecture topology: Among various VLSI architectures, sys-
tolic arrays [I41 are a type of architecture that provides both high
processing speeds and convenient VLSI implementation. The designs

in [SI-[8] are based on systolic arrays. Their architecture topology
consists of linear arrays and 2-D arrays. Basically, a 2-D systolic
array has an I/O cost depending on the transform length N. For linear
arrays, we can restrict the YO channels on the array boundaries so
that the YO cost can be kept independent of the transform length.
The arrays designed in this paper are linear arrays. We utilize the
Tug control scheme [15] to arrange all the VO channels located at the
two extreme ends of the arrays so as to minimize the YO cost.

Implementation: Basically, the operations required in computing
the DHT are triangular functions, multiplications, and additions. The
triangular functions can be precomputed in a host computer and sent
to the arrays for computation. However, such an approach would add
overhead to the YO cost [5]. Altematively, the Givens Rotor [7] and
CORDIC processor [6], [8] are two functional elements that have
been used to realize the operations of the DHT. They both employ
the shift-and-add computation as the basic computing style. Since the
property of the CORDIC is beneficial in deriving the new M-D DHT
algorithm, we use the CORDIC processor as the main computing
element in the systolic arrays designed in this paper.

Application: Basically, the designs [5]-[7] are for 1-D DHT and
the design [SI is for both the 1-D and 2-D DHT. Based on the
Bracewell's approach, one can compute the 2-D DHT using the
designs [SI-[7] accompanied with the transpose memory and complex
postaddition circuits. Altematively, one can use the design [8] to
compute a 2-D DHT, which realizes the temporary variable T(k1, k z)
through a 2-D array and needs complex postaddition circuits to
realize H (k 1 , kz). The proposed design realizes a M-D DHT problem
through A4 linear arrays and transpose memory accompanied with
only two adders for postadditions. Using transpose memory and extra
control circuits in the proposed design induces some overhead as
compared with the design [SI. However, as higher dimensional DHT
problems are considered, the hardware cost required in the [8] will
increase tremendously.

The rest of this paper is organized as follows. The derivation of the
new M-D DHT algorithm is presented in Section 11. The hardware
realization of the new algorithm is presented in Section 111. A brief
conclusion is given in Section IV. Detailed derivations of the new
algorithm are given in Appendix A and Appendix B.

\

11. ALGORITHM DERIVATION

By separating the arguments of the cosine and sine functions and
using the ability of CORDIC to support different output functions,
the M-D DHT defined in (1) can be reformulated as

H(k1, k2,. . . , k M) = CM(k1, kz, . . . , k M) + S M (k 1 , kz, . . . , k M)

(5)

where C~(lil,kz,...,k~) and S ~ (k l , k ~ , . . . , k ~) can be com-
puted through the iterative formula

N-1

Ct(kt) = CORDYZ[S,- l (n ,) ,C,- l (n ,) ,yn*k~]
n,=O

N- 1

St(k,) = CORDYl[S,-i(n,),C,-i(n,),y,,k,]; (6)
n , = O

from i = l , . . . , M , where

Co(n1, nz, . . . , n M) = z (n1 ,nz , . . ., n M)

SO (?I 1, ?I2, . . ' , n M) = 0.

Here, we use A (k ,) and B(n,) to, respectively, denote A (k i , . . . ,
k,, n,+1,. . . , n ~) and B(k.1,. . . , k z - l , n,, . . . , n ~) for simpli-
fying the mathematical expressions. And CORDYl[z , y, $1 and
CORDY2[z, y, $1 denote the two outputs of the basic CORDIC

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I1 ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1995 35 1

processor with inputs 5, y, and rotation angle 4, as shown in Fig. 1.
The detailed derivation from (1) to (5)-(6) is shown in Appendix A.
The C,(k,) and St(kz) are the results of one iteration. One iteration
computation in (6) is a kind of 1-D transform. This transform
can be easily realized with the CORDIC processors by assigning
(5 , y, 4) = (S , - I (~ ~) ~ Cz- i (n l) r pn,k,) . So, similar to other
separable transforms, we can compute the M-D DHT through the
decomposed 1-D transforms iteratively. Moreover, the new algorithm
only needs a postaddition which is much simpler in hardware than
the postprocessing indicated in (3).

