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Abstract 
Derivang the min imum and maximum global snap- 

shots is  very useful f o r  some error detection prob- 
lems in  distributed programs. Several researchers, e.g., 
Groselj, Chen and W u ,  have shown that the min imum 
and maximum global snapshot problems are linear- 
t ime reducible to  the max imum constant-ratio network 
flow (MCNF)  problem, here defined as the well-known 
maximum network flow problem with m = O ( n ) ,  where 
m is the number of edges and n is the number of 
vertices i n  the given flow network. I n  this paper we 
show in a reverse way that the M C N F  problem is  also 
linear-time reducible t o  these global snapshot problems. 
Thus,  we can conclude that the global snapshot prob- 
lems are “as di6cul t  as” the M C N F  problem i n  terms 
of t ime complexity. 

1 Introduction 
Error debugging and detection is very important in 

maintaining distributed programs. Our past experi- 
ences of implementing a large distributed system (for 
load balancing) in [B] suggest that  a distributed pro- 
gram usually needs rules to follow in order to run cor- 
rectly. For example, in a distributed program, there 
may be a number of tokens distributed among proces- 
sors (e.g., tokens representing numbers of resources 
and critical sections) and the numbers of these to- 
kens remain constant or bounded within ranges in any 
snapshot, no matter how the tokens are moved among 
different processors. The most common way to detect 
whether the above situation holds is to derive the min- 
imum or maximum number of tokens for all possible 
snapshots. This is called the minimum or maximum 
global snapshot problem [B] . 

Recently, Groselj [6] proposed an interesting 
method for deriving the minimum global snapshot, 
which reduces the minimum global snapshot problem 
to a maximum constant-ratio network flow (MCNF) 
problem, here defined as the well-known maximum 
network flow problem with m = O(n  where m is 

in the given flow network. Garg et al. [a] indepen- 
dently obtained a similar result. Later, Chen and Wu 
[3] proposed a general technique, called normalization, 
for deriving both minimum and maximum global snap- 
shots, they showed that these snapshot problems are 

the number of edges and n is the num k er of vertices 
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linear-time reducible to the MCNF problem. 
These research results only show that the time com- 

plexities of the minimum and maximum global snap- 
shot problems will not be higher than that of the 
MCNF problem. However, we still wonder whether 
the time complexities for global snapshot problems can 
be lower than that for the MCNF problem. In order 
to  resolve this question, this paper shows in a reverse 
way that the MCNF problem is also linear-time re- 
ducible to  these global snapshot problems. Thus, we 
can conclude that the above global snapshot problems 
are “as difficult as” the MCNF problem in terms of 
time complexity. 

The remainder of this paper is organized as follows. 
In Section 2 ,  we describe our model and the notation 
used in this paper. Section 3 and Section 4 discuss, 
respectively, the time complexities of the minimum 
and maximum global snapshot problems. Finally, we 
give a brief discussion in Section 5. 

2 Model and Notation 
A distributed program consists of processes com- 

municating via a network. These processes share no 
memory and no global clock. Pairs of processes need 
to communicate via network channels. The state of 
such a program is distributed over these processes and 
channels in each snapshot. 
Events 

The states of processes and channels change only 
when events [7], atomic actions, are executed. There 
are three kinds of events on each processor P that we 
are concerned with: 

0 Internal event: does a local computation. It 
may change the state of process P .  

0 Send event: sends a message from process P to 
another via a channel. It may also change the 
state of process P .  

0 Receive event: receives a message from another 
process via a channel. It may also change the 
state of process P .  

Note that each process must start with an initial in- 
ternal event and end with a final internal event. 
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In order to define the chronological order of events, 
we define that the event ei happens before event e j ,  
denoted by ei + e j  , if and only if one of the following 
conditions holds [l]: (1) Events ei and e j  occur in the 
same process and ei occurs before e j .  (2) Event ei is 
the sent event of a message and event e j  is the receive 
event of the same message. ( 3 )  There exists anlother 
event ek such that ei -+ ek and e k  4 e j .  
Global Snapshot 

