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ABSTRACT

From the linearized Taylor series expansion, an iterative, gradient-based method is used to
estimate the zoom and pan motion parameters. In order to take into account the high order expansion
error, the Wiener filtering techniques are investigated. It is shown that the expansion error can be
efficiently removed with the Wiener filter. However, the reliability of the estimated parameters is still
highly dependent upon the accuracy of the gradient information of the images.
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1. INTRODUCTION

Motion parameters describe the relative motion phenomenon between image objects in the
image sequence. Some cases of motions are due to the zoom and pan of the camera. The 2-parameter
motion model used for video coding assumes only 2-D translatory image motion. However, in many
cases, translatory motion assumption is not sufficient to describe the image motion phenomenon. For
this, a three-parameter motion model has been proposed.! In the proposed,! one parameter is used to
describe the ratio of the focal lengthes before and after zooming and the other two parameters are
used to describe the pan of the camera.

The criterion for most motion estimation algorithms37 is to minimize the displaced frame
difference. For this, a signal representation model is used to describe the luminance signal as a
function of the motion parameters based on the Taylor series expansion. In this signal representation,
the luminance of the estimated corresponding point is expressed as the sum of the luminance of the
true corresponding point and a function of the image gradient and the parameter estimation error. This
parameter estimation error is defined as the difference between the true parameter value and the
current estimated one. In the proposed,! a direct pseudo-inverse method is used to calculate the
motion parameters from the observed displaced frame difference and the image gradient. However, the
performance in the proposed! is not very satisfactory. Large variation in the search process is
commonly seen and sometimes the algorithm diverges. The problem with the direct pseudo-inverse
method is due to the high order expansion terms in the Taylor series expansion of the luminance
signal. These high order expansion terms are not small initially and can not be neglected. This can be
due to the poor estimate of the gradient or that the parameter error is too large initially. To deal with
the high order expansion terms, in this paper, a Wiener-based recursive motion estimation algorithm is
proposed. With Wiener based algorithm, the high order expansion terms are treated as a random
process. With such random data model, the displaced frame difference is modelled as a function of
the image gradient and the parameter estimation error plus a high order expansion error. The Wiener-
based algorithm is a linear estimator that derives the motion parameters by minimizing the mean
square difference between the estimated parameter error and the true error. Due to the minimization of
the mean square difference, second order statistics of the parameter estimation error and the random
process that models the high order expansion error are needed. With the consideration of such high
order expansion error, the convergence and the stability of the Wiener-based algorithm is far superior
to that of the direct pseudo-inverse method.

Wiener algorithm has been applied to estimate the 2-dimensional displacement>”. In the two-
parameter model, the parameters are assumed to be uncorrelated and a constant diagonal correlation
matrix is used. However, the zoom and pan discussed in this paper are correlated. Therefore, the
correlation matrix of the estimation error is significant. A procedure has been proposed to estimate
such correlation matrix. If the motion parameter error is within a certain range, the high order
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expansion error can be assumed to be uncorrelated for each image point. Therefore the corresponding
correlation matrix is assumed to be a diagonal matrix.

In the following section, we first briefly review the three-parameter motion model. Then the
signal representation model that describes the relationship between the motion parameters and the
observed displaced frame difference is derived. In section 3, the Wiener-based algorithm for parameter
estimation as well as the estimation of the correlation matrices are analyzed. The simulation results
are shown in section 4 and a conclusion is made in section 5.

2. THE SIGNAIL REPRESENTATION MODEL
The three-parameter motion model can be described as the transformation of the coordinate
(X,,Y,) =AX,.Y)) = (¢, X,+a, , a,Y+a;) @))]

where (X,,Y,) and (X,,Y,) are the coordinates of an image point before and after zoom and pan of the
camera. Parameters a, a, and a; are the three motion parameters to be estimated. When parameter a,
= 1, the three-parameter model will degenerate to the traditional translational two-parameter motion
model with a, = dx and a; = dy.