Besides, exploiting the symmetry of the triangular functions can
further reduce the complexity of (6). It is shown in Appendix B that
(6) can be written as

_ - t 1
~ z (k z) = ~0~~~2[~:-l(n,),~:-l(n,),pn,k,l

n,=O

_ - t 1
C,(k, + 2) = (- 1 p . CORDY2[S:-,(n*),

C-l(nz), ~ n , k , I

n , = O

(7)

N

N
c:-l(n*) = Ct-l(nt) + (-1P * Cz-l(nz + 2)
S L (n z) = S,-1(7L,) + (-1p . S,-l(n, + 2)

and

Co(n1,nz,.. . , n M) = z(n1,nzr .. . , n M)
So(n1,nz,. . . , n M) = 0.

In the above equation, it is assumed that N = 2p and the integer
p 2 2. Note that (7) possesses properties similar to those of (6), but
requires lighter computational load than (6) owing to two features.
First, the numbers of CORDIC rotations required to compute C,(k,)
and S, (kl) are reduced to one half of those required in (6). That is, the
upper limit of the index n, is reduced from N in (6) to : in (7). This
phenomenon results in the reduction of the computation time by a
factor of 2. Second, the computations of C, (k,) and C, (k, + :) share
the same intermediate results obtained from the CORDIC processors,
except that the results may have different signs. That is, we can use
a CORDIC processor to compute two output results at a time, which
reduces the number of the CORDIC processors by a factor of 2. The
same phenomenon is also found in computing S,(kt) and S,(k,+ :).
This saving in the number of the CORDIC processors will be even
more apparent if pipelined CORDIC structures [161 are utilized.

111. HARDWARE IMPLEMENTATION

To illustrate the array architecture for the M-D DHT, in this section
we consider an example of a 3-D 8 x 8 x 8 DHT.

Dependence graph: Fig. 2 shows the dependence graph (DG) to
compute C, (k;) and Si (k;) in (7). The DG clearly illustrates the data

M 0 1 2 3

1

+ + + +
cl' I 2 Sl' sr

xl ' <- x l ; x2'<-x2; x3' <- x3; x4' <- x4;

v,,J;

v,J

If Tag1 4.
CI' <- CI + CORDY2[x3,xl,

SI <- SI t CORDY 1[x3,~1,
c2' <- c2 t (- l r * CORDY~x3,xl, v,J;
$2' <- s2 t ('1 CORDY 1 [x3rlI &I;

else
CI' <- CI t CORDY2[x4.x2,
~ 2 ' <- ~2 t (-1 CORDY2[X4,x2, v,];
SI' <- s l + CORDY 1 [~ 4 , ~ 2 ,
~ 2 ' <- ~2 + (-1 p CORDY 1 [~ 4 , ~ 2 , v,,,J;

v,.,J;

end
(h)

Fig. 2. (a) The dependence graph for computing Ct(k$'2!, y d

C O R D Y l [x , y, 21 and CORDY:![x, y, z] denote the outputs
of the CORDIC processor with inputs x , y, and 2. C,(k,) and
Ss(ks), respectively, denote C,(kl,. . . , k t , n t + l , . . . , n ~) and
S1(ki,...,k,,n,+i,...,n~) . C,-i(n,) and S,-i(nz), respectively,
denote C,-1 (kl,. . . , kt- l , n, , . . . , n ~) and S,-1 (kl,. . . , k,-1, n , ,

S,(k,). (h) The function of the nodes (an,k, = 8 '

' . ' , n M)) .

operations, the data dependency, and the control signals involved in
this algorithm. In the DG, the nodes represent the operations to be

352 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1995

I I

Si-1(3) Si-10 Cil(3) Ci-1(7)
Si1 (2) Si-1 (6) Ckl(2) Cil(6)
Si-l(1) Si-l(5) Cil(1) Cil(5)
Sl (0) Si-l(4) CCl(0) Ci-1(4)

