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ABSTRACT

A novel low-loss bending structure in dielectric waveguides is proposed. In the proposed structure, an antiresonant
Fabry-Perot cavity parallel to the original waveguide is added at the outer side of the bend in order to reduce
the bending loss. Based on a simple design rule for the antiresonant cavity, the materials can be flexibly chosen
to be adapted to fabrication methods. The beam propagation method is used to verify this low-loss design. The
double-bend and curved structures using the same principle for further loss improvement are also presented.

Keywords: Waveguide-bends, Antiresonant Conditions, Optical Interconnects, Fabry-Perot Cavity

1. INTRODUCTION

Waveguide bends are the basic structures for optical interconnects or optical routing in integrated optical circuits. In
order to increase packing density in limited chip areas, it is important to find large bending-angle configurations with
minimal radiation loss and modal field distortion. In a conventional waveguide structure, the wave is transversely
resonant in the guiding region with total internal reflections at interfaces between core and cladding regions. However,
when the guided light goes into a bend, phase mismatches happen and the transverse resonance condition no longer
holds. Consequently, radiation losses occur at the outer side of the corner after the wave passing the bending region,
i.e., the well-guided waves become leaky.

A considerable number of studies have been devoted to analyzing and optimizing the bending structures.!™®

Compensation of phase-difference of the phase-front,!™3 coherent coupling of successive connected bends,5® and
redirection of radiated waves by an outrigger waveguide® are methods commonly used to reduce bending losses.
The design of the last two types of bends are cumbersome problems because the coupling of radiation modes are
involved. Proposed phase-front compensation methods include decelerating the phase-front inside the abrupt bend,*
accelerating phase-front outside the an abrupt bend,® and adding a microprism in the bend region!™3 are proposed.
In this presentation, a novel waveguide-bend structure without a complex configuration, which can be applied to any
material system, is proposed.

In the proposed structure, an antiresonant Fabry-Perot cavity parallel to the original conventional waveguide is
added at the outer side of the bend to reduce the radiation loss. Based on the Fabry-Perot interference principle,
a design rule for the antiresonant cavity is developed.!® By raising the reflectance of the Fabry-Perot cavity, the
transmission efficiency of a bend will be enhanced. The reflectance of a Fabry-Perot cavity is mainly determined by
the differences between the refractive or effective indices of two adjacent regions. The radiation loss predicted by the

- overlap integral of modal fields between two sections of the bend can confirm the usefulness of this structure. BPM
(beam propagation method) simulation is also used to verify the design idea. The double-bend and curved structures
using the same principle for further loss improvement are also evaluated.

2. WAVEGUIDE BEND WITH FABRY-PEROT CAVITY CLADDING

The configurations of a conventional abrupt bend and the proposed low-loss bend structure are shown in Figures 1(a)
and (b), respectively. Two identical waveguides with different orientations are connected by sharply corner for both
cases. « is the bending angle, W is the core width, and ngy, n. are the refractive indices of the core and the cladding,
respectively. In both waveguides discussed in this presentation only one mode is guided.

In the proposed structure, a high-index region with refractive index n, and width dj is added to be parallel to
the original waveguide at the outer side of the bend to form a Fabry-Perot cavity. Consider a Fabry-Perot cavity as
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shown in Figure 2. The reflection coefficients 7,5 at the interfaces between n, and nj, and rp. between n, and n,
are given as!!

Kg — Kh

e = @ —, 1

"= e (1)
_ Kp— K

The = Kn + "Cc’ (2)

where «; represents the transverse propagation constant of the waves in the :-th region. The total reflectance across
the high-index cavity is given as

Tgh + The eXp(—i2kpdp) 2
1+ TghThe exp(——i?nhdh) ’

R= (3)
From the Fabry-Perot cavity interference theory,!! it can be seen that the reflectance R will reach its peak values
when the cavity is at the antiresonance, i.e.,

kndy = g(2P+ 1), L@

where P = 0,1,2,---. In this case, the transmittance through the cavity is thus at its minimum. Moreover, the
higher nj, is, the larger and broader the peak value of R is. Thus, if we design a high-index cavity with a larger
refractive index, the reflectance of the cavity can remains high even when the width of each region is slightly changed.
Figure 3 shows some examples of the reflectance characteristics of this cavity as a function of kpdy. In the examples,
the operating wavelengthis A = 1.5 um, W =6 A, ny = 1.502, and n. = 1.5, and n,, varied with the values of 1.52,
1.55, 1.7, 2.0, 3.0.