Consider one possible run of a distributed program. 
The system can proceed from one state to another 
by executing events chronologically. A set of events 
Ec is said to be consistent if for all events e in Ec ,  
all the events e', with e' -+ e ,  are also in Ec.  A 
global snapshot is a collection of states in all processes 
and channels after executing only a consistent set of 
events. In this paper, we are only concerned with the 
total number of tokens, so a state value actually can 
be represented by its token number. The minimum 
(maximum) global snapshot is that global snapshot 
showing the minimum (maximum) number of tokens 
among all possible snapshots. 
Event Graph 

For simplicity of discussion, we can use an event 
graph to  represent one run of a distributed pro!, Tram 
as follows. (1) A vertex denotes an event. (2) If event 
ei + ej and there exists no event ek such that ei --+ &k 
and ek --+ e j ,  there is a corresponding arc, denoted by 
( e ; ,  e j ) ,  from ei's vertex to e j  's. An arc (ei , e i )  is called 
a message arc if it corresponds to  an in-transit message 
from event ei to  e j .  Otherwise, an arc is called an 
internal arc because it corresponds to an internal state 
transition inside a process. Clearly, each process has 
an internal path from the vertex of its initial internal 
event to the vertex of its final internal event without 
going through any message arcs. An event graph is 
illustrated in Figure 1. In an internal path, the arc 
from the initial event is called the i-arc and the arc to 
the final event is called the f-arc. An initial internal 
event is called an i-vertex and a final internal event is 
called an f-vertex. For each message arc a ,  the number 
of message tokens is denoted by Sa; for each internal 
arc a = ( e i ,  e j ) ,  the token number of the corresponding 
process is denoted by S,, after execution of the event 
ei and before the event e j .  
cuts  

A cut in an event graph H partitions the vertices 
into two disjoint sets such that one, called the source 
part and denoted by Vs,  contains all the i-vertices, 
and the other, called the sink part and denoted b:y V,, 
contains all the f-vertices. Thus, it is trivial to see 
that a cut has at  least one arc in each internal path. 
The cost of a cut is defined as follows: 

Time 

c Sa 

8 Sendevent 
@ Receive event 
= Initial internal event 

Final internal event 

Q 

- c3 
+ Internal arc or 

V a : a = ( u , v )  ,U€V, ,v€Vt  

For example, in Figure 1,  the costs of cuts Cl., C, 
and C3 are respectively 14, 12 and 16. The minimum 
(maximum) cut is the cut with the least (largest) cost 
among all cuts. The least (largest) cost is called the 
minimum (maximum) cut cost. 

source part 
PI 9 ;3 

Figure 1: Event graph of a run of a distributed pro- 
gram. 

A cut of the event graph is consistent if and only 
if the set of all events corresponding to vertices in the 
source part is consistent. From this definition, it is 
obvious that for each consistent cut C ,  each arc in C 
must be from the source part to the sink part. This 
implies the cost of a consistent cut is actually the num- 
ber of tokens in the corresponding global snapshot. 

The minimum (maximum) consistent cut is the con- 
sistent cut with the least (largest ) cost among all con- 
sistent cuts. The minimum (maximum) consistent cut 
cost is the cost of the minimum (maximum) consistent 
cut. Clearly, the minimum (maximum) consistent cut 
corresponds to  the minimum (maximum) global snap- 
shot. 

In our model, we assume that the event graph with 
arc costs is given in advance. Garg [4] suggested that 
in practice, for each event each process sends its to- 
ken number to a process, called the checker process, 
that runs an algorithm for deriving the minimum or 
maximum global snapshot. 

3 The Minimum Global Snapshot 
In this section, we show that the MCNF problem 

is linear-time reducible to the minimum global snap- 
shot problem. Given a flow network N (see Definition 
3.1) ,  the linear-time reduction algorithm given below 
constructs an event graph H .  An example of the re- 
duction is shown in Figure 2.  Theorem 3.1 proves that 
the 
cut 

minimum consistent cut cost of H equals the min- 
capacity in N .  

