
On the Complexity of the Minimum and Maximum Global
Snapshot Problems

L.B. Chen and I.C. Wu

Department of Computer Science and Information Engineering
National Chiao Tung University

1001 Ta-Hsueh Road, Hsinchu, Taiwan

Abstract
Derivang the min imum and maximum global snap-

shots is very useful f o r some error detection prob-
lems in distributed programs. Several researchers, e.g.,
Groselj, Chen and W u , have shown that the min imum
and maximum global snapshot problems are linear-
t ime reducible to the max imum constant-ratio network
flow (MCNF) problem, here defined as the well-known
maximum network flow problem with m = O (n) , where
m is the number of edges and n is the number of
vertices i n the given flow network. I n this paper we
show in a reverse way that the M C N F problem is also
linear-time reducible t o these global snapshot problems.
Thus, we can conclude that the global snapshot prob-
lems are “as di6cul t as” the M C N F problem i n terms
of t ime complexity.

1 Introduction
Error debugging and detection is very important in

maintaining distributed programs. Our past experi-
ences of implementing a large distributed system (for
load balancing) in [B] suggest that a distributed pro-
gram usually needs rules to follow in order to run cor-
rectly. For example, in a distributed program, there
may be a number of tokens distributed among proces-
sors (e.g., tokens representing numbers of resources
and critical sections) and the numbers of these to-
kens remain constant or bounded within ranges in any
snapshot, no matter how the tokens are moved among
different processors. The most common way to detect
whether the above situation holds is to derive the min-
imum or maximum number of tokens for all possible
snapshots. This is called the minimum or maximum
global snapshot problem [B] .

Recently, Groselj [6] proposed an interesting
method for deriving the minimum global snapshot,
which reduces the minimum global snapshot problem
to a maximum constant-ratio network flow (MCNF)
problem, here defined as the well-known maximum
network flow problem with m = O(n where m is

in the given flow network. Garg et al. [a] indepen-
dently obtained a similar result. Later, Chen and Wu
[3] proposed a general technique, called normalization,
for deriving both minimum and maximum global snap-
shots, they showed that these snapshot problems are

the number of edges and n is the num k er of vertices

0730-3157/97 $10.00 0 1997 IEEE

linear-time reducible to the MCNF problem.
These research results only show that the time com-

plexities of the minimum and maximum global snap-
shot problems will not be higher than that of the
MCNF problem. However, we still wonder whether
the time complexities for global snapshot problems can
be lower than that for the MCNF problem. In order
to resolve this question, this paper shows in a reverse
way that the MCNF problem is also linear-time re-
ducible to these global snapshot problems. Thus, we
can conclude that the above global snapshot problems
are “as difficult as” the MCNF problem in terms of
time complexity.

The remainder of this paper is organized as follows.
In Section 2 , we describe our model and the notation
used in this paper. Section 3 and Section 4 discuss,
respectively, the time complexities of the minimum
and maximum global snapshot problems. Finally, we
give a brief discussion in Section 5.

2 Model and Notation
A distributed program consists of processes com-

municating via a network. These processes share no
memory and no global clock. Pairs of processes need
to communicate via network channels. The state of
such a program is distributed over these processes and
channels in each snapshot.
Events

The states of processes and channels change only
when events [7], atomic actions, are executed. There
are three kinds of events on each processor P that we
are concerned with:

0 Internal event: does a local computation. It
may change the state of process P .

0 Send event: sends a message from process P to
another via a channel. It may also change the
state of process P .

0 Receive event: receives a message from another
process via a channel. It may also change the
state of process P .

Note that each process must start with an initial in-
ternal event and end with a final internal event.