Based on the motion model, a signal representation model is used to describe the relationship
between the luminance signal and the motion parameters. Form the signal representation model,
Wiener algorithm is derived to estimate the motion parameters from the luminance signal. Let the

luminance at position (x,y) in frame k be defined as S,(x,y). If the motion model is assumed to be A(x,
y)=(a; x +a,, a; y + a; ), then the relationship between S,(x,y) and S, ;(x, y) can be described as

See1 (%) = S(Ax ,y)) (2)

The displaced frame difference(DFD) is defined as

DFD(x,y) = S,, ;(x,y) -S(A (X)) = S;., ,(5Y) - S (@, x +ay, @,y +a3) (3)

where a : ,az, a3 are the current estimates of the true motion parameters a,, a, and a;.
Ifa,,az, and a3 approachs to a;, a, and a; respectively, then DFD w1ll approach to zero. Since

S (xy) = 8, (A(x ,y)), the DFD can be expressed as S,(A(x ,y))-Sk(A (x,y)). That is the DFD is
actually the result of the error of the estimate of the motion parameters. Using the Taylor series
expansion, the luminance function at point p, = A(x, y) with estimated e= (3 7 ,22, 23) can be evaluated
with respect to the true motion parameter a; as

3, 98k lpo,

SKA(, 1) = S ACx, y)) + s e (@i-a) +r(x,y) (4)

where r(x,y) denotes the high order expansion terms in this Taylor series expansion.

Rewrite Eqn.(4) we have :

DFD(xy) = G,y (%3) (a;- ;4G (x.y) (a,- ;)
+G; (x,y) (a; - a; y+r(x,y)

where Gg(x,y) = %ﬁ l Dos€ ©
a;
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In order to describe Eqn.(5) directly from the image signal, the gradients with respect to the
motion parameters can be replaced by the gradients in X and Y coordinates. By defining (x’, y") =
A(x,y) , we have

oSk é}i Sk ﬂ

k|, =9Skox| . 059y 6
a ¢ ox dai Port 9y’ da; o€ (©)
o, o _
daj oaz oas
@)
day dax das
Thus,
DFD(x,y) = S, ,(x,y) - S (A (X,YQ
=S5 (A(x,y)) - S (A (x,/)\))) . .
=(Gxx+G),y)><(a1—al)+Gx><(a2-a2)+Gy><(a3-a3)+r(x,y)
=G, x+Gy)u; +Guy, +Goug +r(xy) (8)

where Gy = —a-‘i"-l e and Gy= ﬁl ¢ are the X and Y directional gradient functions at
axv Pos Y ay' Pos g

the point A(x', y') and u; is the estimation error defined as the difference between a; and a;.

Eqn.(12) describes the DFD as a function of the parameter error u;, u, and u3. The expansion
error can be seen as the error in the estimation of the DFD. As can be seen from Eqn.(8), the product
term (G, x + G, y) u; + G, u, + G, u; can be seen as an estimate of the DFD value.

From Eqn.(8), it is found that the three-parameter signal representation model is similar to the
two-parameter model. As derived in the proposed?, the two-parameter signal representation model is

DFD(x,y) =G, u, + G), u, + r'(xy) 9)
with u, = dx - dx and u, = dy- dy as the X and Y directional estimation error. Since u, = u; x + u, and
Uy =u;y+us, It can be seen that Eqn.(8) and Eqn.(9) are similar. The difference between Eqn.(8) and
Eqn.(9) are the description of the motion phenomenon. The underlying search procedure for point

correspondence is the same. Both equations indicate the discrepancy in point correspondence as the
product of gradient and parameter errors. Therefore, the characteristics of the expansion error r(x,y)
and r'(x,y) are the same. Based on this fact, those features and assumptions that have been proposed6
can still be used in the estimation of the zoom and pan.