XI x2 x3 x4 cl c2 sl 92 Tag2 Tagl

XI' x2x3'x4'cl' Q'sl' eTag2'Tagl'

Tagl' <- Tagl; Tag2' <-Tag;
xl' <- xl ; x2' <- x2; x3' <- x3; x4' <- x4;

If Tag24 then

else

end

dl' <- Xl; (12' <- x2; d3' <- X3; d4' <- X4;

dl' <- dl; (12' <- &; d3'<d3; d4' <d4;

If Tag14 then
cl' <- cl + CORDY2[d3,dlI
c2' <- ~2 + (-l)n' CORDY2(d3,dlI

Q'<- s2+ (-l)n'* CORDYl[d3,dl,

~ 1 ' <- cl + COR.DY2[d4,&, v,,i 1;
c2' <- c2 + (-l)n'* CORDY2[d4,&,

vni Id 1;
vni ld 1;

vniH 1;
sl '<-sl + CORDYl[d3,dl, Ynib 1;

else

vni Id 1;_
Ci(0) Ci(4) Sl(0) Sl(4) ~ l ' < - ~ l + COR.DYl[d4& Ynik I;
CI(1) Ci(5) Si(1) Si(5) 92' <- s2 + (-I)n'* CORDYl[d4&, vniy 1;
Ci(2) U(6) Si(2) Si(6) end
Ci(3) Ci(7) Sip) Si(7)

(a) (b)
2an k 8). Fig. 3. (a) The array architecture for computing c,(kl) and S,(kt). (b) The function of the PE's (\knzkz =

executed, including the CORDIC rotations and additions as described
in Fig. 2(b). The directed arcs indicate a data dependency between
two neighboring nodes; that is, the computed result from one node
should be sent along an arc to be operated on the other node. Based
on the DG-based array synthesis procedure [15], [17], we can obtain a
linear array by suitably projecting the DG. If the DG shown in Fig. 2
is projected vertically, a PE should perform all the operations in the
nodes along a certain column of the DG. Since there are addition
paths dong the cohnn , e.g., cl ' = c l + CORDY2[x3, XI , &, ,k ,] ,

the PE's would have accumulation loops. On the other hand, if the
DG is projected horizontally, there will be data transmission loops
in the PE's. Since the consumed time for the data transmission loops
is shorter than that for the accumulation loops, using the two-level
pipelining technique [18], [19] can further reduce the cycle time of
the array from the addition time to the data transmission time. This
fact facilitates the speed improvement of the designed array.

Array architecture for the 1-D transform: Fig. 3 illustrates
the linear array obtained from projecting the DG shown in Fig. 2
horizontally. In this array, the input data are first preprocessed
and piped in from the topmost PE and then transmitted to the
neighboring PE's rhythmically. Tug1 and Tug2 are 1-b control signals
to decide which data operands the P E S select. Since the rota-
tion angles used in the array are known in advance, the rotation
directions { E c J , i , j = 0,1,. . . , - l} instead of the rotation
angles { y t 3 , i , j = 0,1,. . . , $ - 1) are precalculated and stored

in ROM's to reduce the hardware and U 0 cost. The output results
are accumulated and drained out from the bottommost PE. Unlike
the design in [8], we use the Tug control scheme [15] to locate all
the U 0 channels at the boundary PE's, which makes the U 0 cost
of the array independent of the transform length N. Note that there
is a scaling operator in the end of the linear array to perform the
scaling operations required in the CORDIC processors. This operator
can be easily realized by using memory look-up tables or a CORDIC
processor operated in linear rotation mode [16].

Exploiting the symmetry of the triangular functions, the linear
array requires only PE's, where each PE consists of a CORDIC
processor, a ROM with N words, several data multiplexing circuits,
and four adders, as illustrated in Fig. 4. Additional two adders and
substractors are required in the array for data preprocessing. The
throughput of the array is two samples per cycle. The average
computation time to compute a 1-D N-point transform is $ Tcycle.
The term Tcycle, which denotes the cycle time of the array, includes
the consumed time for the data multiplexing, a CORDIC rotation,
and one addition. The speed of the array can be further enhanced for
high-speed DHT applications by utilizing the techniques presented
in [20]-[22], such as the pipelined CORDIC, the forward angle
recording CORDIC algorithm, and the CORDIC algorithms with
redundant arithmetic and reduced iterations.