38

In order to define the chronological order of events,
we define that the event ei happens before event e j ,
denoted by ei + e j , if and only if one of the following
conditions holds [l]: (1) Events ei and e j occur in the
same process and ei occurs before e j . (2) Event ei is
the sent event of a message and event e j is the receive
event of the same message. (3) There exists anlother
event ek such that ei -+ ek and e k 4 e j .
Global Snapshot

Consider one possible run of a distributed program.
The system can proceed from one state to another
by executing events chronologically. A set of events
Ec is said to be consistent if for all events e in Ec ,
all the events e', with e' -+ e , are also in Ec. A
global snapshot is a collection of states in all processes
and channels after executing only a consistent set of
events. In this paper, we are only concerned with the
total number of tokens, so a state value actually can
be represented by its token number. The minimum
(maximum) global snapshot is that global snapshot
showing the minimum (maximum) number of tokens
among all possible snapshots.
Event Graph

For simplicity of discussion, we can use an event
graph to represent one run of a distributed pro!, Tram
as follows. (1) A vertex denotes an event. (2) If event
ei + ej and there exists no event ek such that ei --+ &k
and ek --+ e j , there is a corresponding arc, denoted by
(e ; , e j) , from ei's vertex to e j 's. An arc (ei , e i) is called
a message arc if it corresponds to an in-transit message
from event ei to e j . Otherwise, an arc is called an
internal arc because it corresponds to an internal state
transition inside a process. Clearly, each process has
an internal path from the vertex of its initial internal
event to the vertex of its final internal event without
going through any message arcs. An event graph is
illustrated in Figure 1. In an internal path, the arc
from the initial event is called the i-arc and the arc to
the final event is called the f-arc. An initial internal
event is called an i-vertex and a final internal event is
called an f-vertex. For each message arc a , the number
of message tokens is denoted by Sa; for each internal
arc a = (e i , e j) , the token number of the corresponding
process is denoted by S,, after execution of the event
ei and before the event e j .
cuts

A cut in an event graph H partitions the vertices
into two disjoint sets such that one, called the source
part and denoted by Vs, contains all the i-vertices,
and the other, called the sink part and denoted b:y V,,
contains all the f-vertices. Thus, it is trivial to see
that a cut has at least one arc in each internal path.
The cost of a cut is defined as follows:

Time

c Sa

8 Sendevent
@ Receive event
= Initial internal event

Final internal event

Q

- c3
+ Internal arc or

V a : a = (u , v) ,U€V, ,v€Vt

For example, in Figure 1, the costs of cuts Cl., C,
and C3 are respectively 14, 12 and 16. The minimum
(maximum) cut is the cut with the least (largest) cost
among all cuts. The least (largest) cost is called the
minimum (maximum) cut cost.

source part
PI 9 ;3

Figure 1: Event graph of a run of a distributed pro-
gram.

A cut of the event graph is consistent if and only
if the set of all events corresponding to vertices in the
source part is consistent. From this definition, it is
obvious that for each consistent cut C , each arc in C
must be from the source part to the sink part. This
implies the cost of a consistent cut is actually the num-
ber of tokens in the corresponding global snapshot.

The minimum (maximum) consistent cut is the con-
sistent cut with the least (largest) cost among all con-
sistent cuts. The minimum (maximum) consistent cut
cost is the cost of the minimum (maximum) consistent
cut. Clearly, the minimum (maximum) consistent cut
corresponds to the minimum (maximum) global snap-
shot.

In our model, we assume that the event graph with
arc costs is given in advance. Garg [4] suggested that
in practice, for each event each process sends its to-
ken number to a process, called the checker process,
that runs an algorithm for deriving the minimum or
maximum global snapshot.

3 The Minimum Global Snapshot
In this section, we show that the MCNF problem

is linear-time reducible to the minimum global snap-
shot problem. Given a flow network N (see Definition
3.1) , the linear-time reduction algorithm given below
constructs an event graph H . An example of the re-
duction is shown in Figure 2. Theorem 3.1 proves that
the
cut

minimum consistent cut cost of H equals the min-
capacity in N .

Definition 3.1 A flow network N = (V ,E)
is a directed graph i n which each edge (U, v) E
E has a non-negative capacity c (u , v) 2 0 .
One node s is designated as the source and
another node t is designated as the sink. A
cut is a set of arcs all incident t o two disjoint
vertex sets partitioned f r o m V , where one set
with node s is called the source set, and the
other with node t is called the sink set. The
capacity of a cut is the total capacity of all
arcs (on the cut) f r o m the source set t o th/e
sink set. A min imum cut of a jlow network

39

U = source -9.
w = sink

(a)
source part

Pu P(u,v) P v P(v,w) Pw

cut corresponding
to c (b)

Figure 2: (a) A common graph. (b) The event graph
translated from the graph in (a).

i s the cut with the least capacity. The leas2
capacity is also called the man-cut capacity.