Now, a simple design rule for the antiresonant cavity of the proposed low-loss abrupt bend is developed.!® Because
only single TE mode is supported in the core region, the dispersion relation can be simplified as

Kg Weff ~m, (5)
where the effective width W,;; of the core is

1
Wepp =W+ —, (6)

which takes account of the penetration depth in the cladding region as shown in Figure 4, especially important for
weakly guided waves. Combining EqS. (4), (5), and the Snell’s law, we can obtain the relation as

A\ n2 /\2 -1/2
PR N (2P + 1),
"= dn, ( n2 + 4n,21Werf> (2P +1) (7)

where P = 0,1,2,---. Based on this design rule, the width of the high-index cavity can be determined whenever the
material of each region is chosen.

After the antiresonant Fabry-Perot cavity parallel to the original waveguides is added at the outer side of the
bend, the wave is then confined in the core region by the total internal reflections at the inner interface of the bend
but antiresonant reflections at the outer interface. According to the above analysis of the Fabry-Perot interference,
the ultra-high reflectance at outer interface will hold for a large range of cavity width. Hence, the outer-interface
reflectance remains high when the wave pass through the bend region, loss reduction can be expected for this
configuration. The reflectance of a Fabry-Perot cavity is mainly determined by the differences between the refractive
or effective indices of two adjacent regions. The flexible design rule is, therefore, suitable for all material systems
or for rib waveguides by varying the rib thickness or width. Figure 5 shows three possible configurations of the
channel waveguides with abrupt bends using antiresonant Fabry-Perot cavity, including ridged-type, buried-type and
loaded-type.
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3. BENDING LOSS ANALYSIS BASED ON -
MODE COUPLING AT THE BENDING INTERFACE

To investigate the bending loss improvement of our structure, we analyze the wave propagation and power exchange
between the guided and radiation modes based on the theory developed by Taylor.® The modal fields of the conven-
tional waveguide and the proposed structure are shown in Figure 6. The coordinate system is shown in Figure 1,
and we assume that the fundamental mode with unity power is launched into the first section of the bends. The field
at the i-th section can be expanded into a complete set of eigenmodes as

fO(2®, 20) = au®(29)) exp [_jﬂ!(]i)z(i)] + / aDu® (29; §) exp [_jﬁza)] dg, 8)
where subscripts g, r represent the guided and radiation modes, respectively, u(z) is the normalized field, a is the

linear coefficient and £ is the propagation constant. In this analysis, the reflected waves are negligible. By applying
the field continuity at { = 0 plane, where

M = £cos(a)2), 9)
D = gsin(e/2) + 1D, (10)
2® = £cos(af2), (11)
P = _gsin(a/2), (12)

and the orthogonal conditions of
/uﬁ(z)uz(z)dw = bpp, » (13)

we can obtain

agz) (14)
= cos% afM / ult) (5 cos g—) us® (6 cos %) exp [—jﬂ§1)1(1)] exp [—j2ﬁ§1)§sin g] d¢ (15)
a® (82 , (16)

= cos% agl) / ugl) (f cos %)y:(z) (E cos %) exp [—jﬁfll)l(l)] exp [—j (ﬂgl) + ﬂ£2)> &sin %J d€ an

where agl) =1, 5(,1) = !(,2) are presumed before.

Figure 7 (a) shows agz) as a function of the bending angle & with other parameter values as in Figure 3 except for
np = 2.0. Clearly, the excited guided mode at output section is enhanced when the antiresonant Fabry-Perot cavity
exists. Figure 7 (b) shows the radiation spectrum at output section when « equals 5°. It can be seen that the amount
of output radiation modes of the proposed structure is decreased which can explain the increasing excitation of the
guided mode. Thus, lower radiation loss of the proposed structure than the conventional abrupt bend is expectable.