Definition 3.1 A flow network N = (V ,E)  
is a directed graph i n  which each edge (U, v)  E 
E has a non-negative capacity c ( u , v )  2 0 .  
One node s is  designated as the source and 
another node t is designated as the sink. A 
cut is  a set of arcs all incident t o  two disjoint 
vertex sets partitioned f r o m  V ,  where one set 
with node s is  called the source set, and the 
other with node t is  called the sink set. The 
capacity of a cut is the total capacity of all 
arcs (on the cut) f r o m  the source set t o  th/e 
sink set. A min imum cut of a jlow network 
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U = source -9. 
w = sink 

(a) 
source part 

Pu P(u,v) P v  P(v,w) Pw 

cut corresponding 
to c (b) 

Figure 2: (a) A common graph. (b) The event graph 
translated from the graph in (a). 

i s  the cut with the least capacity. The leas2 
capacity is also called the man-cut capacity. 

Reduction Algorithm 

1. For each vertex w in N ,  create the corresponding 
internal path P,. 

2. For each pair of vertices ( U ,  w), if ( U ,  w) or (w, U )  
is in N ,  create the corresponding internal path 

3.  For each path, add two internal events such that 
the path is divided into three parts, the i-arc, 
the middle part, and the f-arc. All message arcs 
added below must have their vertices incident to  
the middle parts of paths. 

4. For each internal path P(,,,), create a message 
arc u ( , , ~ )  from path P(,,,) to  P, and a message 
arc U(,,,) from P(,,,) to P,. 

5 .  Set the cost of f-arc of P, and i-arc of Pt to 00, 
where s is the source and t is the sink. Set the 
costs of other i-arcs and f-arcs to  0. Set the costs 
of all other internal arcs to CO. 

6. Set the cost of U(,,,) to the cost of ( U ,  w) for each 
if ( U ,  w) is in N ,  otherwise, set 

P ( U , U )  (or P ( U , U , > .  

message arc 
its cost to 0. 

Theorem 3.1 For a given flow network, its min-cut 
capacity equals the min imum consistent cut cost in the 
event graph constructed f rom the above reduction algo- 
rithm. 

Kq ' I  

' 0  

Pu P(u,v) Pv 

- -  

(c> (d) 

Figure 3: Four cases of a consistent cut cuts the paths 
P, and P,. 

Proof. The key relationship between the given flow 
network N and the constructed event graph H is: each 
consistent cut CH without 00 cost in H is said to cor- 
respond to a cut CN in the flow network N if and only 
if the following property holds, 

0 For each vertex w in N ,  'U is in the source (sink) 
part of a cut C N ,  if and only if the consistent cut 
CH cuts across the i-arc (f-arc) of the internal 
path P,. 

Note that it is possible for more than one consistent 
cut to correspond to one cut in N I  as illustrated in 
Figure 3 (a). 

It therefore suffices to  prove that the cut capacity 
for each cut CN (in N) equals the minimum cut cost 
among all consistent cuts (in H) corresponding to C N .  
The reason is explained as follows. Since all the con- 
sistent cuts without corresponding cuts in N must cut 
across the middle part of some path (the proof is omit- 
ted), their cut costs will be 00 (see Step 5 of the above 
algorithm). Therefore, the minimum consistent cut in 
H is also the minimum capacity among all cuts in N ,  
that is, the min-cut capacity in N. 

We now prove that the capacity of each cut CN (in 
N) equals the minimum cost among all consistent cuts 
in H )  corresponding to C N .  For each pair of vertices r U ,  w), if there exists ( U ,  w) or ( v ,  U )  in N, we have the 

following four cases. 