Reduction Algorithm

1. For each vertex w in N , create the corresponding
internal path P,.

2. For each pair of vertices (U , w), if (U , w) or (w, U)
is in N , create the corresponding internal path

3. For each path, add two internal events such that
the path is divided into three parts, the i-arc,
the middle part, and the f-arc. All message arcs
added below must have their vertices incident to
the middle parts of paths.

4. For each internal path P(,,,), create a message
arc u (, , ~) from path P(,,,) to P, and a message
arc U(,,,) from P(,,,) to P,.

5 . Set the cost of f-arc of P, and i-arc of Pt to 00,
where s is the source and t is the sink. Set the
costs of other i-arcs and f-arcs to 0. Set the costs
of all other internal arcs to CO.

6. Set the cost of U(,,,) to the cost of (U , w) for each
if (U , w) is in N , otherwise, set

P (U , U) (or P (U , U , > .

message arc
its cost to 0.

Theorem 3.1 For a given flow network, its min-cut
capacity equals the min imum consistent cut cost in the
event graph constructed f rom the above reduction algo-
rithm.

Kq ' I

' 0

Pu P(u,v) Pv

- -

(c> (d)

Figure 3: Four cases of a consistent cut cuts the paths
P, and P,.

Proof. The key relationship between the given flow
network N and the constructed event graph H is: each
consistent cut CH without 00 cost in H is said to cor-
respond to a cut CN in the flow network N if and only
if the following property holds,

0 For each vertex w in N , 'U is in the source (sink)
part of a cut C N , if and only if the consistent cut
CH cuts across the i-arc (f-arc) of the internal
path P,.

Note that it is possible for more than one consistent
cut to correspond to one cut in N I as illustrated in
Figure 3 (a).

It therefore suffices to prove that the cut capacity
for each cut CN (in N) equals the minimum cut cost
among all consistent cuts (in H) corresponding to C N .
The reason is explained as follows. Since all the con-
sistent cuts without corresponding cuts in N must cut
across the middle part of some path (the proof is omit-
ted), their cut costs will be 00 (see Step 5 of the above
algorithm). Therefore, the minimum consistent cut in
H is also the minimum capacity among all cuts in N ,
that is, the min-cut capacity in N.

We now prove that the capacity of each cut CN (in
N) equals the minimum cost among all consistent cuts
in H) corresponding to C N . For each pair of vertices r U , w), if there exists (U , w) or (v , U) in N, we have the

following four cases.

1. Both vertices U and w are in the source part. In
N , edges between U and v will contribute no ca-
pacity. In H , all the consistent cut CH in H cor-
responding to the cut CN in N must cut across
the i-arcs of internal paths P, and P,. In this

40

case, as illustrated in Figure 3 (a), the consistent
cut CH will cut across either the i-arc or the f-arc
in P(,,,) (ignore the middle part because of its 00
cost, as mentioned above). For the former, none
of the message arcs u (, , ~) and u (~ , ~) will be cut,
and therefore, the added cost is zero. The costs
of the above two arcs must be added to the latter.
Therefore, we must choose the cut across the i-arc
of P(,,,) for the minimum consistent cut, we must
choose the one across the i-arc of P(,,,), blecause
it adds no cost to the cut cost.

2. Vertex U is in the source part and v in the sink
part. In N , the cost of (U,.) will be added to
the capacity. In H, the consistent cut CH corre-
sponding to the cut CN in N must cut across the
i-arc of P, and the f-arc of P,. According to the
definition of consistent cut, CH must cut across
the f-arc of P(,,,), as illustrated in Figure 3 (b),
and therefore must also cut across U(,,,). Thus,
the cost of u (, , ~) (i.e., the cost of (u,~)) will be
added to the consistent cut cost.

3 . Vertex U is in the sink pari, arid U in the source
part. For reasons similar to those above, the cost
of (7 1 , U) in N will be added to the capacity. In H ,
the same cost will also be added to the consistent
cut cost, as illustrated in Figure 3 (c).