4. DESIGN EXAMPLES AND BPM SIMULATIONS

In this section, we present some design examples and use the standard finite-difference beam propagation method
(FDBPM) with transparent boundary condition (TBC) to evaluate the radiation loss of the proposed structure.!2-14

4.1. Single-Bend Structure

In single-bend structures, we use the same parameter values as in Figure 3, 1.e., A = 1.5 um, W = 6 A, ny, = 1.502,
and n. = 1.5, and nj varied with the values of 1.52, 1.55, 1.7, 2.0, 3.0. The corresponding dj are 1.567, 0.970, 0.470,
0.287, and 0.144 pm for P = 1, respectively. Figures 8(a) shows the field evolution profiles for the conventional
single-bend with an angle @ = 5°, and (b) for the proposed structures with n, = 2.0 and an angle o = 12°. Here,
the fundamental mode with a unit power is launched into the straight section of the bends. Obviously, a significant
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portion of the incident power is radiated toward the outer-edge of the corner in the conventional bend. I the
proposed structure, the additional antiresonant Fabry-Perot cavity can diminish the radiation loss toward this path.
Namely, this additional cavity acts like a corner reflector which can more or less reflect the radiated light back
into the guiding region. For convenience of discussion, we define the transmission efficiency of the bend 7 as the
overlap integral between the output field and the incident field. In order to reduce the radiation loss and modal
field distortion, 1 should be maintained as high as possible. The calculated 7 associated with Figure 8 is shown
in Figure 9. n decays rapidly along the propagation distance in the conventional case. On the other hand, in the
proposed structure, 7 is firstly decreasing, then increasing to a local maximum and finally decreasing again. This
phenomena can be explained from the field evolution profiles shown in Figure 8 (b). From the starting point of the
bend, the incident wave gradually shifts to the outer-edge of the corner because of the bending structure. Then the
antiresonant cavity reflects the shifted wave toward the inner-edge of the corner. Finally, the wave is radiated toward
the inner-edge other than the outer-edge of the corner. As the refractive index of antiresonant cavity increases, the
amount of redirected wave field increases, and the cavity acts more like a reflector. For other np values, we have the
same effects.

4.2. Double-Bend Structure

An double-bend structure is proposed to further reduce radiation loss toward the inner-edge as discussed above. This
improved structure is depicted in Figure 10, where I(?) is the length of the connected section. {(?) is chosen to be the
length where the transmission efficiency reaches its local maximum as explained above. From a simple geometrical
point of view, I(?) can be choose as

1 = 2We; s (cota - %csc a) , (18)

where the effective width Wy is defined in Eq. (6). The trace of the wave peak is shown in this figure, which takes
advantage of antiresonant cavity as a reflector. The field evolution profile for double-bend structure with n, = 2.0
and total bending angle of 2o = 24° and its transmission efficiency is shown in Figures 11(a) and (b), respectively. It
can be seen that the transmission efficiency of the improved structure remains high after the shifted wave is reflected
back toward the inner-edge of the corner. The applications to Z-bend and Y-junction need further studies.

4.3. Curved-Bend Structure

In addition to the abrupt bend, another choice of bending component is the curved waveguide which is illustrated in
Figure 12. In this section, we briefly evaluate the curved structure with a parallel antiresonant Fabry-Perot cavity
at the outer side of the bend. The structure parameters chosen here are the same as the reference paper!® for a
comparison with n, = 1.503, n. = 1.5, A = 1.0 um, W = 4 um, and the bending radius R = 4000 ym. The additional
cavity is set to be np = 1.98 and dp = 0.193 gm. In order to investigate the bending and transition loss of such
waveguides, we adopt BPM which is extensively used to model waveguides with arbitrary curvatures. In the BPM
analysis, the index profile of a-curved waveguide is transformed to a modified index profile of the equivalent straight
waveguide.!® Because the bending radius is much larger than the core width, the modified index profile Ng(z) can
be approximated as