For N points of signals, Eqn.(8) can be written in a matrix form as

D =G(A-AP)+R
-Gu+R (10)

with
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DFD(x (17),),1 (P))
D FD(xz(p),yz(p))

DF, D(xN(P),yN(p) )

D= ( :
Gy x1+Gy,® y1 Gy® Gy @
GofP) 12+ Gpy(P) 2 Goy» Gy,(p)
G-= ' ' '
and
R= (

GxN(P) XN+ C;)NQ’) N GxN(P) G)‘N(P)

r(xl(P),yl(p))
r(xz(p),yz(p))

rO®,yn?)

where
A =[a,;,a,,a;]is the true motion parameter vector.

~ ~ ~ ~
AP =[q,P , a,P, aP T is the estimated motion parameter vector at iteration p.
u=[u,,u,,u;]"is the estimation error vector.

From Eqn.(10), it can be seen that the estimation error u between the true value and the
estimated one is embedded in the displaced frame difference and is not explicity calculatable due to
the noise process R.

3. THE WIENER-BASED ESTIMATION METHOD

If the expansion error is neglected, the estimation becomes a simple pseudo-inverse
computation!. However, to obtain better estimation, this random error should be considered. To recover
signal from random noise, it is known that the Wiener filter is a very effective linear estimator. From
the signal model, the desired signal is Gu and the observed signal is DFD. The purpose is to recover
Gu form DFD. Therefore, in the following, we first derive the Wiener filtering process to show that
Gu can indeed be recovered from DFD. Since G is known u can be easily calculated. These two
processes can be combined into one for simplicity. :

The Wiener-based algorithm is derived based on the criterion that the mean square value E{ll u-
u® [} is minimized. Let the linear estimator be denoted as L. The input and the output relation of the
linear estimator can be described as

u® = [uI(P) s uz(P) s u3(P) ]T= APD AP =L D (1 l)

According to the Wiener based process®®, the linear estimator can be described
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L = (P,GT + Pr)(GP,GT + Py + GP g+ P r7GT)! (12)

where P, = E{uu’}, Py = E{RR7} and P,z = E{uR7} is the correlation matrix of u and R. Eqn.(12) is
the Wiener based estimation algorithm for 3-parameter motion model. In this algorithm, G is assumed
to be a known constant. From Eqn.(12), it can be seen that the purpose of the Wiener filter is to use
the knowledge of P,,, Py and P to estimate Gu form DFD. Its performance is entirely dominated by
the knowledge of these three matrices. Therefore, to discuss the performance of the Wiener filter, we
need to first discuss the estimation of these three matrices.

A. the estimation of Pyg

As discussed above, the characteristics of the expansion errors in the signal representation
model for the 2-parameter and the 3-parameter cases are similar. For the 2-parameter model, the
assumption that u is uncorrelated with r has been made based on the observation that the expansion
error is a random signal with zero mean. For the 3-parameter model, as derived in Section II, the
expansion error is still a random signal with zero mean when the estimation error is small. Therefore,
the assumption that the random signal r is uncorrelated with the signal u is still made in this 3-
parameter model. With E{uR7} = E{Ru”}7 = 0, Eqn.(12) will be

L =P,G7 (GP,GT + Pg)’!
From the matrix manipulation in the proposed’, we have
L = (GTPR'G + P, 1)1 GTPg! (13)

and the Wiener based algorithm becomes
AP+ AW = uP) = L D = (G'Pg G + P, 1)1 G'Pg'D » (14)

B the estimation of Py = E{uuT}

For the 2-parameter motion model, in the proposed, the estimation error u, and u, are assumed
to be zero mean processes and are uncorrelated to each other. Thus, the correlation matrix P, is
assumed to be a diagonal identity matrix scaled by the constant variance ©,?. But in 3-parameter
motion model, there exist a strong relationship among the parameters a,, a, and a;. In this paper the
matrix P, is estimated as

P = 2 p,® 4 1 4o+ (15)
p+l1 p+l ‘

C the estimation of Pg = E{RRT}
From the second order Taylor series expansion, the variance of the expansion error ,? for each
image point is estimated as

012 = (G %Gm G,)o.? (16)

The correlation matrix Pg is assumed to be diagonal with each element as o,;2
4. THE PERFORMANCE EVAIL UTION