4. Both vertices U and v are in the’sink part. In N ,
edges between U and w contribute no capacity. In
H , a consistent cut CH cuts across the f-ascs of
both P, and P,, and therefore also cuts ;across
the f-arc of P(.,,). As illustrated in Figure 3 (d),
CH cuts across neither U(,,,) nor

Thus, for each pair (U , U) , the cost added to the capac-
ity of the cut CN is the same amount of the cost ;added
to the minimum consistent cut cost among those con-
sistent cuts corresponding to the cut C N . Therefore,
we can conclude that the capacity of the cut C, equals
the minimum consistent cut costs among those consis-
tent cuts corresponding to the cut C N . 0
4 The Maximum Global Snapshot

In [3], Clieri arid Wu reduced the maximum global
snapshot problem to the minimum global snapshot,
problem using a technique, called normalization that,
enabled them to reduce an event graph H to another
event graph H’ in which the cost of each consistent
cut is exactly the same as that for the ori inal graph
and the cost of each message arc is zero $for details,
see [3]) . Thus, they could easily reduce the maximum
global snapshot problem to the minimum global snap-
shot problem by cha,nging the cost S of each internal
arc to M - S , where M is the maximum cost among all
arcs. (Note that in reducing the problem to the max-
imum flow network problem, we also have to make all
internal arcs non-negative. This is shown in [3] , but
omitted here.)

In fact, we can also easily reduce the minimum
global snapshot problem to the maximum global rsnap-
shot problem in the same way, i.e., by changing the

cost S of each internal arc to M - S, where M is
the maximum cost among all arcs. Therefore, both
minimum and maximum global snapshot problems are
linear-tim.e reducible to each other. That is, we can
conclude that the global snapshot problems are also
“as difficult as” the maximum network flow problem
in terms of time complexity.

5 Discussion
Several researchers, e.g., Groselj, Chen and Wu,

have shown that the minimum and maximum global
snapshot problems are linear-time reducible to the
MCNF problem. Since the time complexity for the
most efficient MCNF algorithm [5] is O(n2 log n), the
minimum and maximum global snapshot can also be
solved in time O(n2 log n) .

In this paper we show in a reverse way that the
MCNF problem is also linear-time reducible to these
global snapshot problems. Thus, we can concliide that
the global snapshot problems are “as difficult as” the
MCNF problem in terms of time complexity. Since
O(n2 log n) has been the best time complexity for the
MCNF problem for many years, it seems also a diffi-
cult open task to improve upon the O(n2 log n) global
snapshot idgorithms (as well as that for the MCNF
problem).

Referen.ces
[l] K.M. (>handy and L. Lamport. Distributed snap-

shots: determining global states of distributed sys-
tems. A C M Trans. Comput. Syst., 3(1):63-75,
February 1985.

Efficient detection
of restricted classes of global predicates. In The
9th In,l!ern,ational Workshop on Distributed Algo-
ri thms, September 1995.

[3] L.B. Chen and I.C. Wu. On detection of bounded
global predicates. In Proceedings of the Interna-
tional Conference on Distributed Systems,Soj?ware
Engineering, and Database Systems. Taipei, 1996.

[4] V.K. Garg and B. Waldecker. Detection of weak
unstablle predicates in distributed programs. IEEE
Tran. Parallel an,d Distributed Systems, 5(3):299-
307, March 1994.

[5] A.V. Goldberg and R.E. Tarjan. A new approach
to the maximum-flow problem. Journal of the
A CM, 35(4):921-940, October 1988.

[6] B. Groselj. Bounded and minimum globa,l snap-
shots. IEEE Parallel and Distributed Technology,
pages 72-83, November 1993.

Time, clocks and the ordering of
events in a distributed system. Communication
of the A G M , 21(7):558-565, July 1978.

[8] I.C. Wu. Multilist Scheduling: A New Parallel Pro-
gramming Model. PhD thesis, School of Computer
Science, Carnegie Mellon University, July 1.993.

[a] C.M. Chase and V.K. Garg.

[7] L. Laniport.

41