1. Both vertices U and w are in the source part. In 
N ,  edges between U and v will contribute no ca- 
pacity. In H ,  all the consistent cut CH in H cor- 
responding to the cut CN in N must cut across 
the i-arcs of internal paths P, and P,. In this 
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case, as illustrated in Figure 3 (a), the consistent 
cut CH will cut across either the i-arc or the f-arc 
in P(,,,) (ignore the middle part because of its 00 
cost, as mentioned above). For the former, none 
of the message arcs u ( , , ~ )  and u ( ~ , ~ )  will be cut, 
and therefore, the added cost is zero. The costs 
of the above two arcs must be added to the latter. 
Therefore, we must choose the cut across the i-arc 
of P(,,,) for the minimum consistent cut, we must 
choose the one across the i-arc of P(,,,), blecause 
it adds no cost to the cut cost. 

2. Vertex U is in the source part and v in the sink 
part. In N ,  the cost of (U,.) will be added to 
the capacity. In H, the consistent cut CH corre- 
sponding to the cut CN in N must cut across the 
i-arc of P, and the f-arc of P,. According to the 
definition of consistent cut, CH must cut across 
the f-arc of P(,,,), as illustrated in Figure 3 (b), 
and therefore must also cut across U(,,,). Thus, 
the cost of u ( , , ~ )  (i.e., the cost of (u,~)) will be 
added to the consistent cut cost. 

3 .  Vertex U is in the sink pari, arid U in the source 
part. For reasons similar to those above, the cost 
of ( 7 1 ,  U) in N will be added to the capacity. In H ,  
the same cost will also be added to  the consistent 
cut cost, as illustrated in Figure 3 (c). 

4. Both vertices U and v are in the’sink part. In N ,  
edges between U and w contribute no capacity. In 
H ,  a consistent cut CH cuts across the f-ascs of 
both P, and P,, and therefore also cuts ;across 
the f-arc of P(.,,). As illustrated in Figure 3 (d), 
CH cuts across neither U(,,,) nor 

Thus, for each pair ( U ,  U ) ,  the cost added to  the capac- 
ity of the cut CN is the same amount of the cost ;added 
to the minimum consistent cut cost among those con- 
sistent cuts corresponding to the cut C N .  Therefore, 
we can conclude that the capacity of the cut C, equals 
the minimum consistent cut costs among those consis- 
tent cuts corresponding to the cut C N .  0 
4 The Maximum Global Snapshot 

In [3], Clieri arid Wu reduced the maximum global 
snapshot problem to the minimum global snapshot, 
problem using a technique, called normalization that, 
enabled them to reduce an event graph H to another 
event graph H’ in which the cost of each consistent 
cut is exactly the same as that for the ori inal graph 
and the cost of each message arc is zero $for details, 
see [ 3 ] ) .  Thus, they could easily reduce the maximum 
global snapshot problem to the minimum global snap- 
shot problem by cha,nging the cost S of each internal 
arc to M - S ,  where M is the maximum cost among all 
arcs. (Note that in reducing the problem to the max- 
imum flow network problem, we also have to make all 
internal arcs non-negative. This is shown in [ 3 ] ,  but 
omitted here.) 

In fact, we can also easily reduce the minimum 
global snapshot problem to the maximum global rsnap- 
shot problem in the same way, i.e., by changing the 

cost S of each internal arc to M - S, where M is 
the maximum cost among all arcs. Therefore, both 
minimum and maximum global snapshot problems are 
linear-tim.e reducible to each other. That is, we can 
conclude that the global snapshot problems are also 
“as difficult as” the maximum network flow problem 
in terms of time complexity. 

5 Discussion 
Several researchers, e.g., Groselj, Chen and Wu, 

have shown that the minimum and maximum global 
snapshot problems are linear-time reducible to the 
MCNF problem. Since the time complexity for the 
most efficient MCNF algorithm [5] is O(n2 log n), the 
minimum and maximum global snapshot can also be 
solved in time O(n2 log n) .  

In this paper we show in a reverse way that the 
MCNF problem is also linear-time reducible to these 
global snapshot problems. Thus, we can concliide that 
the global snapshot problems are “as difficult as” the 
MCNF problem in terms of time complexity. Since 
O(n2 log n )  has been the best time complexity for the 
MCNF problem for many years, it seems also a diffi- 
cult open task to improve upon the O(n2 log n) global 
snapshot idgorithms (as well as that for the MCNF 
problem). 
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