The Wiener based algorithm is derived from the signal representation model based on the first
order Taylor series expansion. The first order Taylor series expansion is feasible only when the change
of intensity is smooth. The convergence of the Wiener based algorithm is also largely dependent on
the accuracy of the gradient estimation. With Wiener algorithm, the purpose is to filter out the
expansion error. The estimation result is the product term Gu. With the knowledge of the gradient G,
u is estimated to find the new corresponding points for subsequent iteration. If the knowledge of G is
poor, u will not be correct. Then the estimation will take longer time or even diverge. Due to the
characteristics of the motion model, the coordinates of new corresponding points are usually not
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integer and are not available. For this, the bilinear interpolation is used to find the luminance of these
new corresponding points.

To show that the Wiener filter can indeed recover Gu from the noise corrupted DFD, two
synthetic images shown in Fig.1 consisting of gaussian distributions are used to demonstrate the
effectiveness of the algorithm. The first image contains two gaussian distributions S;;(x, y) =255

2 2 2 2
exp(%), Si2(x,y) =255 exp(%ggsﬁ). The second image contains S,;(x, y) =255
2 2 2 2
exp(M), Sya(x,y) =255 exp(w). Form these two images, two motion
200x(1.08)° 200x(1.08)*

parameters A; = (1.08, 0, 0)7 and A, = (1.08, 1, 1)T for the two distributions are observed. In this
simulation, the gradients are estimated with three different methods :

1. The optimum method :
G.(x;, y)) = 255 exp(-(x;2+y#)/(200(1.08)2))x(-2x;/200(1.08)2)
Gy(x;, y;) = 255 exp(-(x;*+y;#)/(200(1.08)2))x(-2y/200(1.08)?)

2. The 6-point estimation :
Gul(xi, yi) = i[ Se(xi+1, yi -1) - Se(xi -1, yi -1) ]

+ 15[ Se(xi+1, yi ) - Selxi -1, yi ) ]

+ {I[ Se(xi+1, yi +1) - Su(xi -1, yi +1) ]
Gy(xi, yi) = j‘—[ Sexi-1, yi +1) - Se(xi -1, yi-1) ]

+ 15[ Suxi, yi +1) - Si(xi , yi-1) ]

+ i{ Sr(xi+1, yi+1) - Se(xi +1, yi -1) ]

3. The 2-point estimation :
G(xp y) = Splxitl, ) - Silxi-1, )
Gy(xi, yi) = Si(xj, yitl) - Sp(xi, yi-1)

The simulation results for these two gaussian distributions are shown in Fig.2 and Fig.3. Fig.2
shows the estimation of A corresponding to the movement of S;; to S,;. Fig.3 shows the estimation of
A corresponding to the movement of S;, to S,,. Both cases show that the Wiener filter can indeed
recover Gu from the signal representation model. However, as can be seen from both figures, the
effect of the gradients is very significant. In the first case, with only zooming motion the effect of poor
gradient is only on the convergence speed. For the second case, with simultaneous zooming and
translation, the accuracy of the motion parameters is affected. This indicates the importance of the
gradient estimation.

5. CONCLUSION

A signal representation model based on the first order Taylor expansion is used to describe the
relation among motion parameters, gradient and DFD. Due to the use of Taylor expansion, high order
expansion terms are treated as random noise in the signal representation model. To recover the motion
parameters with such model, the Wiener-based algorithm is shown to be very effective in dealing with
the random expansion error. The problem of applying such algorithm to the real images for motion
parameter estimation is the difficulty of good gradient estimation. Generally, in a smooth region with
reliable gradient estimation, the algorithm can derive the desired solution.
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(b)

Figl Two synthetic images consisting of gaussian distributions (a) image consists two

2 2 :
gaussian distributions S;;(x, y) =255 exp('«x)%%). S12x,y) =255

() 2+(v-50)2 : zl(: +50)2
cxp(L(x);go&). (b) image contains S;;(x, y) =255 cxp(u), S22(x, y)
200%(1.08)%
=255 explENH0-5DY)

200x(1.08)?
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