Array architecture for the 3-D DHT: By cascading three arrays
shown in Fig. 3 and two transpose RAM'S together, we construct

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1995 353

ADD

ADD LEc +I- 9
ni

s2'

s l '

c l '

c2'

Fig. 4. The structure of the PES in the designed array (& , k , denotes the rotation direction corresponding to the rotation angle Q k n , k ,) .

the array architecture for the 3-D DHT as shown in Fig. 5 . Note
that the proposed architecture only requires two adders to perform
the addition operations indicated in (5). These two adders are much
simpler in hardware than the postaddition stage required to perform
the operations indicated in (3). Since this architecture outputs two
samples per cycle, it requires cycles to compute a 3-D N x N x N
DHT problem. If the hardware area is the main concern, we can use
the array shown in Fig. 3 iteratively to compute all the decomposed
1-D transforms. This kind of architecture outputs two samples every
three cycles. So, it requires $ cycles to compute a 3-D N x N x N
DHT problem.

The proposed array architecture is designed based on the algorithm
expressed by (7), which exploits the symmetry of the triangular
functions for reducing the computational complexity. It gains the
saving in the hardware cost and computation time, but needs a little
overhead, such as data multiplexing circuits, simple control, some
adders, and extra time consumption. If this overhead costs more
hardware price than the saving of the proposed architecture gains
according to a certain technology, the algorithm expressed by (6),
which does not exploit the symmetry of the triangular functions, can
be used to design the array architecture for the M-D DHT.

IV. CONCLUSION
In this paper, a new M-D DHT algorithm using CORDIC has been

presented with simpler postprocessing as compared to the Bracewell's
approach. A kind of 1-D transform different from 1-D DHT has
been derived to compute the M-D DHT separably. To reduce the
complexity of the 1-D transforms, we have exploited the symmetry
of the triangular functions. Using this algorithm, we have designed
an array architecture for the 3-D iV x N x N DHT. This architecture
consists of three linear systolic arrays and two transpose RAM'S.
Each array consists of $ PE's, which are composed of CORDIC
processors, ROM's, and adders. The throughput of the architecture
is two samples per cycle, and the cycle time is the consumed time
for data multiplexing, a CORDIC rotation, and one addition. In this

design the YO cost, including the number of YO channels and the YO
bandwidth, is independent of the transform length IC'. In summary,
the proposed design features a systolic computing style, PE's with
a CORDIC structure, low YO cost, and the encapsulated new M-D
DHT algorithm.

APPENDIX A

This appendix illustrates the derivation from (1) to (5)-(6). First,
we can rewrite (1) as

where

With a view to simplify the mathematical expressions, we use A(k ,)
and B(n,) to, respectively, denote A (k l , . . . , k,,nt+l,...,nM) and
B(ki,....k,-i,n,,...,n~) . By splitting the arguments of the
cosine and sine functions in C M (k M) and S M (k M) , we obtain

354 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGlTAL SIGNAL PROCESSING, VOL. 42, NO. 5 , MAY 1995

Fig. 5. The array architecture for the 3-D 8 x 8 x 8 DHT (Qnsk, denotes w).
and rotation angle $J, as shown in Fig. 1. (x , y , $ J) is assigned
to be (SM-l(nM),CM-l(nM)rvnMkM). Repeating the same
procedures, we can compute (9) iteratively through

and
N-1

S M (k M) = [S M - l (n M) .C0S(Y,,kM)
nM=O

N-1

+ C M - ~ (~ M) . s i n (p n M t M)] (1 1) C*(k) CORDY2[S,-i(n,),C,-i(n,),(3,,k,]
where n,=O

APPENDLX B
This appendix illustrates the derivation from (6) to (7). In the

following, it is assumed that N = 2p and the integer p 2 2. First,
considering the C, (kt) in (6) and using the symmetry of the cosine
function, we obtain