Ne(z) = N(z)- %, (19)

where N(z) is the real index profile of the curved waveguide and z is perpendicular to the core axis from the center
of the waveguide. In BPM calculation, a computation window L, = 40 pym with sampling point N, = 1000 and
the longitudinal distance L, = 3000 pm with step size Az = 0.15 um is selected. Figure 13(a) and (b) show the
modified index profiles and the input and output fields for the conventional case and Figure 14(a) and (b) show
those of the proposed curved waveguides, respectively, where we restrict ourselves to the case of TE mode and the
normalized fundamental TE; mode is excited at input end. A significant power loss in the conventional case and
low-loss characteristic of the proposed structure are observed as in the discussion of the abrupt bends. Figure 15
shows the differential power loss which is defined as

1 . P(z+ Az)

2l=——1n

AN TRy (20)
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where P(z 4+ Az) and P(z) is the total power within the computation window at z + Az and z, respectively. The
transition loss which is in rapid fluctuation at a small axial distance in the conventional case seen in Figure 15 is
greatly suppressed in the proposed structure. The pure bending loss which is asymptotic at a large axial distance
is drastically improved from 1.45 x 10~3 dB/um in the conventional case to 6.5 x 1075 dB/um in the proposed
structure.

5. SUMMARY

A novel structure which can reduce the bending loss of dielectric waveguides is proposed. An antiresonant Fabry-
Perot cavity parallel to the original waveguides is added at the outer side of the bend to reduce the radiation loss
toward the outer-edge of the bend. Based on the Fabry-Perot interference, a simple design rule for the antiresonant
cavity is developed. According to BPM analysis, about 90% transmission efficiency can be achieved for a bending
angle of 12° at a propagation distance of about 50A. Furthermore, we propose a double-bend structure which takes
advantage of the Fabry-Perot cavity as a corner reflector. The length of the conjunction section between two bends
can be chosen by a simple geometrical relation. Based on this configurations, about 80% transmission efficiency can
be achieved for a total bending angle of 24° at a propagation distance of about 100A. We also evaluate the curved
waveguides using the same principle. The transition loss is greatly suppressed and the pure bending loss is drastically
improved from 1.45 x 10~3 dB/um to 6.5 x 10~% dB/um for the bending radius of 4000 pm. Applications of the
presented concept to Z-bend and Y-junction should be a great interest in the future.
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Figure 1. Configuration of abrupt bends:
(a) conventional, and (b) proposed structure.

Figure 3. Reflectance of a Fabry-Perot cavity.
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Figure 4. The effective width of the core region.

Figure 5. Three dimensional waveguide
structures: (a) ridged, (b) buried, and (c)
loaded.
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Figure 6. The modal fields of (a) conventional, and (b) proposed structure.
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Figure 8. Field evolution profiles for (a) a @ = 5° conventional bend, and
(b) a a =12" bend for the proposed structure with »n, =2.0 . The input field
is the fundamental mode TE, with unit power.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms

167



Transmission Efficiency

— conventional bend \

—————— proposed bend (7, =2.0) N
0.2 — N

0.0

T T LE— — T T ]

0.0E+0 4.0E-5 8.0E-5 1.2E-4 1.6E-4

Figu
with

Propagation Distance (m)

re 9. Transmission efficiency 77 associated Figure 10. Configuration of the double-bend

Figure 8. structure.

300
g_ —
= 240 —
- ‘
Q e
A 180 ——— é
ki —— &
§u — &
§ 120 £
a g ] double-bend structure
= R
------- single-bend structure \\
60 0.20 — *
0 T — T
T T T 1 T 000 T I J 1
0.0E+0 4.0E-5 8.0E-5 1264 16E-4
-6.0E-5 -4 0E-5 -;2):]—)5 0.0E+0 2.0E-5 Propagation Distance (m)
(@ (b)

168
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bending angle of 2a = 24° (b) The corresponding transmission efficiency 77 .
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