N-1

Ct(kz) = [c t - i (nZ) . cos(vn,k,) - ~ - 1 (n ~) . sin(yn,k,)l
",=O

_ - t 1
= [~ : - i (n s) . C O S (Y ~ , ~ ,) - si-l(nt). Sin(vn,k,)l

n,=O

(14)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1995 355

REFERENCES

R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol.
73, pp. 1832-1835, Dec. 1983.
-, “The fast Hartley transform,” Proc. IEEE, vol. 72, pp. 1010-1018,
Aug. 1984.
D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1984, ch. 2, pp.
75-76.
R. N. Bracewell, 0. Buneman, H. Hao, and J. Villasenor, “Fast
two-dimensional Hartley transform,” Proc. IEEE, vol. 74, no. 9, pp.
1282-1283, Sept. 1986.
C. Chakraharti and J. JUB, “Systolic architectures for the computation
of the discrete Hartley and the discrete cosine transforms based on
prime factor decomposition,” IEEE Trans. Comput., vol. 39, no. 11,

M. Marchesi, G. Orlandi, and F. Piazza, “A systolic circuit for fast
Hartley transform,” in Proc. ISCAS’88, 1988, pp. 2685-2688.
A. S. Dhar and S. Banerjee, “An array architecture for fast computation
of discrete Hartley transform,” IEEE Trans. Circuits Syst., vol. 38, no.
9, pp. 1095-1098, Sept. 1991.

pp. 1359-1368, NOV. 1990.

[8] L. W. Chang, and S. W. Lee, “Systolic arrays for the discrete Hartley
transform,” IEEE Trans. Signal Process., vol. 39, no. 11, pp. 241 1-2418,
Nov. 1991.

[9] J. E. Volder, “The CORDIC trigometric computing technique,” IRE
Trans. Electron. Compur., vol. EC-8, pp. 330-334, Sept. 1959.

[lo] J. S. Walther, “A unified algorithm for elementary functions,” in AFIPS
Spring Joint Comput. Cont, 1971, pp. 379-385.

[I l l C. D. Thompson, “Fourier transforms in VLSI,” IEEE Trans. Comput.,
vol. C-32, no. 1, pp. 1047-1057, Nov. 1983.

[I21 J. A. Beraldin, T. Aboulnasr, and W. Steenaart, “Efficient one-
dimensional systolic array realization of discrete Fourier transform,”
IEEE Trans. Circuits Syst., vol. 36, pp. 95-100, Jan. 1989.

[I31 K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithm, Advan-
tages, Applications. New York: Academic, 1990.

[14] H. T. Kung, “Why systolic architectures?” Compur. Mag., vol. 15, pp.
3746, Jan. 1982.

[15] C. W. Jen and H. Y. Hsu “The design of a systolic array with tags
input,” in Proc. ISCAS’88, Finland, 1988, pp. 2263-2266.

[16] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal pro-
cessing,” IEEE Signal Process. Mag., vol. 9, no. 3, pp. 1635, July
1992.

[I71 S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NJ: Pren-
tice-Hall, 1988, ch. 3 and 4, pp. 110-282.

[18] K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving and
parallelism in recursive digital filters-Part I: Pipelining using scattered
look-ahead and decomposition,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 1099-1117, 1989.

[191 C. M. Liu and C. W. Jen, “On the design of VLSI array for discrete
Fourier transform,” IEE Proc.-G, vol. 139, no. 4, pp. 541-552, Aug.
1992.

[20] Y. H. Hu, “A forward angle recoding cordic algorithm and pipelined
processor array structure for digital signal processing,” Digital Signal
Process., vol. 3, pp. 2-15, 1993.

[21] H. Dawid and H. Meyr, “VLSI implementation of the CORDIC algo-
rithm using redundant arithmetic,” in Proc. ISCAS’92, May 1992, pp.

[22] D. Timmermann, H. Hahn, and B. Hosticka, “Modified CORDIC
algorithm with reduced iterations,” Electron. Lerr., vol. 25, no. 15, pp.
95C9.51, July 1989.

1089- 1092.

